高中数学排列组合及二项式定理知识点和练习
35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。
高三数学 排列、组合、二项式定理

高三数学排列、组合、二项式定理【考点梳理】一、考试内容1.分类计数原理与分步计数原理。
2.排列、排列数公式。
3.组合、组合数公式。
分类计数原理中的分类。
分步计数原理中的分步。
正确地分类与分步是学好这一章的关键。
(2组合数公式:C n m =!(!!m n m n -=121(1m -(n 1-n (⨯⨯⨯-⨯+ m m n (3组合数的性质①C n m =C n n-m②r n r n r n C C C 11+-=+③rC n r=n ·C n-1r-1④C n0+C n1+…+C n n=2n⑤C n0-C n1+…+(-1n C n n=0即C n0+C n2+C n4+…=C n1+C n3+…=2n-15.二项式定理(1二项式展开公式(a+bn=C n0a n+C n1a n-1b+…+C n k a n-k b k+…+C n n b n(2通项公式:二项式展开式中第k+1项的通项公式是k n-k k本策略之一。
注意的是:分类不重复不遗漏,即:每两类的交集为空集,所有各类的并集为全集。
(3分步处理与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步,其原则是先分类,后分步。
(4插入法(插空法某些元素不能相邻或某些元素要在某特殊位置时可采用插入法。
即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间。
(5“捆绑”法把相邻的若干特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”。
将特殊元素在这些位置上全排列,即是“捆绑法”。
(6穷举法:将所有满足题设条件的排列与组合逐一排列出来。
(7探索法:对于复杂的情况,不易发现其规律的问题,需仔细分析,从特殊到一般,或一般到特殊,探索出其中规律,再给予解决。
(8消序处理对均匀分组问题的解决,一定要区分开是“有序分组”还是“无序分组”,若是“无序分组”,一定要清除均匀分组无形中产生的有序因素。
排列组合二项式定理概率基础知识点+思维导图练习

;展开
式共有项数为
项.
(2)二项展开式的通项 Tr1
,表示第
项.
(3)二项展开式中的二项式系数为
;项的系数是指
.
11、(1)对称性:与首末两端
的两项的二项式系数相等,即 Cnr
C nr n
(r
0,1, 2,, n)
18
(2)二项式系数最大的项在中间.当幂指数 n 为偶数时,最大的二项式系数为
,
最大二项式系数为第
项;当 n 为奇数时,最大的二项式系数为
,
最大的二项式系数为第
项.
(3)二项式系数之和为
.二项展开式中,各奇数项的二项式系数之和与各偶数
项的二项式系数之和相等,即:
==.源自12、若 (x 1)7 a0 a1x a2 x2 a7 x7 ,令
一、特殊元素特殊位置优先
,得 a0 a1 a2 a7
八、合理分类与分步策略 8、在一次演唱会上共有 10 名演员,其中 8 人能够唱歌,5 人会跳舞,现要演出一个 2
人唱歌 2 人伴舞的节目,有多少种选派方法?
九、构造模型策略 9、马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不能关掉相
邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关灯方法有多少种?
; Ann
;规定, 0!
;
7、组合数 Cnm 的含义:
8、计算: Cnm
=
;
9、组合数的性质
(1)Cnm
;(2)Cnm
C m1 n
10、(1)对于 n N * , (a b)n
;(3)Cn0 Cn1 Cn2 Cnn1 Cnn
排列组合与二项式定理知识点精选全文完整版

可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。
排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。
全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。
专题04 排列组合与二项式定理(解析版)--高二数学专题解析

专题04排列组合与二项式定理--高二数学专题解析知识点一:排列1:排列≤)个元素,并按照一定的顺序排成一列,叫做从n个不(1)定义:一般地,从n个不同元素中取出m(m n同元素中取出m个元素的一个排列.(2)相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.2:排列数与排列数公式1:组合(1)定义:一般地:从n个不同的元素中取出m(m n≤)个元素作为一组,叫做从n个不同元素中取出m 个元素的一个组合.(2)相同组合:只要两个组合的元素相同,无论元素的顺序如何,都是相同的组合.(3)组合与排列的异同≤)个元素”.相同点:组合与排列都是“从n个不同的元素中取出m(m n不同点:组合要求元素“不管元素的顺序合成一组”,而排列要求元素“按照一定的顺序排成一列”因此区分某一问题是组合问题还是排列问题,关键是看选出的元素是否与顺序有关,即交换某两个元素的位置对结果有没有影响,若有影响,则是排列问题,若无影响,则是组合问题.2:组合数与组合数公式(1)组合数的定义:从n个不同元素中取出m(m n≤)个元素的所有不同组合的个数,叫做从n个不同元3:组合数的性质b一、单选题1.在()5232x x ++的展开式中x 的系数是()A .160B .180C .240D .210【答案】C【分析】根据二项式的定义可知有4个因式中取2,1个因式中取3x 项,即可得解.【详解】在()5232x x ++的展开式中,要得到含x 的项,则有4个因式中取2,1个因式中取3x 项,故x 的系数为445C 32240⨯⨯=.故选:C7.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法.【答案】3600【答案】20【分析】根据题意,先对【详解】对于6盏不同的花灯进行取下,可先对因为取花灯每次只能取一盏,且只能从下往上取,又因为每串花灯先后顺序已经固定,所以除去重复的排列顺序,所以共有663333A20 A A=故答案为:20.13.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.x16.(多选题)若()32+n x(=20.(多选题)有甲、乙、丙、丁、戊五位同学,下列说法正确的是()A .若丙在甲、乙的中间(可不相邻)排队,则不同的排法有20种B .若五位同学排队甲不在最左端,乙不在最右端,则不同的排法共有78种C .若五位同学排队要求甲、乙必须相邻且甲、丙不能相邻,则不同的排法有36种D .若甲、乙、丙、丁、戊五位同学被分配到三个社区参加志愿活动,每位同学只去一个社区,每个社区至少一位同学,则不同的分配方案有150种【答案】BCD【分析】对于A :讨论甲、乙之间有几位同学,分析运算即可;对于B :讨论甲、乙所在位置,分析运算即可;对于C :先求甲、乙相邻的安排方法,再排除甲、乙相邻且甲、丙相邻的安排方法;对于D :先将学生安排出去,再排除有小区没有人去的可能.【详解】对于选项A :可知有三种可能:甲、乙之间只有一位同学,则不同的排法有2323A A 12=种;甲、乙之间有两位同学,则不同的排法有12222222C A A A 16=种;甲、乙之间有三位同学,则不同的排法有2323A A 12=种;不同的排法共有12161240++=种,故A 错误;对于选项B :可知有四种可能:甲在最右端,乙在最左端,则不同的排法有33A 6=种;甲在最右端,乙不在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙不在最左端,则不同的排法有2333A A 36=种;不同的排法共有618183678+++=种,故B 正确;对于选项C :若甲、乙相邻,则不同的排法有2424A A 48=种;若甲、乙必须相邻且甲、丙相邻,则不同的排法有2323A A 12=种;不同的排法共有481236-=种,故C 正确;对于选项D :若每位同学只去一个社区,则不同的排法有53243=种;若有小区没有人去,则有两种可能:所有人去了一个小区,则不同的排法有13C 3=种;所有人去了两个小区,则不同的排法有()25132C 2C 90-=种;不同的排法共有()243390150-+=种,故D 正确;故选:BCD.21.将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有__________.原理即可得出答案.【详解】首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有33A 6=个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列,共有22A 2=种结果.前三位是123,第四位是0,最后一位是4,只有1种结果,∴数字12340前面有6+2+1=9个数字,数字本身就是第十个数字.故答案为:10.27.重新排列1,2,3,4,5,6,7,8.(1)使得偶数在原来的位置上,而奇数不在原来的位置上,有多少种不同排法?(2)使得偶数在奇数的位置上,而奇数在偶数的位置上,有多少种不同的排法?(3)使得偶数在偶数位置上,但都不在原来的位置上;奇数在奇数位置上,但也都不在原来的位置上,有多少种不同的排法?(4)如果要有数在原来的位置上,有多少种不同的排法?(5)如果只有4个数在原来的位置上,有多少种不同的排法?(6)如果至少有4个数在原来的位置上,有多少种不同的排法?(7)偶数在偶数位置上;但恰有两个数不在原来位置上,奇数在奇数位置上,但恰有两个数不在原来位置上,有多少种不同排法?(8)偶数在偶数位置上,且至少有两个数不在原来位置上;奇数在奇数位置上,也至少有两个数不在原来位置上,有多少种不同排法?【答案】(1)9;(2)576;(3)81;(4)25487;(5)630;(6)771;(7)36;(8)225.【分析】(1)利用匹配问题错排公式求解;(2)利用乘法分步原理求解;(3)利用匹配问题求解;(4)用排除法.对8个数进行全排列,再减去没有数在原来的位置上的排法,即得解;(5)利用乘法分步原理求解;(6)用排除法.先对8个数进行全排列,再去掉恰有i 个数在原来位置上的排法()0123i =,,,,即得解;(7)利用匹配问题和分步乘法原理得解;。
高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点2、排列、组合3、二项式定理内容典型题定义①二项式定理:(a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n=∑=nrrnCa n-rb r(n∈N+)②二项式展开式第r+1项通项公式:Tr-1=C r n a n-r b r其中C r n(r=0,1,2,…,n)叫做二项式系数.8.二项式8)1(-x的展开式中的第5项是( )A. 70x4B. 70x2C. 56x3D. -5623x9.二项式(x-2)12展开式中第3项的系数是( )A.264B.-264C.66D.-176010.(x-2)8 的展开式中, x6的系数是( )A. 56B. -56C. 28D. 22411.(x2+)5展开式中的10x是( )A.第2项B.第3项C.第4项D.第5项12.二项式x-1x6的展开式中常数项是( )A. 1B. 6C. 15D. 2013.设(3-x)n=nnxaxaxaa+⋅⋅⋅+++221,已知naaaa+⋅⋅⋅+++21=64,则n=.14.设二项式(3x+5)10=188991010axaxaxaxa++⋅⋅⋅+++,则18910aaaaa+-⋅⋅⋅-+-=.15.二项式2x-1x6的展开式中二项式系数最大的项是.性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大.③二项式系数的和为n2,即nC+1nC+…+rnC+…+nnC=n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即nC+2nC+…=1nC+3nC+…=12-n。
高中数学-排列组合及二项式定理-知识点和练习

高中数学-排列组合及二项式定知识点和练习-理.排列组合及二项式定理【基本知识点】1.分类计数和分步计数原理的概念2.排列的概念:从个不同元素中,任取()n?m mn个元素(这里的被取元素各不相同)按照一定的...顺序排成一列,叫做从个不同元素中取出个元mn..素的一个排列....3.排列数的定义:从个不同元素中,任取mn()个元素的所有排列的个数叫做从个元素n?m n中取出元素的排列数,用符号表示m Am n 4.排列数公式:()?m nm?,n?N,m1)?nm?L n?1)(n?2)(n?A(n5.阶乘:表示正整数1到的连乘积,叫做的!n nn阶乘规定.10!?n!6.排列数的另一个计算公式:= m A n)!?nm(7.组合概念:从个不同元素中取出个元素??nm?mn并成一组,叫做从个不同元素中取出个元素的mn一个组合8.组合数的概念:从个不同元素中取出个??nm?mn元素的所有组合的个数,叫做从个不同元素中n取出个元素的组合数.用符号表示.m Cm...n29.组合L A1)??2)m(nn(n?1)(n?mn?C?m或:数公式nm!mA m!n?m)nN且,m?n(,m??C n)!!m(n?m10.组合数的性质1:.规定:;11.组合数的性质2:=+ C+C+…mmn?0CC?1C?nnn10m1mm?CCC nn nn1n?nb+(a+b)+C=C…aa开12.二项式展n=2+C nn0n1n-1公式:nnn-kkknn bab+…+C+C nn.二项式系数的性质:13展开式的二项式系数是,,,…,.n012nr)a(?b CCCCC nnnnn可以看成以为自变量的函数,定义域是)(rf r,}n{0,1,2,L,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).mmn?C?C nn(2)增减性与最大值:当是偶数时,中间一项n n1n?1n?取得最大值;当是奇数时,中间两项,n CCC222nnn取得最大值.(3)各二项式系数和:∵,nn1rr x?Cx L??x?1x(1?)?C?L nn令,则n10n2r1x?C?C L??C??CC?L2?nnnnn【常见考点】重复排列问题要区分可重复的排列求幂法:一、3两类元素:一类可以重复,另一类不能重复,把,能重复的元素看作不能重复的元素看作“客”,则通过“住店法”可顺利解题,在这类“店”关键是在正确判断问题使用住店处理的策略中,哪个底数,哪个是指数名学生报名参加数学、物理、化学竞)有4(1 每人限报一科,有多少种不同的报名方法?赛,名学生参加争夺数学、物理、化学竞)有4(2 赛冠军,有多少种不同的结果?个不同的邮筒,则433)将封不同的信投入(有多少种不同投法?)(3 1)(2)(【解析】:433344题目中规定相邻的几个相邻问题捆绑法:二..元素捆绑成一个组,当作一个大元素参与排列☆高☆考♂资♀源€网必须相五人并排站成一排,如果4)(BA,EC,D,,AB,的右边,那么不同的排法种数有邻且在AB的右边,视为一人,且【解析】:把固定在BA,AB人的全排列,种4则本题相当于424?A4位同学站成一排,6335()位男生和位女生共3若男生甲不站两端,4则不同排法的位女生中有且只有两位女生相邻,)种数是(A. 360B. 188C. 216D.96位女生 6位同学站成一排,3【解析】:间接法中有且只有两位女生相邻的排法有,种高☆考♂资♀源€网☆,符2222=432AACA2342合条件的其中男生甲站两端的有28822122=144AAACA22332排法故共有:元素相离(即不相邻)三.相离问题插空法问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个. 元素的空位和两端)七人并排站成一行,如果甲乙两个必须不6(相邻,那么不同的排法种数是种,个排列数为【解析】:除甲乙外,其余55A5不同的排法种数再用甲乙去插6个空位有种,2A6种是253600A?A65本插进去,本书,新买63书架上某层有)(7种不同的插6要保持原有本书的顺序,有 5法(具体数字作答)【解析】:111=504AAA978(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法,所以满足条件的关3C5灯方案有10种. 四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合及二项式定理【基本知识点】1.分类计数和分步计数原理的概念2.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....3.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示 4.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 5.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘0!1=.6.排列数的另一个计算公式:m n A =!()!n n m - 7.组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合8.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 9.组合数公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 10.组合数的性质1:m n n m n C C -=.规定:10=n C ;11.组合数的性质2:m n C 1+=m n C +1-m nC C n 0+C n 1+…+C n n =2n 12.二项式展开公式:(a+b)n =C n 0a n +C n 1a n-1b+…+C n k a n-k b k +…+C n n b n13.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n L ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=).(2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C-,12n n C +取得最大值.(3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++L L , 令1x =,则0122n r n n n n n n C C C C C =++++++L L 【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34 (3)34二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.(4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种(5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种 (7) 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
(9)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A. 36种 B. 12种 C. 18种 D. 48种【解析】:方法一: 从后两项工作出发,采取位置分析法。
2333A 36A =方法二:分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A.(10)1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?【解析】:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种。
.五.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
(11) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A 、36种B 、120种C 、720种D 、1440种(12)把15人分成前后三排,每排5人,不同的排法种数为(A )510515A A (B )3355510515A A A A (C )1515A (D )3355510515A A A A ÷ (13)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?【解析】:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C . (2)答案:C(3)看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.六.定序问题缩倍法(等几率法):在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.24331212=A C C 122322=A A(14),,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )【解析】:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种(15)书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?【解析】:法一:39A 法二:99661A A 七.标号排位问题(不配对问题) 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.(16) 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种【解析】:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .(17)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A 10种B 20种C 30种D 60种答案:B八.不同元素的分配问题(先分堆再分配):注意平均分堆的算法(18)有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?分成1本、2本、3本三组;(2) 分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3) 分成每组都是2本的三个组;(4) 分给甲、乙、丙三人,每个人2本;(5) 分给5人每人至少1本。
【解析】:(1)332516C C C (2)33332516A C C C (3)33222426A C C C (4)222426C C C (5)2111115554321544C C C C C C A A (19) 四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?【解析】:先取四个球中二个为一组,另二组各一个球的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.九.相同元素的分配问题隔板法:(20)把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法?【解析】:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有120216=C 种。
(21)10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?【解析】:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.十.排数问题(注意数字“0”)(22)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种【解析】?:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B .十一.染色问题:涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;(2)根据相对区域是否同色分类讨论;(3)将空间问题平面化,转化成平面区域涂色问题。
(23)将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是_______.【解析一】满足题设条件的染色至少要用三种颜色。