加速器原理作业习题
高考物理速度选择器和回旋加速器专项训练100(附答案)含解析

高考物理速度选择器和回旋加速器专项训练100(附答案)含解析一、速度选择器和回旋加速器1.如图为质谱仪的原理图。
电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。
一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?(3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1Uv B d = (3)12122()U m m x qB B d-∆=【解析】 【详解】(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:1UqvB qd= 解得:1U v B d=(3)两粒子均由洛伦兹力提供向心力22v qvB m R=可得:112m v R qB =,222m vR qB = 两粒子打在底片上的长度为半圆的直径,则:1222x R R ∆=-联立解得:12122()U m m x qB B d-∆=2.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。
高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121mv B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图,平行金属板的两极板之间的距离为d ,电压为U 。
两极板之间有一匀强磁场,磁感应强度大小为B 0,方向与金属板面平行且垂直于纸面向里。
两极板上方一半径为R 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向里。
一带正电的粒子从A 点以某一初速度沿平行于金属板面且垂直于磁场的方向射入两极板间,而后沿直径CD 方向射入圆形磁场区域,并从边界上的F 点射出。
速度选择器和回旋加速器习题知识归纳总结含答案解析

速度选择器和回旋加速器习题知识归纳总结含答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 4601036023t T -==2.PQ 和 MN 分别是完全正对的金属板,接入电动势为E 的电源,如图所示,板间电场可看作匀强电场,MN 之间距离为d ,其间存在着磁感应强度为B ,方向垂直纸面向里的匀强磁场。
紧挨着P 板有一能产生正电荷的粒子源S ,Q 板中间有孔J ,SJK 在一条直线上且与 MN 平行。
产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K 射出,求粒子的比荷q m。
【答案】222EB d 【解析】 【分析】粒子在PQ 板间是匀加速直线运动,根据动能定理列式;进入MN 板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可. 【详解】PQ 板间加速粒子,穿过J 孔是速度为v 根据动能定理,有:212qE mv =沿着SJK 路径从K 孔穿出,粒子受电场力和洛伦兹力平衡:qEqvB d= 解得:222q E m B d = 【点睛】本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.3.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E 、磁感应强度为B 的复合场区域.进入时氕与氘、氘与氚的间距均为d ,射出复合场后进入y 轴与MN 之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN 射出.虚线MN 与PQ 间为真空区域Ⅱ且PQ 与MN 平行.已知质子比荷为qm,不计重力.(1)求粒子做直线运动时的速度大小v ; (2)求区域Ⅰ内磁场的磁感应强度B 1;(3)若虚线PQ 右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN 上的一点,求该磁场的最小面积S 和同时进入复合场的氕、氚运动到汇聚点的时间差△t . 【答案】(1)E B (2)mE qdB (3)(2)Bd Eπθ+【解析】 【分析】由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B 1;分析可得氚粒子圆周运动直径为3r ,求出磁场最小面积,在结合周期公式即可求得时间差. 【详解】(1)粒子运动轨迹如图所示:由电场力与洛伦兹力平衡,有:Bqv =Eq 解得:Ev B=(2)由洛伦兹力提供向心力,有:21v qB v m r=由几何关系得:r =d解得:1mEB qdB=(3)分析可得氚粒子圆周运动直径为3r ,磁场最小面积为:2213222r r S π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭解得:S =πd 2由题意得:B 2=2B 1由2rT vπ= 可得:2m T qB π=由轨迹可知:△t 1=(3T 1﹣T 1)2θπ, 其中112mT qB π=△t 2=12(3T 2﹣T 2)其中222m T qB π=解得:△t =△t 1+△t 2=()()122m dBqB Eθπθπ++=【点睛】本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.4.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。
物理速度选择器和回旋加速器练习全集及解析

物理速度选择器和回旋加速器练习全集及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m vB qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
速度选择器和回旋加速器练习题含答案及解析

(1)粒子在第二象限做类平抛运动,设初速度为v,
L=v1t
联立解得 ,则经过y轴上 的位置;
(2)
v2=at
可得
qv1B=qE
解得
(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,如图;
解得
最低点y坐标为
此时速度最大为vm=2v1+v1
解得
8.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E的匀强电场。金属板右下方以MN为上边界,PQ为下边界,MP为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d,MN与下极板等高,MP与金属板右端在同一竖直线。一个电荷量为q、质量为m的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。
带电粒子在P1和P2间运动,根据电场力与洛伦兹力平衡可得: 解得: ;
(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力: ;
已知 ,解得:
7.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y轴,并且在第一象限恰能做直线运动,不计粒子重力
联立以上各式解得,离子在电场E中运动到A点所需时间:
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
解得:
由几何知识可得
在电场中,x方向上离子做匀速直线运动,则
因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:
【点睛】
本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
【物理】物理速度选择器和回旋加速器练习题含答案含解析

【物理】物理速度选择器和回旋加速器练习题含答案含解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ; (2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
(物理)物理速度选择器和回旋加速器专项习题及答案解析及解析

(物理)物理速度选择器和回旋加速器专项习题及答案解析及解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qEqvB解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+3.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r ='解得:20212v v += 故010212122v v v v -+≤≤=4.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
回旋加速器及习题训练资料

一、回旋加速器的特点
➢ 两D形盒间缝隙有高频交变电场. ➢ 两D形盒中有强大的磁场无电场.
二、回旋加速器的加速原理
① 电场使粒子加速,磁 场使粒子回旋.
② 粒子回旋的周期不随 半径改变.
③ 粒子在一个周期加速 两次.
保证粒子始终被加速, 交变电场的周期与粒子 回旋的周期有什么样的 关系?
8U
小结
① 粒子在磁场中做圆匀周速运圆动周周运期动,是周否期变不化变? ② 电场变化周 的期 周与 期粒与子粒在子磁在场磁中场做中圆做周圆运周动 运周 动期 周的 期关 相系 同? ③ 电场一个周期中方向变化几两次? ④ 粒子每一个周期加速几两次? ⑤ 粒子加速的最大速度由哪盒些的量半决径定和?磁场强度决定 ⑥ 粒电子场在加电 速场 过加 程速 中,过时程间中极时短间,可是忽否略可忽略? ⑦ 只回有旋回加旋 速加 器速 的器 局的限半性径足够大,粒子是否可被加速到任
动的总时间为t(其中已略去了质子在加速电场中的运动
时间),质子在电场中的加速次数与
回旋半周的次数相同,加速电子时的
电压大小可视为不变.求此加速器所需
的高频电源频率f 和加速电压U.
(1) f qB
2m
BR 2
U 2t
例1 回旋加速器中磁场的磁感应强度为B,D形盒的直 径为d,用该回旋加速器加速质量为m、电量为q的粒子, 设粒子加速前的初速度为零。求:
功能显像的国际领先技术,它为临床诊断和治疗提供了
全新的手段.
(1)PET所用回旋加速器示意图如图示,其中置于高真
空中的金属D形盒的半径为R,两盒间距为d,在左侧D
形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速器原理作业及习题
第一章绪论
习题
1、求动能W=25MeV质子的相对速度、质量比、磁刚度、动量。
将质子垂直于磁
场方向入射到均匀磁场中,当B=1.5 T 时,求其轨迹的曲率半径.
2、如果带电粒子是动能为25MeV的电子,题1中所列各参数等于多少?
3、当离子被加速到较高能量时,必须考虑相对论效应。
试推导考虑相对论效应
时离子的动量与动能之间的理论关系式。
第二章粒子源与束流品质
习题
1、简述电子枪的结构、组成及工作原理。
2、简述潘宁离子源的结构、组成及工作原理。
3、简述高频离子原的结构、组成及工作原理。
4、简述双等离子体离子源的结构、组成及工作原理。
5、简述ECR离子源的结构、组成及工作原理。
6、简述Cs溅射离子源的结构、组成及工作原理。
7、试简述发射度的三截面测量原理并给出相关理论方程。
8、试简述发射度的多孔取样法测量原理并推导相关理论方程。
第三章倍压加速器
习题
1、试简述单极倍压线路的升压原理。
2、一台倍加器的倍压电源采用单边倍压线路,给定级数N=5,Va=110KV,C=0.02uF, f=50Hz,I=2mA;试计算:1) 最高电压、平均电压、电压降、电压波动各为多少?2)如果供电频率提高到f=20kHz,上述各量为多大?3)讨论供电频率对
上述各参量的影响。
3、简述倍压加速器的基本结构、组成及工作原理。
4、试推导磁短透镜的焦距方程。
5、通过理论推导,简述电四极透镜的聚焦原理;
6、通过理论推导,简述磁四极透镜的聚焦原理;
第四章静电高压加速器
习题
1、试简述静电起电机的结构、组成及工作原理。
2、试由充电电压、输电电流及击穿电场的理论方程出发,分析影响静电加速器
负载电流和加速电压进一步提高的限制因素。
3、一台3MeV质子静电加速器采用静电分析器,设给定偏转电压为30kV,偏转
极板间隙宽d=5mm,求束流偏转半径多大?如改用磁分析器,取磁感应强度 B=1.25T,偏转半径又该多大?
4、试简述单极静电加速器的结构、组成及工作原理。
5、试简述两极静电加速器的结构、组成及工作原理。
第五章回旋加速器
习题
1、试从拉莫定律出发,讨论经典回旋加速器的谐振加速条件及谐振加速原理。
2、经典回旋加速器的离子动能可用方程W=48(B.r)2Z 2
A
来描述,是由此方程给出离子回旋轨迹的螺距.
3、试推导给出回旋加速器电聚焦( 速度聚焦和时间聚焦)的理论方程,并讨论其
聚焦特性.
4、试推导给出回旋加速器磁聚焦的理论方程,给出满足轴向聚焦和径向聚焦的
磁场条件,并讨论其聚焦特性.
5、试通过相移分析,给出限制经典回旋加速器离子能量进一步提高的因素.
6、试由等时性条件,推导给出满足等时性回旋加速的磁场分布理论方程.
7、试由磁场分布分析径向扇形等时性回旋加速器的磁聚焦原理并总结其聚焦特
性.
8、试磁场分布分析螺旋扇形等时性回旋加速器的磁聚焦原理并总结其聚焦特
性.
9、试磁场分布分析分离扇形等时性回旋加速器的磁聚焦原理并总结其聚焦特
性.
10、试总结回旋加速器的束流引出方法.
第六章电子感应加速器
习题
1、试由感应加速原理推导给出电子感应加速器平均加速磁场和轨道磁场之
间的2:1关系
2、试简述电子感应加速器的结构、组成和加速原理。
3、试由电子感应加速器的磁场分布分析其聚焦原理。
4、试推导电子感应加速器中电子能量的辐射损失方程,并分析限制电子能量
进一步提高的原因。
5、试简述直线感应加速器的基本结果、组成及原理。
第七章自动稳相准共振加速器基础
习题
1、试简述同步粒子及非同步粒子基本概念。
2、试由准共振加速条件分析实现准共振加速的各种途径。
3、试简述非同步粒子能量亏损和能量盈余的基本概念,并推导给出非同步粒子
相移速度与回旋周期差(非同步粒子回旋周期与同步粒子回旋周期之差)之间的关系方程。
4、由非同步粒子相移速度与回旋周期差之间的基本方程,简述自动稳相原理,
并给出非同步粒子稳定相位区间。
5、简述非同步粒子相位及能量变化与同步粒子相位及能量之间的变化关系。
第八章回旋型准共振加速器
习题
1、试简述稳相加速器的基本结构、组成及加速原理,并推导给出频率调变基本
方程。
2、试简述电子回旋加速器的基本结构、组成、倍频系数调变规律及加速原理。
第九章环型准共振加速器
习题
1、试简述同步加速器的基本结构、组成及加速原理,并推导给出磁场调变基本
方程。
2、试简述电子储存环与同步辐射装置的基本结构、组成及同步辐射原理。
推导
给出同步辐射能量及辐射光波长与电子能量之间的关系方程,并由此总结同步辐射光源的性能特点。
3、试简述电子储存环与正负电子对撞机的基本结构、组成及对撞原理。
并推导
给出正负电子对撞的有效作用能方程。