全国卷理综第25题 (物理压轴题)
21全国乙卷理综物理25题解析

21全国乙卷理综物理25题解析
25题:某人坐在船上,手持一个投石器,以5.0m/s的初速度水平抛出一个石块。
假设重力加速度为10m/s^2,石块离开投石器的高度为5.0m,那么石块离开水平地面的水平距离是多少?
解析:
这道题主要考察了物理学中的平抛运动知识。
在平抛运动中,水平方向的速度是恒定的,而垂直方向上受到重力的作用,呈自由落体运动。
首先,我们需要确定石块离开水平地面的时间。
由于水平方向上的速度是
5.0m/s,所以水平方向上的位移可以用时间乘以速度来表示。
假设石块离开水平地面的时间为t,那么水平方向上的位移为5.0m/s * t。
接下来,我们需要确定石块离开水平地面的垂直方向的初速度。
由于石块离开投石器的高度为5.0m,而且重力加速度为10m/s^2,根据自由落体运动的公式h = (1/2) * g * t^2,可以得到石块离开水平地面的时间t为√(2h/g)。
代入数据得到t = √(2 * 5.0m / 10m/s^2) = 1.0s。
再根据自由落体运动的公式v = g * t,可以求得石块离开水平地面的垂直方向的初速度为v = 10m/s * 1.0s = 10m/s。
由于水平方向上的速度是恒定的,所以水平方向上的位移可以表示为水平方向上的速度乘以时间,即水平方向上的位移为5.0m/s * 1.0s = 5.0m。
所以,石块离开水平地面的水平距离为5.0m。
这道题的解答过程主要包括确定石块离开水平地面的时间、确定石块离开水平地面的垂直方向的初速度以及计算水平方向上的位移。
通过运用平抛运动的知识,可以解决这道题。
挈领提纲 聚焦素养——2020年高考理综新课标卷Ⅰ第25题评析

2020年高考理综新课标卷I 第25题作为压轴题,考查带电粒子在纯电场中的运动,第一小题考查初速度为零的匀加速直线运动,第二、三小题考查类平抛运动。
该题较往年压轴题难度有所降低,但仍然能够全面有效地考查牛顿定律、动能定理、动量定理物理核心规律,测试物理观念和科学思维的运用,检测物理概念和物理规律,检验学科素养的发展。
一、试题分析在一柱形区域内有匀强电场,柱的横截面积是以O 为圆心,半径为R 的圆,A B 为圆的直径,如图1所示。
质量为m ,电荷量为q (q >0)的带电粒子在纸面内自A 点先后以不同的速度进入电场,速度方向与电场的方向垂直。
已知刚进入电场时速度为零的粒子,自圆周上的C 点以速率v 0穿出电场,A C 与A B 的夹角θ=60°。
运动中粒子仅受电场力作用。
(1)求电场强度的大小;(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?(3)为使粒子穿过电场前后动量变化量的大小为mv,该粒子进入电场时的速度应为多大?(1)粒子在A 点速度为零,仅受电场力作用,是沿着电场线方向初速度为零的匀加速直线运动,由于粒子带正电荷,故电场线由A 指向C ,接下来可以应用牛顿第二定律或动能定理两个途径求出电场强度的大小。
(2)因为初速度方向与电场的方向垂直,粒子作类平抛运动。
要使粒子动能增量最大,根据动能定理需要电场力做功最多,即粒子沿电场线方向位移最大。
如图2所示,作A C 垂线并且与圆相切于D ,则粒子从D 点射出时动能增量最大,根据平抛运动的规律解得粒子进入电场时的速度:v 1=2√4v 0。
(3)第一小题粒子穿过电场前后动量变化量大小就是mv 0,即答案之一是粒子从C 点射出时初速度为0;另外的情况粒子在电场中仍然做类平抛运动,要求粒子穿过电场前后动量变化量大小为mv 0,根据动量定理Ft=mv 0,粒子在电场中运动时间与第一情况相同,粒子沿电场线方向位移也等于A C ,故粒子会从B 点射出,位移的分解如图3所示,平行四边形为矩形。
2016-2019年高考全国卷“理科综合物理试卷第25题”汇总——参考答案

⑦
由动能定理得
-mg·CD-F0·DA=12mv2-12mv21
⑧
由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为
p=mv1=m
23gR 2
⑨
(3)小球离开 C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为 g.设小球在
竖直方向的初速度为 v⊥,从 C 点落至水平轨道上所用时间为 t.由运动学公式有
则有
F0 =tan α
①
mg
F2=(mg)2+F20
②
设小球到达 C 点时的速度大小为 v,由牛顿第二定律得
F=mv2
③
R
由①②③式和题给数据得
34mg
④
v= 5gR
⑤
2
(2)设小球到达 A 点的速度大小为 v1,作 CD⊥PA,交 PA 于 D 点,由几何关系得
DA=Rsin α
⑥
CD=R(1+cos α)
v⊥t+12gt2=CD
⑩
v⊥=vsin α
⑪
由⑤⑦⑩⑪式和题给数据得
共 24 页 第 11页
t=3 5R
⑫
5g
共 24 页 第 12页
7.【2017 年全国卷Ⅰ】 【答案】(1) v0-2gt1 (2)详见解析 【解析】(1)油滴带电性质不影响结果.设该油滴带正电,油滴质量和电荷量分别为 m 和 q, 油滴速度方向向上为正.油滴在电场强度大小为 E1 的匀强电场中做匀速直线运动,故匀强电 场方向向上.在 t=0 时,电场强度突然从 E1 增加至 E2,油滴做竖直向上的匀加速运动,加速 度方向向上,大小 a1 满足
2016~2019 年高考全国卷“理综第 25 题”汇总
参考答案
1.【2019 年全国卷Ⅰ】
2020年高考全国卷“理综第25题”考前模拟试题——参考答案

2020年高考全国卷“理综第25题”考前模拟试题参考答案1.【答案】(1)3mg -3μmg (2)3-3μ3μ+1R (3)L ′≥3R +3R 1-3μ【解析】(1)根据几何关系PB =Rtan θ=3R ①从P 点到E 点根据动能定理,有mgR -μmg cos θ·PB =12mv 2E -0②代入数据解得v E 2-3μgR )③在E 点,根据向心力公式有F N -mg =m v 2ER④解得F N =3mg -3μmg⑤(2)物体滑回到轨道AB 上距B 点的最大距离x ,根据动能定理,有mg (BP -x )·sin θ-μmg cos θ(BP +x )=0-0⑥代入数据解得x =3-3μ3μ+1R ⑦(3)刚好到达最高点时,有mg =mv 2R⑧解得v =gR⑨根据动能定理,有mg (L ′sin θ-R -R cos θ)-μmg cos θ·L ′=12mv 2-0⑩代入数据解得L ′=3R +3R 1-3μ⑪所以,L′应满足什么条件L′≥3R+3R⑫1-3μ2.【答案】(1)3m/s (2)4m/s (3)0.54m【解析】(1)石块恰好过圆弧最高点D ,设在D 点时的速度为v D ,则m 2g =m 2v 2DR①解得v D =5m/s②设石块在P 点与“猪头”碰撞时的速度为v P ,石块从D 至P 的过程,由动能定理可知m 2g [R (1-cos θ)+s ·sin θ]-μm 2g cos θ·s =12m 2v 2P -12m 2v 2D③解得v P =3m/s④(2)设石块在C 点碰后的速度为v C ,石块从C 至D 的过程,由动能定理可知-m 2g ·2R =12m 2v 2D -12m 2v 2C⑥解得v C =5m/s⑦设“小鸟”与石块碰前的速度为v ,碰后速度为v ′,在碰撞过程,由动量守恒和能量守恒可知m 1v =m 1v ′+m 2v C ⑧12m 1v 2=12m 1v ′2+12m 2v 2C ⑨联解可得v =4m/s⑩(3)由题给数据知A′C与MN平行,将“小鸟”从A′至C的运动可逆向视为从C至A′的平抛运动,设历时t,“小鸟”的速度与A′C连线平行,有v y=gt⑪v x=v⑫tanθ=v yv x⑬联解可得t=0.3s⑭此时“小鸟”离A′C连线的距离设为hh=x′sinθ⑮2x′=vt⑯则“小鸟”离斜面MN最近的距离Δh=R(1+cosθ)-h⑰解得Δh=0.54m⑱3.【答案】(1)1m/s(2)6.25m(3)12J【解析】(1)木板M的最大加速度a m=μmg2①M=4m/s滑块与木板保持相对静止时的最大拉力F m=(M+m)a m=12N②即F为6N时,M与m一起向右做匀加速运动,对整体分析有F=(M+m)a1,v1=a1t1③代入数据得v1=1m/s④(2)对Ma1t21⑤0~0.5s:x1=12a2t22⑥0.5~2s:μmg=Ma2,x2=v1t2+12则0~2s内木板的位移x=x1+x2=6.25m⑦(3)对滑块0.5~2s:F-μmg=ma2′⑧0~2s内,滑块的位移x′=x1+(v1t2+1a2′t22)⑨2在0~2s内m与M相对位移Δx1=x′-x=2.25m⑩t=2s时木板速度v2=v1+a2t2=7m/s⑪滑块速度v2′=v1+a2′t2=10m/s⑫撤去F后,对Mμmg=Ma3⑬对m-μmg=ma3′⑭当滑块与木板速度相同时保持相对静止,即v2+a3t3=v2′+a3′t3⑮解得t3=0.5s⑯该段时间内,M位移x3=v2t3+1a3t23⑰2m位移x3′=v2′t3+1a3′t23⑱2相对位移Δx2=x3′-x3=0.75m⑲整个过程中,系统因摩擦产生的热量Q=μmg(Δx1+Δx2)=12J⑳4.【答案】(1)192N(2)2m/s(3)11.25s【解析】(1)设最大拉力为F m,货物与木板之间的静摩擦力达到最大值,设此时的加速度为a1,对货物根据牛顿第二定律得μMg cosθ-Mg sinθ=Ma1①解得a1=0.4m/s2②对货物与木板整体分析,根据牛顿第二定律得F m-μ(m+M)g cosθ-(m+M)g sinθ=(m+M)a1③解得F m=192N④(2)设工人拉木板的加速度为a2,根据牛顿第二定律得F-μ(m+M)g cosθ-(m+M)g sinθ=(m+M)a2⑤解得a2=0.2m/s2⑥设来电时木板与货物的速度大小为v1,根据运动学公式得v12=2a2L5⑦解得v1=2m/s⑧(3)由于v1<4m/s,所以来电后木板继续加速,加速度为a3,则μ(M+m)g cosθ-(M+m)g sinθ=(M+m)a3⑨解得a3=0.4m/s2⑩设经过t1木板速度与传送带速度相同v=v1+a3t1⑩解得t1=5s⑫设t1内木板加速的位移为x1,则v2-v12=2a3x1⑬解得x1=15m⑭共速后,木板与传送带相对静止一起匀速运动,设匀速运动的时间为t2,匀速运动的位移为x2,则x2=L-L⑮5-x1解得x2=25m⑯匀速运动的时间t2=x2v=6.25s⑰所以,来电后,货物能到达B处需要的运动时间t=t1+t2=11.25s⑱5.【答案】(1)52g(2)118L(3)6mg-3kq2L2【解析】(1)以AB系统为研究对象,有qE+2mg=2ma①解得a=52g②(2)从开始到A刚进入两极板间有v12=2aL③解得v1=5gL④A进入两极板间到B即将穿出下孔,有qE+2mg-3qE=2ma2⑤解得a2=-2g⑥v22-v12=2a2s⑦B穿出下孔后,有2mg-3qE=2ma3⑧解得a3=-72g⑨0-v22=2a3×L2⑩联立解得s=38L⑪所以,两极板间距d=s+L=118L⑫(3)B球刚进入电场时,以A球为研究对象,有T1+mg+3kq2L2=ma⑬解得T1=32mg-3kq2L2⑭A球刚进入电场时,以B球为研究对象,有T2+3kq2L2-mg-qE=m|a2|⑮解得T2=6mg-3kq2L2⑯B球刚离开电场时,以B球为研究对象,有T3+3kq2L2-mg=m|a3|⑰解得T3=92mg-3kq2L2⑱所以,最大拉力T2=6mg-3kq2L2⑲6.【答案】(1)0.25C0.80Ω(2)F=2+0.8t(N)(3)0.1J【解析】(1)根据题图乙知,在t=0.5s时间内通过金属框的平均电流I=0.50A①通过金属框的电量q=I t=0.25C②由平均感应电动势E=BL2t③平均电流I=ER④通过金属框的电量q=I t⑤联立③④⑤得q=BL2R⑥于是金属框的电阻R=BL2q=0.80Ω⑧(2)由题图乙知金属框中感应电流线性增大,说明金属框运动速度线性增加,即金属框被匀加速拉出磁场.又知金属框在t=0.5s时间内的位移L=0.5m,金属框的加速度加速度a=2L2⑨t2=4m/s由图乙知金属框中感应电流随时间变化规律为I=kt(k=2.0A/s)⑩于是安培力F A随时间t变化规律为F A=BIL=kBLt⑪由牛顿运动定律得F-F A=ma⑫所以水平拉力F=F A+ma=ma+kBLt⑬代入数据得水平拉力随时间变化规律为F=2+0.8t(N)⑭(3)根据运动情况知金属框离开磁场时的速度v=2aL=2m/s⑮由能量守恒知,此过程中金属框产生的焦耳热Q=W F-1mv2=0.1J⑯27.【答案】(1)5m π6qB (2)qBR 2m (3)1124πR 2-34R 2【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,设轨迹半径为r 1,由牛顿第二定律可得qv 1B =mv 21r 1①解得r 1=mv 1qB=R ②粒子沿与MO 成60°角方向射入磁场,设粒子从区域边界P 射出,其运动轨迹如图甲所示.由图中几何关系可知粒子轨迹所对应的圆心角为α=150°③甲粒子的运动周期T =2πmBq④粒子在磁场中的运动时间t =150°360°=5m π6qB⑤(2)粒子以速率v 2沿MO 方向射入磁场,在磁场中做匀速圆周运动,恰好从N 点离开磁场,其运动轨迹如图乙,设粒子轨迹半径为r 2,由图中几何关系可得r 2=R tan θ2=12R⑥乙由牛顿第二定律可得qv 2B =mv 22r 2⑦解得粒子的速度v 2=qBr 2m =qBR2m⑧(3)粒子沿各个方向以v 2进入磁场做匀速圆周运动时的轨迹半径都为r 2,且不变.由图丙可知,粒子在磁场中通过的面积S 等于以O 3为圆心的扇形MO 3O 的面积S 1、以M 为圆心的扇形MOQ 的面积S 2和以O 点为圆心的圆弧MQ 与直线MQ 围成的面积S 3之和.丙S 1=12π(R 2)2=πR 28⑨S 2=16πR 2⑩S 3=16πR 2-12×R ×R 2tan 60°=16πR 2-34R 2⑪则S =1124πR 2-34R 2⑫8.【答案】(1)-1V(2)22m/s与水平方向的夹角θ=45°(3)B2<2T【解析】(1)金属杆产生的感应电动势恒为E=12B1L21ω=2V①由串并联电路的连接特点知E=I·4R,U0=I·2R=E2=1V②金属杆转动周期T1=2πω=20s③由右手定则知:在0~4s时间内,金属杆ab中的电流方向为b→a,则φa>φb,则在0~4s时间内φM<φN,U MN=-1V④(2)粒子在平行板电容器内做类平抛运动,在0~T12时间内,水平方向L2=v0·t1⑤解得t1=L2v0=4s<T12⑥竖直方向d 2=12v y t1⑦解得v y=0.5m/s⑧则粒子飞出电场时的速度大小v=v20+v2y=22m/s⑨所以该速度与水平方向的夹角θ满足tanθ=v yv0=1,θ=45°⑩(3)粒子在匀强磁场中做匀速圆周运动,轨迹半径r=mvB2q⑪由几何关系及粒子在磁场中运动的对称性可知,粒子不会第二次进入电场的条件是2r>d⑫粒子在平行板中加速得v y=at1,a=Eqm,E=U NMd⑬解得qm=0.25C/kg⑭综合得B2<2mvdq=2×42×22T=2T⑮9.【答案】(1)见解析(2)EBLv m-B2L2v m2r (3)BLCU1t1+mU1BLt1【解析】(1)导体棒切割磁感线E=BLv①导体棒做匀速运动F=F安=BIL②其中I=ER③在任意一段时间Δt内,拉力F所做的功W=FvΔt=F安vΔt=B2L2v2RΔt④电路获得的电能ΔE=qE=EIΔt=B2L2v2RΔt⑤可见,在任意一段时间Δt内,拉力F所做的功与电路获得的电能相等(2)导体棒达到最大速度v m时,棒中没有电流,电源的路端电压U=BLv m⑥电源与电阻所在回路的电流I=E-Ur⑦电源的输出功率P=UI=EBLv m-B2L2v m2r⑧(3)感应电动势与电容器两极板间的电势差相等BLv=U⑨由电容器的Ut图可知U=U1t1t⑩导体棒的速度随时间变化的关系为v=U1BLt1t⑪可知导体棒做匀加速直线运动,其加速度a=U1BLt1⑫电容C=QU⑬电流I=Qt⑭可得I=CUt=CU1t1⑮由牛顿第二定律有F-BIL=ma⑯可得F=BLCU1t1+mU1BLt1⑰10.【答案】(1)mv 0ql (2)2mv 0ql 0(3)[0,-2kmv 0B 0q ](k =1,2,3…)和[-3mv 0B 0q ,-(2n -1)mv 0B 0q](n =1,2,3…)【解析】(1)设a 粒子在y 轴右侧运动的半径为R 1,由几何关系有(R 1-12l )2+(32l )2=R 21①甲由于B 1qv 0=m v 20R 1②解得B 1=mv 0ql③(2)B 2最小,说明Q 点是a 、b 粒子在y 轴上第一次相遇的点,由图乙可知,a 、b 粒子同时从O 点出发,且粒子在y 轴右侧运动的圆周运动半径乙R 2=l 02④又由洛伦兹力提供向心力,有B 2qv 0=m v 2R 2⑤解得B 2=2mv 0ql 0⑥(3)由图丙可见,只有在两轨迹相交或相切的那些点,才有相遇的可能性,所以有y 轴上的相切点和y 轴左侧的相交点.经分析可知,只要a 、b 粒子从O 点出发的时间差满足一定的条件,这些相交或相切的点均能相遇.丙粒子在y 轴右侧的运动半径r 1=mv 0B 0q⑦粒子在y 轴左侧的运动半径r 2=2mv 0B 0q⑧y 轴上的相切点坐标为[0,-2kmv 0B 0q](k =1,2,3…)⑨y 轴左侧的相交点相遇由丙图可知,OA =AC =OC =r 2,可得x A =-r 2sin 60°=-3mv 0B 0q ⑩y A =-r 2cos 60°=-mvB 0q⑪y 轴左侧的相遇点的坐标[-3mv 0B 0q ,-(2n -1)mv 0B 0q](n =1,2,3…)⑫。
用折合质量法解答2022年高考全国乙卷第25题

用折合质量法解答2022年高考全国乙卷第25题2022年高考已落下帷幕,对高考试题的分析是一线教师研究命题规律、把握考向的重要手段。
笔者用折合质量法分析了2022年高考全国乙卷理综物理压轴题,提出复习课不是重复再现,而是深度再学习过程,以供借鉴。
1 引言(2022·全国乙卷·25)如图1,一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0 时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图2所示。
已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0。
A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同。
斜面倾角为θ(sinθ=0.6),与水平面光滑连接。
碰撞过程中弹簧始终处于弹性限度内。
求:图1图2(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A与斜面间的动摩擦因数。
2022年高考全国乙卷理综物理压轴题第25题,实质是二体问题。
对于这种问题,如果在地面参考系与A(或B)参考系间切换,则科学思维更流畅、方程更简捷、计算更简化、解答更明了,会使问题变得十分简单;但在以A(或B)为参考系时,需要将另一物体B(或A)的质量进行折合,两质点质量分别为m1、m2,则其折合质量μ=。
下面笔者运用折合质量法进行解答。
2 解答过程2.1 质点系的动能——柯尼希定理Ek=为S系中质心的动能,得出S系中质点系的动能可视为质心动能与S′系中质点系的动能之和,即著名的柯尼希定理。
第3问与第1问都是能量关系问题,解决了第1问,接着思考第3问。
第一次碰撞后,物块A以2v0速度沿斜面上滑,假设上滑最大路程为s,由动能定理得设物块A下滑离开斜面时速度大小为v,同理物块A以速度v向左运动,与以速度0.8v0向右运动的B相互作用,作用结束,B速度变为vB,因A到达的最高点和前一次相同,则A仍以2v0速度沿斜面上滑。
“等效法”巧解2020年高考全国卷I理综第25题及教学启示

“等效法”巧解2020年高考全国卷I理综第25题及教学启示发布时间:2021-06-10T03:34:08.847Z 来源:《教育考试与评价》2021年第4期作者:尤江龙[导读] 掌握等效法思想内涵有助于提升学生处理问题能力的科学素养。
福州文博中学福建福州 350002摘要:“等效法”是把陌生的物理问题、物理过程,转化为熟知的物理模型或过程的科学思维方法。
本文通过利用“等效重力场”的思想,巧解2020年高考全国卷I理综第25题(物理)及处理重力场与匀强电场组成的复合场问题,启示在物理教学过程中注重知识等效迁移的科学思维培养,提升学生的学科核心素养。
关键词:等效法;巧解题;知识迁移;科学思维“等效替代法”简称“等效法”,是用熟知的、易于研究和解决的物理模型或过程替代所要研究的实际的、复杂的物理问题,是高中物理学习中一种重要的科学思维方法。
掌握等效法思想内涵有助于提升学生处理问题能力的科学素养。
下面,笔者就运用“等效法”巧解2020年高考全国卷I第25题(物理)以及在教学中培养学生物理“科学思维”谈谈自己的思考。
1原题呈现及命题意图分析1.1原题呈现在一柱形区域内有匀强电场,柱的横截面积是以O为圆心,半径为R的圆,AB为圆的直径,如图1所示。
质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。
已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°。
运动中粒子仅受电场力作用。
(1)求电场强度的大小;(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?1.2命题立意本题考查的物理概念主要有:动量、冲量、电场力、动能,物理过程主要有:带电粒子在匀强电场中运动,物理规律主要有:动能定理、牛顿运动定律及其应用等。
2022年高考理综全国乙卷第25题赏析及启示

2022年高考理综全国乙卷第25题赏析及启示作为2022年高考理综全国乙卷的最后一题,第25题无疑是考生所关注的焦点之一。
这道题目是一个综合性的题目,要求考生运用所学的知识和方法,综合分析、研究和解决一个具体的问题。
在这道题目中,我们不仅能够看到对知识的考查,更能够看到对考生综合能力和创新思维的考察。
让我们一起来对这道题目进行赏析和启示。
第25题的题目是:“根据目前的环境态势和资源利用情况,你班团支书组织了一次辩论赛,围绕‘人口增长与可持续发展’这一主题展开,辩论的立场是是否限制人口增长。
请你代表赞成方发表一篇辩论辩题。
”这道题目要求我们以团支书的身份代表赞成方,撰写一篇辩论辩题。
那么,我们应该如何进行分析和撰写呢?首先,我们应该明确和把握题目中的关键词,“人口增长”和“可持续发展”。
人口增长是指人口数量的增加,而可持续发展则是指满足当前世代的需求,而不损害未来世代满足自己需求的能力。
在这两个关键词之间,存在着一种不断权衡利弊的关系。
因此,我们在撰写辩论辩题时,要站在赞成方的立场,强调限制人口增长是利用资源有限和环境保护的需要,有助于实现可持续发展。
接下来,我们可以从不同的角度出发,展开论述。
首先,我们可以从资源利用的角度出发,指出人口增长会对资源的利用产生压力,导致资源的过度开发和消耗。
其次,我们可以从环境保护的角度出发,论述人口增长可能导致生态系统的破坏和环境污染,对生态平衡和人类生存产生负面影响。
还可以从社会经济发展的角度出发,指出人口增长可能导致就业压力加大、社会福利减少等问题。
最后,我们可以从国家整体发展的角度出发,强调人口增长的限制有助于平衡人口结构,提升国家整体素质,推动社会进步。
在撰写过程中,我们还可以参考历史案例、数据统计、科学论证等方法,进一步增强我们的观点和论证的可信度和说服力。
在文章的结尾,我们可以对教育、政策、科技等方面提出建议,展望可持续发展的未来。
通过这道题目的赏析,我们不仅能够对知识进行运用和思考,更能够培养我们的综合能力和创新思维。
高考物理压轴题赏析

赏析高考物理压轴题全国高考共有6套理科综合卷和3套物理卷,分析这些试卷中的物理压轴由上表可知,六份高考理综试卷中的物理压轴题更具有普遍性与广泛性,这些压轴题要求考生有扎实的基础知识和良好的解决问题的思维程序,构建理想化的物理模型。
其解题的关键就是要抓住物理情景中出现的状态、过程与系统,对物体进行正确的受分力析、运动情景的分析和物理过程的分析。
下面就结合这六份高考理综试卷中物理压轴题,谈谈对高三物理复习的一些看法,供参考。
一、抓好三大“基础”工程——受力分析、运动分析和过程分析、高考理综试卷中的物理压轴每题均为20分,分值非常的高,对于这类题目的解答如何落实在平时的课堂教学之中呢?我们如果仔细认真地分析一下这些所谓的“押宝题”,其实也不显得那样悬乎,它们毕竟是一道道非常普通的物理题!这就要求我们在平时的教学中狠抓三大基础工程的建设与培养,这三大基础工程就是过程分析、受力分析、运动分析。
抓基础就抓住了高考,这是我们在平时的教学中应该坚持的教学“政治方向”。
高考试题无论考查什么能力都必须以相应的基础知识为载体,这就是高考的基础性。
前苏联教育家布鲁姆曾说过“学生学的知识越基础,该知识对新问题的适应性就越广,迁移能力就越强”。
在审题的过程中要踏踏实实地对物体进行受力分析、运动分析和物理过程的分析,这是决定学生命运的基础工程。
[例1].(全国理综卷I ).有个演示实验,在上下面都是金属板的玻璃盒内,放入了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。
现取以下简化模型进行定量研究。
如图1所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。
设两板之间只有一个质量为m 的导电小球,小球可视为质点。
已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷理综第25题 (物理压轴题)
MN和PQ是两根平行的金属导轨,间距为1m,整个空间以OO'为边界。
左侧有一个垂直导轨平面向上的匀强磁场,磁感应强度大小为B1=1T;右侧有一个方向相同、磁感应强度大小为B2=2T的匀强磁场。
两根完全相同的导体棒a、b,质量均为0.1kg,与导轨间的动摩擦因数均为0.2,其在导轨间的电阻均为1Ω。
开始时,a、b棒均静止在导轨上,现用平行于导轨的恒力F=0.8N向右拉b棒。
假定a棒始终在OO'左侧运动,b棒始终在OO'右侧运动,除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,g取10m/s2.
1) 当a棒开始滑动时,求b棒的速度大小。
设a棒滑动时电流为I,b棒的速度为v,由法拉第电磁感应定律和欧姆定律知:I=B1IL/2R,B2IL/2R=B1mgμ,其中μ为动摩擦因数。
联立方程可得v=0.2m/s。
2) 当b棒的加速度为1.5m/s2时,求a棒的加速度大小。
设a棒的加速度为a1,b棒的加速度为a2.由牛顿第二定
律可得B1IL-μmg=a1m,F-B2IL-μmg=a2m。
联立方程可得
a1=0.25m/s2.
3) 已知经过足够长的时间后,b棒开始做匀加速运动,求
该匀加速运动的加速度大小,并计算此时a棒中电流的热功率。
设a棒开始做匀加速运动加速度为a1,b棒的加速度为a2.由牛顿第二定律和法拉第电磁感应定律和欧姆定律可得B1IL-
μmg=a1m,F-B2IL-μmg=a2m,I=B2Lv2/2R-B1Lv1/2R。
由于
电流不变,则(B2Lv2-B1Lv1)为常量。
所以两棒加速度满足以
下关系:2a2=a1.联立方程可得a2=0.4m/s2.由焦耳定律可得a
棒中电流的热功率为0.078W。
2)根据机械能守恒,金属棒在磁场中做匀加速直线运动。
由于外力与速度成正比,所以金属棒在磁场中做匀加速直线运动。
3)根据洛伦兹力公式F=q(v×B),可以求出磁感应强度B
的大小为B=0.6 T。
4)当撤去外力后,金属棒在运动到ef处时速度为0,根
据v=v0-x的公式可以求出v0=0.5 m/s。
根据匀加速直线运动
的公式,可以求出金属棒运动到ef处所需的时间为t=2 s。
25.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。
小物块被压缩到C点后,释放
弹簧后沿粗糙水平桌面做平抛运动,从XXX离桌面后恰好由
P点沿切线落入圆轨道。
1)根据平抛运动的公式,可以求出小物块飞离D点时的
速度大小为vD=4 m/s。
2)由于轨道MNP光滑,所以小物块在经过轨道最低点
N时对轨道的压力为0,根据牛顿第三定律,小物块受到的轨
道对它的压力也为0.因此,小物块经过轨道最低点N时对轨
道的压力为0 N。
3)小物块能够到达轨道最高点M,说明它的机械能守恒。
根据机械能守恒定理,小物块开始被压缩的弹簧的弹性势能
Ep至少为8 J。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
小物块从D点到N点过程中,根据机械能守恒定律可得,N所在平面为零势面。
代入数据后,可以求出小物块在N点
的速度为74 m/s。
在N点对小物块使用牛顿第二定律,可以
解得小物块对轨道的压力为33.6 N,方向竖直向下。
小球刚好能到达M点,可以利用重力势能和动能的关系
求出小物块在M点的速度为10 m/s。
从C至M的整个运动过
程中,应用动能定理,可以得到小物块的动能减少了,但是由于重力势能的增加,所以总机械能守恒。