1 成比例线段 一等奖创新教学设计

合集下载

《成比例线段》教案

《成比例线段》教案

(1)在比或a∶b中,a是,b是。

求⑴AB4.1成比例线段4.1.1线段的比,成比例的线段学习目的:1、知道线段的比的概念。

理解成比例线段的概念2、会计算两条线段的比。

3、掌握成比例线段的判定方法。

重点:线段的比与成比例线段的概念。

教学过程:一、自主预习(一)阅读课本,思考并回答下列问题:1、一般地,如果选用量得两条线段AB,CD的长度分别为m,n,那么这两条线段的比就是他们长度的比,即AB∶CD=m:n,或写成ABmCDn,其中,线段AB,CD分别叫做这个线m AB段比的前项和后项.如果把表示成比值k,那么n CDk,或AB k CD。

ab⑵两条线段的要统一。

⑶在同一单位下线段长度的比与选用的无关。

⑷线段的比是一个没有的数。

(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。

2、比例尺为1:50000,意思为:。

(三)成比例线段的概念1、一般地,在四条线段中,如果等于的比,那么这四条线段叫做成比例线段。

(举例说明)如:2、四条线段成比例,记作:其中a,d叫比例外项,b,c叫比例内项。

3、四条线段a,b,c,d成比例,有顺序关系。

即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b,d,c成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A、B两地的实际距离AB=250m,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。

例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。

AC,⑵BC AB四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。

九年级数学上册4.1.1成比例线段教案北师大版(1)

九年级数学上册4.1.1成比例线段教案北师大版(1)

课题:4。

1。

1成比例线段教学目标:1.结合现实情境,感受学习线段的比的必要性,了解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简单应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.教学重、难点:重点:了解线段的比和成比例线段的概念,了解比例的基本性质及其应用.难点:了解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图欣赏,情境导入导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相同,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相同,这就是相似图形(多媒体出示图2).你知如何刻画图形的相似吗?你知道如何判定两个三角形相似吗?你知道如何将一个图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,了解相似三角形的性质,并利用图形的相似解决一些简单的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1成比例线段(1)】图1 图2处理方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知活动1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)图中形状相同的图形,大小有什么不同?(2)形状相同的图形其中的一个如何由另一个得到?(多媒体动画演示图形的放大与缩小)(3)形状相同的图形对应的线段如何变化的?(4)形状相同而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形,可以用相应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比(ratio)就是它们的长度比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABkCD=,或AB=k·CD.两条线段的比实际上就是两个数的比.处理方式:教师利用多媒体出示两条线段的比的定义.强调相关要点,明确两条线段的比实际上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm.AB∶A′B′=5 : 3,就是线段AB与线段A′B′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.3.想一想(1)在计算两条线段的比时我们要注意什么?(2)两条线段长度的比与所采用的长度单位有没有关系?(3)两条线段的比结果有单位吗?处理方式:学生思考并在小组内交流以上问题,举例说明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比结果没有单位,是一个数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.活动2:成比例线段(多媒体出示)如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD AB EF EF EH AD EH 的值,你发现了什么?处理方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算,,,AB AD AB EF EF EH AD EH的值,在计算的过程中体会AB AD EF EH =,AB EF AD EH=.教师借助多媒体展示解题思路及解题过程,规范学生的解题步骤的书写.完成后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB ,EF ,AD ,EH 是成比例线段,AB ,AD ,EF ,EH 也是成比例线段.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段是否成比例.(1)2,5,15,23;(2)2,3,2,3;(3)4,6,5,10;(4)12,8,15,10.a b c d a b c d a b c d a b c d ================处理方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的顺序有关.设计意图:通过练习巩固学生对概念的理解.活动3:比例的基本性质议一议如果a ,b ,c ,d 四个数成比例,即a /b =c /d ,那么ad =bc 吗?反过来如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗?与同伴交流.处理方式:第一个问题可引导学生从两方面加以说明,一方面根据等式的基本性质,在a b =c d 两边同时乘bd ,得到ad =bc ;另一方面可以介绍引入比值k 的方法:设a b =c d =k ,那么a =bk ,c = d k ,因此ad = bk ·d =b ·kd =bc .第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果a b =c d ,那么ad =bc .如果ad =bc (a ,b ,c ,d 都不等于零),那么a b =c d.设计意图:通过对两个问题的讨论引出比例的基本性质.三、例题解析,应用新知例1 如图,一块矩形绸布的长AB =a m,AD =1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE AD AD AB =,那么a 的值应当是多少?处理方式:引导学生阅读、理解题意,自己尝试解答,教师利用实物投影展示学生的做题情况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB =a m ,AE =13a m,AD =1m . 由AE AD AD AB =,得1131a a =,即2113a =. ∴a 2=3.开平方,得aa).设计意图:通过例题提供应用比例基本性质的一个具体情境,加深学生对比例基本性质的理解.让学生利用所学的知识来解决实际生活中的问题.想一想:生活中还有哪些利用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表示方法;前项、后项及比值k ;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果a b =c d,那么ad =bc .如果ad =bc (a ,b ,c ,d 都不等于零),那么a b =c d . 设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是_ _____.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是___ ___ .3.已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=_ _ __.4.如果2x=5y,那么xy=__ __.5.把mn=pq写成比例式,写错的是()A。

九年级数学上册《成比例线段》教案、教学设计

九年级数学上册《成比例线段》教案、教学设计
(4)拓展提高:引导学生运用成比例线段知识解决复杂几何问题,如相似三角形中的成比例线段问题;
(5)课堂小结:对本节课的主要内容进行总结,强调成比例线段的重要性。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决能力等方面,给予积极的评价和鼓励;
(2)终结性评价:通过课后作业、阶段测试等形式,了解学生对成比例线段知识的掌握情况,及时发现问题并进行针对性的辅导。
(四)课堂练习,500字
为了巩固学生对成比例线段知识的掌握,我将设计以下课堂练习:
1.基础练习:给出一些成比例线段的判定题,让学生独立完成;
2.提高练习:设计一些实际问题,让学生运用成比例线段知识解决;
3.拓展练习:给出一些复杂几何问题,如相似三角形中的成比例线段问题,让学生尝试解决。
在练习过程中,我会及时给予学生反馈,指导他们纠正错误,提高解题能力。
4.教学策略:
(1)关注学生的个体差异,提供个性化的辅导,使每个学生都能在原有基础上得到提高;
(2)注重培养学生的几何直观能力,引导学生通过观察、分析、归纳等方法探索几何规律;
(3)鼓励学生提问和质疑,培养学生的批判性思维和创新意识;
(4)整合现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
5.通过实际操作,培养学生的观察能力、空间想象能力和逻辑思维能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.创设情境,引导学生自主探究成比例线段的概念;
2.通过实际例子,让学生感受成比例线段在生活中的应用,培养学生学以致用的意识;
3.采用问题驱动的教学方法,引导学生主动发现、提出和解决问题;
四、教学内容与过程

北师大版数学九年级上册4.1成比例线段(第一课时)优秀教学案例

北师大版数学九年级上册4.1成比例线段(第一课时)优秀教学案例
(四)总结归纳
1.学生总结:让学生回顾自己的学习过程,总结成比例线段的知识点,发现自身的不足,明确改进方向。
2.同伴评价:学生互相评价,给出建设性意见,促进共同进步。
3.教师总结:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习动力。
4.利用评价结果,调整教学策略,为后续教学提供参考。如:针对学生的掌握情况,适当增加成比例线段在实际应用方面的教学内容。
(四)反思与评价
1.学生自我反思:让学生回顾自己的学习过程,总结成比例线段的知识点,发现自身的不足,明确改进方向。
2.同伴评价:学生互相评价,给出建设性意见,促进共同进步。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习动力。
4.利用评价结果,调整教学策略,为后续教学提供参考。如:针对学生的掌握情况,适当增加成比例线段在实际应用方面的教学内容。
二、教学目标
(一)知识与技能
1.让学生掌握成比例线段的定义,理解成比例线段的判定方法,能运用成比例线段解决实际问题。
2.通过对成比例线段的学习,培养学生运用数学知识描述现实生活中的现象,提高学生的数学建模能力。
3.使学生能够熟练运用成比例线段的知识,对线段进行合理的比较和判断,提高学生的空间想象能力。
北师大版数学九年级上册4.1成比例线段(第一课时)优秀教学案例
一、案例背景
本节课的主题是“成比例线段”,这是北师大版数学九年级上册4.1的内容,也是学生在初中阶段首次系统接触比例线段的知识。在此之前,学生已经学习了线段、射线、直线等基础知识,对本节课的学习奠定了基础。然而,成比例线段的概念较为抽象,对于九年级的学生来说,理解起来仍存在一定难度。因此,在教学过程中,我需要充分考虑学生的认知特点,设计符合他们思维水平的学习活动,以提高他们的学习兴趣和积极性。

《成比例线段》word教案 (公开课获奖)2022北师版 (4)

《成比例线段》word教案 (公开课获奖)2022北师版 (4)

4.2 平行线分线段成比例一、学生知识状况分析学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。

从而认识了线段的比,成比例线段。

通过对方格纸中成比例线段的探究,了解了合比性质与等比性质,并在探究活动中积累了一定的合作交流的经验,培养了提出问题与解决问题的能力。

同时学生通过对合比性质与等比性质的演绎证明,也进一步发展了逻辑推理能力。

二、教学任务分析本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。

平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。

在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。

学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。

让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。

教学目标:(一)知识目标理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。

(二)能力目标通过应用,培养识图能力和推理论证能力。

(三)情感与价值观目标(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。

(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。

教学重点:平行线分线段成比例定理和推论及其应用。

教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。

三、教学过程分析本节课设计了五个教学环节:第一环节:复习设疑,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业. 第一环节:复习设疑,引入新课内容:教师提问: (1)什么是成比例线段?(2)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3? 目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。

《成比例线段(1)》教学设计

《成比例线段(1)》教学设计

第九章图形的相似1.成比例线段(一)一、学生知识状况分析相似图形是现实生活中广泛存在的现象,在小学时学生就接触过比例的知识,在七年级上册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例)。

所以学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比时不会感到很困难。

二、教学任务分析(一)教学知识点1、了解相似形、线段的比概念;2、会求两条线段的比, 应用线段的比解决实际问题。

(二)能力训练要求通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系。

(三)情感与价值观要求1.、.有关比例的计算,让学生懂得数学在现实生活中的作用,从而增强学生学好数学的信心;2.、.通过解答实际问题,激发学生学数学的兴趣,增长社会见识;3.、.在与他人的共同探索、讨论问题的过程中,增强合作交流的意识。

教学重点:理解线段比的概念及其求解。

教学难点:求线段的比,注意线段长度单位要统一。

教学方法:探索、发现法教学准备:多媒体课件三、教学过程分析本节课设计了六个教学环节:第一环节:设置情境,引入新课;第二环节:新课讲解;第三环节:随堂练习;第四环节:想一想;第五环节:回顾与思考;第六环节:布置作业。

第一环节设置情境,引入新课活动内容:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形。

活动目的:引发学生思考相似图形的特征,激发学生的学习兴趣。

实际效果:学生们都很兴奋,对学习充满了好奇心。

第二环节:新课讲解活动内容:1.请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?2. 引入线段的比:如果选用同一个长度单位量得两条线段AB,CD 的长度分别是m ,n,那么就说这两条线段的比(ratio )AB:CD=m:n,或写成nm CDAB 其中,AB,CD分别叫做这个线段比的前项和后项.如果把nm 表示成比值k,那么k CDAB ,或AB=k ·CD.两条线段的比实际上就是两个数的比。

《成比例线段(1)》教案 2022年北师大版九年级数学上

《成比例线段(1)》教案 2022年北师大版九年级数学上

4.1.1成比例线段(1)【教学目标】知识与技能:知道线段比的概念.会计算两条线段的比. 过程与方法通过计算作图掌握概念:线段的比、成比例线段。

情感、态度与价值观在获得知识的过程中培养学习的自信心. 【教学重难点】教学重点:成比例线段、比例的性质教学难点:会求两条线段的比,注意线段长度的单位要统一. 【导学过程】【创设情景,引入新课】、小学里已经学过了比例的有关知识,下面请同学们口答下列问题: (1)若a 与b 的比值和c 与d 的比值相等,应记为: 。

(2)已知2:3=4:x ,则:x= 。

【自主探究】(1) 自主学习完成课本60--62页试一试与概括:填写下列空格: (1)、“比例线段”的概念: 。

已知四条线段a 、b 、c 、d,如果dcb a =(或a:b=c:d ),那么a 、b 、c 、d 叫做组成比例的 , (2)“比例线段”和“线段的比”的区别“比例线段”和“线段的比”这两个概念有什么区别?结论: (3)注意:概念的有序性线段的比有顺序性,a:b 和b:a 通常是不相等的。

比例线段也有顺序性,如dcb a =叫做线段a 、b 、c 、d 成比例,而不能说成是b 、a 、c 、d 成比例。

【课堂探究】例1如图一块矩形的绸布长AB=am ,宽AD=1m ,按照图中所示的方式将它剪裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同。

即 那么a 的值应当是多少?判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10;(2)a =2,b =5,c =152,d =35. 解:AB ADAD AE =把(1)题中a、b、c、d调换位置可以得到几种情况?哪些情形是成比例线段。

成比例线段在大小排序上有何规律?给你四个数据怎样最快的获取成比例线段排序的最大可能性?总结:如何判断成比例线段,说出你的方法并交流。

【当堂训练】1、已知m、n、p、q是成比例线段,其中m=2cm,n=6cm,q=27cm,则p=_______cm.2、(★★)已知三个数1,2、3,请你再添一个数,使它们构成的四个数成比例关系。

4.1.1成比例线段(教案)

4.1.1成比例线段(教案)
-教师需要通过图示和具体的数字例子来解释这一性质,并引导学生通过实际操作来加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.1.1成比例线段”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断物体大小比例的情况?”比如,在绘画时,如何按照一定比例缩小或放大物体。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索成比例线段的奥秘。
在教学内容方面,我觉得还可以拓展一些相关知识点,如相似三角形的判定和应用,让学生在学习成比例线段的基础上,进一步拓展知识体系。同时,结合学生的兴趣和实际需求,设计更多有趣、富有挑战性的练习题,提高他们的学习兴趣。
最后,针对学生在课堂上提出的问题,我会在课后进行总结,以后主动提问,及时解决他们的疑惑。
举例解释:例如,在教学过程中,教师可以通过实际例题,如“一个三角形的三边长分别为6cm、8cm、10cm,判断是否为成比例线段”,来强调成比例线段定义的重要性。
2.教学难点
-难点1:成比例线段的判定
-学生可能难以理解如何判断两条线段是否成比例,特别是在涉及多条线段时。
-教师应举例说明,如“线段a=4cm,线段b=6cm,线段c=8cm,线段d=12cm,判断哪些线段成比例”,并引导学生运用交叉相乘法进行判定。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的几何直观能力:通过观察、分析成比例线段的性质,使学生能够形象地理解比例关系,提高几何直观素养。
2.发展学生的逻辑思维能力:在学习成比例线段的过程中,引导学生运用逻辑推理,分析问题,解决问题,提升逻辑思维素养。
3.培养学生的数学应用意识:将成比例线段知识应用于解决实际问题,让学生体会数学与现实生活的联系,增强数学应用素养。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 成比例线段一等奖创新教学设计
第四章图形的相似
1.成比例线段(一)(比例与生活)
教学设计
一、教材分析
教科书在学生小学学过比例的基础上,进一步提出了本节课的具体要求:理解并掌握线段的比与生活中的简单应用。

学好了本课,既承接了全等三角形的内容,又为本章的后续学习相似三角形和相似多边形奠定了基础。

二、学生知识状况分析
九年级的学生已初步具有了学习几何的能力,但是还有待于进一步培养自学、分析、总结能力。

相似图形是现实生活中广泛存在的现象,在小学时学生就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例)。

所以学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比不会感到困难。

三、教学目标
(一)教学知识点
1、了解相似形、线段的比概念;
2、会求两条线段的比,应用线段的比解决实际问题
(二)能力训练要求
通过现实情境,进一步发展学生从数学角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系。

(三)情感与价值观要求
1、有关比例的计算,让学生懂得数学在现实生活中的作用,从而增强学生学好数学的信心;
2、通过解答实际问题,激发学生学习数学的兴趣,增长社会见识,在与他人的共同探索、讨论问题的过程中,增强合作交流的意识。

四、教学重难点
教学重点:理解相似形、线段比的概念及其求线段的比
教学难点:求线段的比时注意线段长度单位要统一,应用线段的比解决实际问题。

五、教学方法:探索、发现法
六、教学准备
希沃5课件,卷尺、泡沫垫
七、教学过程
1.导入教学
(1)课前活动
找茬游戏:以下两张图片中有两处不一样,你能找出来吗?
再出示两张图片(用蒙层事先遮住),一张为姚明照片,一张是老师本人的照片。

然手用希沃克隆功能复制出一模一样的图片,提问:以下两张图片有什么特征?(旨在回忆曾经学过的全等图形)(2)改变照片大小形成对比
提问:这些图片有什么特征?(旨在引导学生发现每组图片形状相同但大小不同)
提问学生:你发现这几张照片有什么关系?(旨在引出相似的概念,全等是相似的一种特殊情况)
学生回答:图片形状一样,大小不一样。

(3)用希沃画图功能画一个四边形,并克隆。

对其中一个图形进行缩小,用希沃放大镜的功能将小四边形进行放大,发现跟大的四边形会差不多。

引导学生理解图形的大小不同类似与对应线段的长短不一样,进而得出全等三角形的对应边的比是1:1,而形状一样,大小不一样的两个图形的对应线段的比不等于1.然后用尺子功能对两张图片的人物进行身高用线段表示,用真实身高定为线段长度,并且引入尺子的长度,出现单位不一致的情况。

最后进行线段比,从而引出线段比的定义
活动目的:引发学生思考相似图形的特征,激发学生的学习兴趣。

实际效果:学生们都很兴奋,对学习充满了好奇心。

2.新课讲解
(1)引入线段的比:如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB:CD=m:n,
或写成。

其中,AB,CD分别叫做这个线段比的前项和后项。

如果把表示成比值k,那么,或者AB=K*CD,两条线段的比实际上就是两个数的比。

(2)想一想:通过上面的活动,大家一起来总结一下线段的比的几个注意事项
①两条线段的比就是两条线段长度的比,它是一个没有单位的正的数。

②两条线段的比是有顺序的。

(提示:能随便交换位置吗?)
③两条线段的比与所选的长度单位无关
④求两条线段比时,如果单位不同,那么必须先化成同一单位,再求它们的比。

⑤比的性质同分数的性质。

3巩固练习
(1)若线段AB=6cm,CD=4cm,则AB:CD=___________ 。

(2)若线段AB=8cm,CD=2dm,则AB:CD=___________ 。

(3)已知线段AB=8cm,A'B'=2cm,AB∶A'B'的比为_______,AB∶A'B'的比值为_________,AB=_____A'B'。

活动目的:让学生巩固课堂上所学的知识。

活动效果:学生基本能运用所学的知识解决比例问题,收到了较好的教学效果。

4.想一想
活动内容:生活中还有哪些利用线段比的事例?你能举例吗?
学生回答:黄金分割点
教师引导:那利用线段的比与黄金分割点的知识来分析下课堂开始时老师所说的老师“身材很好”的说法是否正确。

学生活动:学生拿出尺子帮老师测出身高、肚脐到脚底的距离,利用黄金分割点的知识进行线段比的计算。

结果发现老师的身材比约是0.77,不会接近于0.618。

学生得出结论:老师所说的“身材很好”是不对的。

教师引导:那既然不好,那有什么补救措施吗?
学生回答:穿内增高
教师引导:那穿多高的内增高呢?请同学帮老师设计一双内增高的鞋的高度。

学生活动:学生们纷纷动手计算,通过大家的努力大家计算出,如果胡老师要想身材比例接近于0.618,必须要穿约23cm的内增高。

同学们纷纷惊讶!从而让学生感觉到知识的力量。

活动目的:进一步让学生体会线段的比在生活中的应用。

活动效果:活动中学生们很活跃,激发学生学习数学的兴趣。

从而达到学习的情感目标。

5作业:课后探索
活动内容:同学们回去动脑设想及创造实践:生活中可以运用线段的比与黄金分割点的知识来设计并解决生活中哪些问题?
活动目的:让学生回顾本节课的学习内容,学会归纳,并对生活做一个有心人。

活动效果:虽然学生的程度不同,但不同程度的学生都能够有所收获。

八、板书设计
九、教学反思
1、根据学生的实际情况进行课程设计,设置出适合个人教学的情境。

老师可以根据自己身边的熟悉的事物来设置情境,或是就用教科书上的情境。

比如课文中运用人物身高的线段比,让学生感受到数学知识在生活中的应用。

2、教学中让学生运用人物身高与尺子的长度,并求出这两条线段的长度之比。

添加这个环节目的是对学生得出“两条线段长度的比与所采用的长度单位无关”的结论埋下伏笔,并让学生得出两条线段的比与单位的一致性有关。

学生已经有了全等图形和比例的知识作为铺垫,生活中也存在大量相似图形的例子,所以学生学习起来不会很难,可以大胆的放手让学生自己去动手操作、动脑思考,老师可以在适当的时候给予帮助和补充。

3、通过给每位同学设计黄金身材比的随堂联系加以巩固。

学生一定很有兴趣再完成,时间允许的话可以让学生观察生活中哪些事物可以运用黄金分割点与线段的比的知识来设计并加以运用。

相关文档
最新文档