最新工程热力学课程 高中其它科目课件教案

合集下载

2024工程热力学课堂教学设计教案

2024工程热力学课堂教学设计教案

•教学背景与目标•教学内容与方法•教学资源与工具•教学过程与实施目录•教学评价与反馈•教师角色与素质要求01教学背景与目标课程背景介绍工程热力学在能源与动力工程领域的重要性工程热力学是研究热能与机械能相互转换以及热能传递规律的学科,对于能源的高效利用和动力设备的优化设计具有重要意义。

当前工程热力学教学面临的挑战随着科技的快速发展和新能源技术的不断涌现,工程热力学的教学内容需要不断更新和完善,以适应新的教学需求。

教学目标设定知识与技能目标使学生掌握工程热力学的基本概念和基本定律,了解热能传递和转换的基本过程,能够运用所学知识分析和解决简单的工程热力学问题。

过程与方法目标通过理论讲解、案例分析、实验操作等多种教学手段,培养学生的分析、综合、创新和实践能力。

情感态度与价值观目标激发学生对工程热力学的学习兴趣和热情,培养学生的团队协作精神和创新意识,提高学生的职业素养和社会责任感。

学生需求分析学生的专业背景和先修课程01学生的学习特点和兴趣爱好02学生在未来职业发展中的需求03教学重点与难点教学重点教学难点02教学内容与方法整合知识点间的联系,构建系统的知识体系,如将热力学第一定律和第二定律结合起来讲解热机的工作原理;强调知识点的工程应用背景,引导学生将理论知识与实际问题相结合。

梳理工程热力学基本概念、定律和原理,如热力学系统、热力学第一定律、热力学第二定律等;知识点梳理与整合根据工程热力学的学科特点,选择启发式、案例式、讨论式等教学方法;针对学生的实际情况,采用分层次、分阶段的教学方式,逐步提高教学难度;利用多媒体、网络等现代化教学手段,增强教学的直观性和趣味性。

教学方法选择依据设计课堂提问环节,鼓励学生主动思考和回答问题,激发学生的学习兴趣;安排小组讨论环节,引导学生就某一问题进行深入探讨和交流,培养学生的合作精神和沟通能力;设置课堂练习环节,让学生及时巩固所学知识,提高教学效果。

课堂互动环节设计案例分析与实践应用引入工程实例,分析热力学理论在工程中的应用,如汽轮机、内燃机等热力设备的热力过程分析;安排实验课程,让学生亲自动手操作,加深对热力学理论的理解和掌握;布置课程设计任务,让学生综合运用所学知识解决实际问题,培养学生的工程实践能力和创新能力。

高等工程热力学教案

高等工程热力学教案

高等工程热力学教案一、教学目标1.掌握高等工程热力学的基本概念和基本原理。

2.理解热力学系统和热力学过程的基本特征。

3.掌握热力学第一定律和第二定律的表述和应用方法。

4.能够应用热力学知识解决实际工程问题。

二、教学内容1.高等工程热力学简介(1)高等工程热力学的定义和研究对象。

(2)热力学系统的基本概念和分类。

(3)热力学平衡和非平衡态。

2.热力学基本概念和基本原理(1)热力学过程和过程的分类。

(2)内能和焓的概念及其性质。

(3)热力学第一定律的表述和应用。

(4)克拉珀龙方程和基尔霍夫循环定理。

3.熵和热力学第二定律(1)熵的引入和熵增定理。

(2)热力学第二定律的表述和应用。

(3)熵的计算方法和热力学性能的描述。

4.理想气体和理想气体混合物的热力学性质(1)理想气体状态方程和气体定律。

(2)理想气体的内能、焓和熵的计算方法。

(3)理想气体混合物的理论计算方法。

5.热力学循环和工质使用(1)热力学循环的分类和性能参数。

(2)理想循环和实际循环。

(3)工质选择和工质性能参数。

三、教学方法1.理论讲授:通过课堂讲解,将高等工程热力学的基本概念、基本原理和应用方法传授给学生。

2.实例分析:提供一些实际工程问题,并引导学生应用热力学知识解决问题,加强实际应用能力的培养。

3.讨论引导:组织学生开展小组讨论,让学生在讨论中相互启发,共同思考和解决问题。

四、教学工具1.讲义和教材:准备高等工程热力学的讲义和教学参考教材,便于学生学习和复习。

2.多媒体设备:利用多媒体设备播放示意图、实验视频等,直观地展示热力学原理和实验过程。

3.计算工具:提供计算软件或计算器,方便学生进行数值计算。

五、教学过程1.导入:通过提问和讲解,引入高等工程热力学的概念和研究对象。

2.知识讲解:逐步讲解热力学的基本概念、基本原理和应用方法。

3.实例分析:提供一些实际工程问题,引导学生应用热力学知识解决问题。

4.小组讨论:组织学生进行小组讨论,让学生相互启发、共同思考和解决问题。

2024版最新精品工程热力学教案

2024版最新精品工程热力学教案
制冷循环优化
提高制冷效率的措施包括采用高效压缩机、优化冷凝器和蒸发器设计、 提高制冷剂性能等。
06
工程热力学应用实例分析
蒸汽轮机工作原理及性能评价
蒸汽轮机工作原理
蒸汽轮机利用高温高压蒸汽驱动涡轮旋转,进而带动发电机发电。蒸汽轮机主要由锅炉、汽 轮机、凝汽器、给水泵等辅助设备组成。
性能评价指标
蒸汽轮机的性能评价指标主要包括热效率、功率输出、蒸汽消耗率等。其中,热效率是评价 蒸汽轮机性能的重要指标,它反映了蒸汽轮机将热能转化为机械能的效率。
等容过程
绝热过程
系统体积保持不变的过程。在等容过程中, 理想气体的压强与热力学温度成正比关系。
系统与外界没有热量交换的过程。在绝热过 程中,理想气体的压强、体积和温度之间满 足特定的关系式。
05
热力循环与热效率
热力循环概述
01
02
03
热力循环定义
热力循环是研究工质从某 一状态开始,经过一系列 状态变化又回到原来状态 的过程。
等。
02
热力学第一定律
能量守恒原理
能量不能凭空产生或 消失,只能从一种形 式转化为另一种形式。
能量转化过程中,各 种形式的能量在数量 上保持平衡。
在一个孤立系统中, 总能量始终保持不变。
热力学第一定律表达式
热力学第一定律的表达式为
ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统与外界交换的热量,W表示系 统对外界所做的功。
对外界所做的功。
当系统与外界没有热量交换时, 即Q=0,则ΔU = -W,表示系 统内能的变化等于系统对外界所
做的功的负值。
当系统与外界没有功的交换时, 即W=0,则ΔU = Q,表示系统 内能的变化等于系统与外界交换

最新[工学]-第十四章-工程热力学教学讲义PPT课件

最新[工学]-第十四章-工程热力学教学讲义PPT课件
[工学]-第十四章-工程热力学
§14-1 概 述
应用:化学反应的过程 chemical reaction
√ 动力装置煤、油、天然气的燃烧
水处理 化工过程
目的:
热力学基本定律用于化学过程, 研究这些过程能量的转换、平衡、 方向性、化学平衡
有化学反应过程的特点
1、独立变量数
无化学反应:简单可压缩系统,2 有化学反应:独立变量数>2
Q0 p''
Qp
Qp0'
Q
0 p
CO
Q
o p'
Q p 0 '' 3 9 3 5 2 2 k J/k m o lCC O 2 Q p 0 ' 2 8 2 9 9 3 k J/k m o lC O 2Q
o p
''
CO2
燃烧热值(发热量、热值)
Heating value of the fuel
1kmol燃料完全燃烧时的热效应的绝对值 Complete 放热为负 H f
热效应与反应热Heat of reaction
反应热:系统与外界交换的热量,过程量
容积变化功
热效应: T
状态量
1 kmol
盖斯定律
Hess Law
盖斯定律(1840年)
当反应前后物质的
C Qp2 D
种类给定时,化学反
应的热效应,与中间 Qp1
Qp3
过程无关,只与过程 A 初始和终了状态有关。 Qp4
B
Qp5
Qp1 Qp2 Qp3 Qp4 Qp5
E
某些测不出(或不易 测)的热效应可由易
测的热效应代替。
标准态
盖斯2OQQ p0''Q p0 p 0 测 不11 准0同52 Q时9k p0产J/k 生Qm p0o '' lC QO p0'

工程热力学课程教案X-2024鲜版

工程热力学课程教案X-2024鲜版
压缩机的性能参数
阐述压缩机的性能参数,如排气量、排气压力、 功率及效率等,以及这些参数的计算方法和影响 因素。
2024/3/28
压缩机的类型与结构
详细介绍各类压缩机的结构、工作原理及特点, 如往复式压缩机、离心式压缩机、轴流式压缩机 等。
压缩机的选型与使用
介绍压缩机的选型原则和方法,以及安装、调试、 运行和维护等方面的注意事项。
18
制冷剂的种类与性质
制冷剂的种类
根据化学组成,制冷剂可分为无机化合物、 氟利昂、碳氢化合物等。
2024/3/28
制冷剂的性质
制冷剂应具有低沸点、高蒸气压、良好的热 力学性质、化学稳定性以及环保性等特性。
19
04
热力过程与设备
2024/3/28
20
压缩过程与压缩机
压缩过程的基本原理
介绍压缩过程的基本概念、原理及分类,包括等 温压缩、绝热压缩和多变压缩等。
课程目标
培养学生掌握热力学基本理论和分析方法,具备解决工程实际问题 的能力,为后续专业课程学习及工程实践打下坚实基础。
4
教学内容与方法
2024/3/28
教学内容
包括热力学基本概念、热力学第一定 律、热力学第二定律、气体和蒸汽的 性质、热力过程和循环分析等。
教学方法
采用讲授、讨论、案例分析等多种教 学方法,注重理论与实践相结合,提 高学生分析问题和解决问题的能力。
2024/3/28
13
03
工质的热力性质
2024/3/28
14
工质的定义与分类
定义
工质是实现热能与机械能相互转换的媒介物 质。
分类
根据物质状态,工质可分为气体、液体和固 体;根据组成,可分为单质和化合物。

2024版《工程热力学》课程教学大纲

2024版《工程热力学》课程教学大纲

目录•课程简介与目标•热力学基本概念与定律•热力学性质与过程分析•热力学在能源转换中的应用•热力学在环境保护中的应用•实验课程安排与要求课程简介与目标工程热力学的研究对象和任务研究热能与机械能相互转换的规律,以及提高能量转换效率的途径。

工程热力学在能源领域的应用涉及动力、制冷、空调、化工、环保等多个领域,为能源的高效利用提供理论指导。

工程热力学与相关学科的关系与传热学、流体力学、燃烧学等学科密切相关,共同构成能源科学与工程学科体系。

工程热力学概述030201知识目标掌握工程热力学的基本概念、基本原理和基本方法,了解工程热力学在能源领域的应用。

能力目标能够运用工程热力学知识分析实际工程问题,提出解决方案,并具备初步的工程设计和创新能力。

素质目标培养学生的工程素养、创新意识和团队协作精神,提高学生的综合素质。

课程目标与要求教材及参考书目01教材《工程热力学》(第X版),XXX主编,XXX出版社。

02参考书目《热力学基础》、《传热学》、《流体力学》等相关教材,以及工程热力学领域的学术论文和专著。

热力学基本概念与定律温度、热量与内能温度温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。

热量热量是指当系统与外界存在温差时,通过热交换,系统从外界吸收或向外界放出的能量。

内能内能是物体内部所有分子做无规则运动所具有的动能和分子势能的总和。

热力学系统与过程热力学系统热力学系统是指某一由大量粒子组成的宏观物质系统。

粒子间的相互作用力可以忽略,但又大量到足以符合统计规律,从而能确定其宏观性质。

热力学过程热力学过程是指热力学系统从某一始态出发,经过某一特定路径转变为另一终态的整个过程。

热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

热力学第一定律的数学表达式ΔU=W+Q,其中ΔU为内能的变化量,W为外界对系统做的功,Q为系统从外界吸收的热量。

《工程热力学》(第四版)配套教学课件

《工程热力学》(第四版)配套教学课件
传热面积是影响换热器性能的重要因素。通过优化传热面积,可以 提高换热效率,降低能耗。
流体流动模式
流体流动模式会影响传热系数。合理设计流体流动路径,可以增强 传热效率。
材料选择
材料选择需要考虑流体腐蚀性,耐温性,成本等因素。合适的材料 可以确保换热器寿命和可靠性。
课程总结与反馈
1 1. 课程回顾
回顾课程内容,掌握核心概念。
3 3. 混合物热力学性质
混合物热力学性质包括焓、 熵、吉布斯自由能等,可用 于分析混合物的能量变化。
4 4. 应用
气体和液体混合物在许多工 程应用中发挥重要作用,例 如制冷剂、燃料和化学反应 过程。
化学平衡与化学反应
1
2
3
化学平衡
化学反应达到平衡状态时,正逆反应 速率相等,反应物和生成物的浓度不

3
功是能量的另一种形式,它是力作用在物体上所做的功。
内能
4
内能是系统内部所有能量的总和,包括热能、动能和势能。
热力学第二定律
热力学第二定律的表述
热力学第二定律阐述了热量传递的方向性和不可逆性,以及熵增原理。
克劳修斯表述
热量不能自发地从低温物体传递到高温物体,需要外界做功。
开尔文表述
不可能从单一热源吸取热量,全部用来做功,而不引起其他变化。
《工程热力学》第四 版教学课件
本套课件旨在为学习工程热力学课程的学生提供更直观、更易懂的学习体 验。
课件内容涵盖了工程热力学的基础知识,并通过丰富的图文和动画进行讲 解,使学生更容易理解和掌握。
hd by h d
课程简介
课程内容
本课程涵盖了热力学基础、热力学定律、流体性质、传热原理以及常见热力学系统等方面内容。

工程热力学 教案

工程热力学 教案

工程热力学教案教案标题:工程热力学教学目标:1. 理解工程热力学的基本概念和原理。

2. 掌握工程热力学中的常用计算方法。

3. 能够应用工程热力学知识解决实际问题。

教学重点:1. 工程热力学的基本概念和原理。

2. 热力学系统的性质和特点。

3. 热力学过程的描述和分析。

4. 热力学循环的计算和优化。

教学难点:1. 热力学系统的性质和特点的理解。

2. 热力学过程的描述和分析方法的掌握。

3. 热力学循环的计算和优化方法的应用。

教学准备:1. 教学PPT或投影仪。

2. 教学实例和案例分析材料。

3. 实验室设备和实验材料(可选)。

教学过程:一、导入(5分钟)1. 引入工程热力学的基本概念和应用领域。

2. 激发学生的学习兴趣,提出与实际生活和工程实践相关的问题。

二、理论讲解(30分钟)1. 介绍热力学系统的性质和特点,如封闭系统、开放系统等。

2. 解释热力学过程的描述方法,如等温过程、绝热过程等。

3. 讲解热力学循环的基本原理和常见循环类型。

三、计算方法与案例分析(40分钟)1. 介绍工程热力学中常用的计算方法,如热力学方程、热力学图表等。

2. 分析实际案例,应用计算方法解决工程热力学问题。

3. 引导学生进行讨论和思考,加深对工程热力学知识的理解。

四、实验演示(可选,30分钟)1. 进行与工程热力学相关的实验演示,如热力学循环实验等。

2. 引导学生观察实验现象,分析实验数据,并与理论知识进行对比和验证。

五、总结与拓展(10分钟)1. 总结工程热力学的基本概念和计算方法。

2. 引导学生思考工程热力学在实际工程中的应用和发展前景。

3. 提供相关学习资源和拓展阅读推荐。

教学评估:1. 课堂练习:布置与工程热力学相关的计算题目,检验学生对知识的掌握程度。

2. 实验报告:要求学生撰写实验报告,包括实验过程、数据分析和结论。

3. 课堂讨论:鼓励学生积极参与课堂讨论,分享自己的思考和观点。

教学延伸:1. 建议学生参加相关实习或实践活动,加深对工程热力学知识的理解和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等职业教育教学课程标准工程热力学
适用专业:化工机械
2006年4月
一、课程性质与任务
工程热力学课程是化工机械专业的一门专业基础课,是研究物质的热力性质、热能与其它能量之间相互转换规律的科学,是培养化机专业技术人员的一门重要技术基础课,它以热力学基本作为基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,同时探讨各种热力过程的特性,达到提高热能利用率和热功转换效率的最终目的。

本课程的任务是使学生掌握能量转换与利用的基本定律及其运用,掌握工质的热力性质分析,了解工程中节能技术的热力学原理及其分析方法,以实现能量转换的高效性和经济性,并为学习其他有关课程及从事有关生产技术工作打下必要的基础。

二、课程教学目标
工程热力学是研究热能与其他形式的能量(尤其是机械能)之间相互转换规律的一门学科。

通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性, 并注意渗透思想教育,逐步培养学生的辩证思维能力,加强学生的职业道德观念,向学生渗透爱课程、爱专业教育。

通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的热情。

初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础。

三、理论教学内容和要求
1 教学内容体系结构
课程体系结构为:
(1) 研究能量转化的宏观规律,即热力学第一定律与第二定律。

这是工程热力学的理论基础。

其中热力学第一定律从数量上描述了热能和机械能相互转换时的关系;热力
学第二定律从质量上说明了热能和机械能之间的差别,指出能量转换的方向性。

(2) 研究工质(能量转换所凭借的物质)的基本热力性质。

(3) 研究常用典型热工设备中的工作过程。

即应用热力学基本定律,分析工质在各种热工设备中经历的状态变化过程和循环,并探讨和分析影响能量转换效果的因素,以其提高转换效果的途径。

从工程应用角度,全部教学内容紧紧围绕热能与机械能的相互转换规律和提高转换效率途径的研究主题。

2 课程要求
通过本课程的学习,学生应达到下列基本要求:
(1)掌握热力学基本定律及其运用;
(2)理解工质的热力性质及各种机械装置中热力过程和热力循环的基本原理,正确运用各种公式和图表。

(3)从课程内容的角度,学生在学习了热力学第一定律与第二定律,初步了解和掌握了理想气体热力性质和过程基本规律之后,可以应用这些基本知识分析、解决一些实际问题,达到对所学知识的第一次初步理解和应用。

然后,在进一步学习了实际气体热力性质和过程之后,更深层次的应用前面所学的基本知识,深入分析实际装置中的热力过程和多种循环,从而达到能在更高的认知层面上进一步综合、灵活应用工程热力学的知识去解决实际问题。

(4)从研究方法的角度,像其他学科一样,在工程热力学中,普遍采用抽象、概括、理想化和简化的方法。

这种略去细节、抽出共性、抓住主要矛盾的处理问题的方法,这种科学的抽象,不但不脱离实际,而且更深刻地反映了事物的本质,是科学研究的重要方法。

(5) 本课程的教学内容分为基础模块和选学模块两个部分。

基础模块是本课程的必修内容,为最低要求必学内容。

选学模块是根据学期学时、学生基础好坏以及本届学
生培养特征而确定的选学的内容,可根据授课班级具体情况确定选学模块中选择内容。

(6)对理论知识的教学要求分为了解、理解、掌握三个层次:
了解:对知识有初步和一般的认识,知道“是什么”;
理解:能够领会基本概念、基本原理的含义,能够解释和说明一些简单的问题;
掌握:能够熟练地运用知识,分析和解决一些较复杂的问题。

四、课时分配
五、说明
1 制定课程标准依据、适用范围和使用方法
(1)本课程标准是根据2001年教育部编的《高等职业教育有机化学课程基本要求》和我校高职三年制化机专业人才培养方案而制定的。

适用于我校高中三年制(高职)化机专业。

(2)本课程标准规定理论教学时数为56学时,其中基础模块安排46学时,选学模块安排10学时,选学模块可可根据实际教学情况适当安排,总计56学时。

(3)本课程标准的基本要求不应削弱,但任课教师对课程标准中章节顺序、学时分配可适当调整,可适当增设一些习题课、讨论课。

2教学建议
(1) 本课程是专业性较强的学科,教学方式应以课堂讲授为主,讲授时重点突出,概念清晰,注意启发式教学,培养学生的分析能力与解决问题的能力。

(2) 部分章节的自学——为培养学生的自学能力,教师在课堂上提出主线,一些内容由同学们自学,然后组织习题课讨论,讨论题可以围绕与实际生活密切的题目:如能源与环境、节能的重要性、建筑节能、辩证思维等。

(3) 阶段复习采用多媒体课件,这也是一种有效的学习方式。

3、成绩考核、评定方法
本课程为考察课,其中平时成绩占40%,期末成绩占60%。

评价学生成绩可以通过课上提问、学生作业、读书笔记、平时测验和考试成绩多方面进行综合评价。

4、教学参考书
(1)《工程热力学》徐建良编化学工业出版社
(2)《工程热力学》沈维道主编高等教育出版社
(3)《工程热力学》李斯特主编化学工业出版社
(4)《热学》(第二版)秦允豪编2004.6高等教育出版社
(5)《热学》(第二版)张玉民编2006.1科学出版社。

相关文档
最新文档