二分法求方程的近似解(教案)

合集下载

用二分法求方程的近似解 优秀教案

用二分法求方程的近似解 优秀教案

用二分法求方程的近似解一、教学内容分析本节选自《普通高中课程标准实验教科书·数学必修一》人教A版第三单元第一节第二课,主要是分析函数与方程的关系。

教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系。

然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面的体现函数与方程的关系,逐步建立起函数与方程的联系。

本节课是这一小节的第二节课,即用二分法求方程的近似解。

它以上节课的“连续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念。

求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据。

二、学生学习情况分析同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法。

其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”。

三、设计理念本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生数学的提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程。

高一数学二分法教案

高一数学二分法教案

高一数学二分法教案【篇一:《二分法》教案】3.1.2用二分法求方程的近似解【教学设计】1、教材分析本节课注重从学生已有的基础(基本初等函数图像、零值定理)出发,从具体到一般,揭示方程的根与对应函数零点之间的关系。

在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.2、目标分析学生已学习过的函数包括:一次函数、二次函数、指数函数、对数函数、幂函数,同时已掌握了求函数零点准确值的一些方法,对函数与方程的关系有了一定的认识。

用二分法求函数零点的近似解是利用了函数图像的连续性,不断逼近函数零点从而求得对应方程近似解的一种计算方法,因此通过学习二分法可以进一步培养学生有意识地运用函数图像及其性质去分析并解决问题的能力。

在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生能熟练地运用计算器演算。

由此得出本节课的教学目标为:知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感态度价值观体会数学逼近过程,感受精确与近似的相对统一.培养学生探究问题的能力、严谨的科学态度和创新能力。

3、重难点分析重点通过用二分法求方程的近似解,体会函数的零点与方程的根之间的联系,初步形成用函数观点处理问题的意识.难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解. 4、教法分析本节课突出方法的讲授与思维的训练,遵循“实例导入→揭示课题→实践探究→总结提炼→回归定义→视野拓展→学生感悟”的教学环节,由特殊到一般,由具体到抽象,循序渐进训练学生思维,给学生更多独立思考的空间。

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。

它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。

二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。

在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。

这时候,二分法就成为了一种简单而有效的求解方法。

通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。

在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。

通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。

1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。

特别是对于非线性方程,往往无法用代数方法得到精确解析解。

我们需要借助数值计算方法来求得近似解。

二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。

在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。

掌握二分法求方程的近似解有着重要的意义。

本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。

1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。

通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。

通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。

本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。

通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。

§..用二分法求方程的近似解教案人教版

§..用二分法求方程的近似解教案人教版
§..用二分法求方程的近似解教案人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
§..用二分法求方程的近似解教案人教版
教材分析
本节课的教学内容是“用二分法求方程的近似解”。该内容是高中数学人教版必修四第四章“不等式”中的一个重要知识点。在此之前,学生已经学习了函数、方程和不等式的基础知识,通过这些知识的学习,学生已经掌握了函数的性质、解方程的方法等。
-反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
-完成作业:认真完成老师布置的课后作业,巩固学习效果。
-拓展学习:利用老师提供的拓展资源,进行进一步的学习和思考。
-反思总结:对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
-自主学习法:引导学生自主完成作业和拓展学习。
- "The history and applications of the bisection method":这篇文章详细介绍了二分法的历史背景及其在各个领域的应用,有助于学生更好地理解二分法的地位和作用。
在线资源:
- GeoGebra:这是一个免费的数学软件,学生可以通过它来绘制函数图像,实践二分法求解方程的近似解。
d.案例研究环节:提供几个不同类型的方程,让学生运用二分法进行求解,并分析解题过程中的关键步骤。
e.项目导向学习环节:让学生分组选择一个方程,运用二分法编写程序求解,并展示解题过程和结果。
3.确定教学媒体和资源的使用:为了支持教学活动和提高学生的学习效果,将使用以下教学媒体和资源:
a. PPT:制作精美的PPT,用于展示二分法的原理、步骤和实例,提供直观的学习材料。

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》一课的教学设计江苏省太湖高级中学肖瑛求方程的解是常见的数学问题,这之前我们都是在等式状态下研究方程的变化关系,从而得到诸如求根公式等方程的解。

但有些方程求精确解较难,本课试图从另一个角度来求方程的近似解。

说求方程的近似解倒不如说是逼近解。

本课重点是学习一种思维。

1、教学目标1.1 知识目标:理解二分法的概念,掌握运用二分法求简单方程近似解的方法。

1.2能力目标:体验并理解函数与方程的相互转化的数学思想方法;让学生能够初步了解近似逼近思想,培养学生能够探究问题的能力、严谨的科学态度和创新能力。

1.3情感、态度与价值观正面解决问题困难时,可以通过迂回的方法去解决。

2、教学重点能够借用计算器,用二分法求相应方程的近似解。

3、教学难点对二分法的理论支撑的理解。

4、教学方法实例导入→推出课题→实践探究→总结提炼→学生感悟(总结、反思)5、教具多媒体课件6、教学过程…………………………………………………………………………………………………一、创设情景,引入新课师:大家先来看一段录像(放映CCTV2幸运52片段)支持人李咏说道:猜一猜这件商品的价格。

观众甲:2000!李咏:高了!观众甲:1000!李咏:低了!观众甲:1700!李咏:高了!观众甲:1400!李咏:低了!观众甲:1500!李咏:低了!观众甲:1550!李咏:低了!观众甲:1580!李咏:高了!观众甲:1570!李咏:低了!观众甲:1578!李咏:低了!观众甲:1579!李咏:这件商品归你了。

下一件……师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔十元降低报价。

生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价。

如果低了,每50元上涨;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法。

【参考教案2】《用二分法求方程的近似解》(数学人教必修一)

【参考教案2】《用二分法求方程的近似解》(数学人教必修一)

《用二分法求方程的近似解》教材分析本节是人教A版《普通高中标准试验教科书·数学1(必修)》第三章“函数的应用”中第一节“函数与方程”的第二节课内容,是在学习了集合与函数概念、基本初等函数后,研究函数与方程关系的内容。

本节课的教学内容是:结合函数大致图象,能够借助计算器用二分法求出相应方程的近似解,理解二分法的思想及了解这种方法是求方程近似解的常用方法。

本节内容是新教材中新增的内容。

在初中,学生学习了简单的一元一次方程和一元二次方程等简单方程的求根问题,但是实际问题中,有具体求根公式的方程是很少的。

对于这类方程,我们只能根据根的存在性定理判断根的存在,在利用二分法可以求出方程给定精确度的近似解。

经过本节内容的学习,将使学生更加深入理解函数与方程的数学思想。

教学目标【知识与能力目标】通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,会用二分法求解具体方程的近似解,从中体会函数与方程之间的联系及其在实际问题中的应用,体会程序化解决问题的思想.【过程与方法】借助计算器求二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做准备.【情感、态度与价值观】通过探究体验、展示、交流养成良好的学习品质,增强合作意识。

通过体会数学逼近过程,感受精确与近似的相对统一.教学重难点【教学重点】过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.【教学难点】恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.课前准备多媒体课件、教具等.教学过程一、问题引入实际问题:某个雷电交加的夜晚,医院的医生正在抢救一个危重病人,忽然电停了。

据了解原因是供电站到医院的某处线路出现了故障,维修工,如何迅速查出故障所在? (线路长10km ,每50m 一棵电线杆)如果沿着线路一小段一小段查找,困难很多。

二分法教案

二分法教案

用二分法求方程的近似解江苏省清江中学陈书林教学目标:(1)知识目标:掌握二分法求方程近似解的一般方法,能借助计算机或计算器求方程的近似解;理解二分法求方程近似解的算法原理,进一步理解函数与方程的关系;(2)能力目标:培养学生利用现代信息技术和计算工具的能力;培养学生探究问题的能力与合作交流的精神,以及辩证思维的能力;(3)情感目标:鼓励学生大胆探索,激发学生学习数学的兴趣,培养学生探寻和欣赏数学美,形成正确的数学观。

教学重点:探究二分法思想理论;利用二分法求方程的近似解教学难点:二分法求方程近似解的算法理论的探究教学用具:实物展台、多媒体课件、电脑Excel软件教学过程:一.问题情境:通过规定在一定次数内猜某件商品的价格,让学生总结一下猜的过程及方法,引入新课(屏幕打出课题)。

(创设问题情境,激发学生学习数学的热情)二.学生活动问题1:能否求解以下几个方程(1) 2x=4-x (2) x2-2x-1=0 (3) x3+3x-1=0问题2.能否解出这个方程x2-2x-1=0的近似解?学生思考,讨论、回答。

讨论可能沿着下面的方向进行:问题3:不解方程,如何求方程x2-2x-1=0的一个正的近似解(精确到0.1)?1.让学生先自行探求,并进行组织交流。

2.5.2 二分法求方程的近似解第 - 1 - 页共 3 页2.5.2 二分法求方程的近似解 第 - 2 - 页 共 3 页(1)师生共同探讨交流,引出借助函数f(x)= x 2-2x-1的图象,能够缩小根所在的区间,并根据f(2)<0,f(3)>0,可得出根所在区间为(2,3).(2)引发学生思考,如何进一步有效缩小根所在的区间。

(3)引导学生探寻出通过不断对分区间,将有助于问题的解决。

(4)用图例演示根所在区间不断缩小的过程,加深学生对上述方法的理解。

2.让学生简述上述求方程近似解的过程(通过自己的语言表达,有助于学生对概念、方法的理解)三、建构数学问题4:能否描述二分法?对于在区间[a,b]上连续不断,且f (a)f (b)<0的函数y=f (x),通过不断地把函数f (x)的零点所在的区间一分为二,使区间的两端点逐步逼近零点,进而得到零点近似解的方法叫做二分法(bisecition method )问题5:二分法实质是什么?用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近思想逐步缩小零点所在的区间。

《用二分法求方程的近似解》 教案及说明

《用二分法求方程的近似解》 教案及说明

课题:§3.1.2用二分法求方程的近似解教学目标:知识与技能――通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,会用二分法求解具体方程的近似解,从中体会函数与方程之间的联系及其在实际问题中的应用,体会程序化解决问题的思想.过程与方法――借助计算器求二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做准备.情感、态度、价值观――通过探究体验、展示、交流养成良好的学习品质,增强合作意识。

通过体会数学逼近过程,感受精确与近似的相对统一.教学重点:重点――通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点――恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学方法:问题导学、数学探究:通过问题引导学生自主探究二分法的原理与步骤,以师生互动为主的教学方法。

并辅以多媒体教学手段,创设问题情景,学生根据问题研讨。

教学程序与环节设计:由猜商品价格及实际问题引入现实生活中的二分法.提出本节课研讨的数学问题.分析、研讨用二分法求方程近似解的思想、学生总结研讨成果,领悟新知识,提高认识.应用二分法解决简单问题,体会函数零点的意义,明确二分法的适用范围.教学过程与操作设计:260x x +-=的近似解(误差不超过首先利用函数性质或借助计算机、出函数图象,确定函数零点大致所在的区间,二分法逐步计算解答. 探究交流问题: 、你是如何确定函数()ln f x x =“用二分法求方程的近似解(一)”教案说明本节课是《普通高中课程标准实验教科书数学1必修本(A版)》3.1.2用二分法求方程的近似解(下面简称‘二分法’),为更好地把握这一课时内容,对本课时教案给予以下说明.一、授课内容的数学本质本课时的主要任务是结合3.1.1中的例1,介绍二分法的基本操作思路,在此基础上又从算法思想的角度归纳了二分法的一般操作步骤,并使学生尝试用二分法按给定的精确度、借助计算器或计算机等,求一个具体方程的近似解. 借以体验从具体到一般的认识过程,渗透运动变化(逐步逼近)和极限思想(无限逼近),初步体会“近似是普遍的、绝对的,精确则是特殊的、相对的”辩证唯物主义观点,树立追求真理、崇尚科学的信念.函数与方程是中学数学的重要内容之一,又是初等数学和高等数学的衔接的枢纽,其实质是揭示了客观世界中量的相互依存又互有制约的关系,因而函数与方程思想的教学,有着不可替代的重要位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2 用二分法求方程的近似解
(一)教学目标
1、知识与技能
掌握应用二分法求方程近似解的原理与步骤,会用二分法求方程的近似解。

2、过程与方法
体会通过取区间中点,应用零点存在性定理,逐步缩小零点所属区间的范围,而获得零点的近似值即方程的近似解的过程中理解二分法的基本思想,渗透算法思想。

3、情感、态度及价值观
在灵活调整算法,在由特殊到一般的认识过程中,养成良好的学习品质和思维品质,享受数学的无穷魅力。

(二)教学重点与难点
重点:用二分法求方程的近似解;
难点:二分法原理的理解
(三)教学过程
1、复习引入
(1)知识回顾
(a)函数的零点及其等价关系。

*对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。

方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
(b )连续函数在某个区间上存在零点的判别方法:
*如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点。

即存在c ∈(a,b),使得f(c )=0,这个c 也就是方程f(x)=0的根。

(2)引例
(a )从学校电房到学校食堂的电缆有5个接点。

现在某处发生故障,需及时修理。

为了尽快把故障缩小在两个接点之间,一般至少需要检查多少2次? (b )猜数字游戏,看谁先猜中
从1~1000这1000个自然数随机抽出1个数,谁能根据提示“大了”“小了”“对了”先猜出这个数?10次以内猜出,你们能做到吗 ?
2、新课内容
设疑:一元二次方程可以用公式求根,但没有公式可用来求lnx+2x-6=0的根,能否利用函数的有关知识来求它根的近似值呢?
函数:f(x)=Lnx+2x-6有零点
方程:Lnx+2x-6=0有解。

1、你能找出零点落在下列哪个区间吗?
2、你能继续缩小零点所在的区间吗?
解方程:Lnx+2x-6=0
找函数:
f(x)=Lnx+2x-6的零点所在区间
逐步缩小函数:
f(x)=Lnx+2x-6零点所在范围
3、几何画板演示缩小范围
()()()()54433221,.,.,.,.D C B A
4、区间长度、二分法概念
对于区间[a,b]上连续不断且f(a) ·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection)。

二分法的实质就是将函数零点所在的区间不断地一分为二,使新得到的区间不断变小,两个端点逐步逼近零点。

5、二分法求方程近似值适用范围
思考:下列函数中哪个能用二分法求零点?
6、二分法求方程近似解的一般步骤:
(1)确定区间[a,b],验证f(a)f(b)<0,给定精确度ε。

(2)求区间(a,b)的中点c.
(3)计算f(c);
①若f(c)=0,则c就是函数的零点
②若f(a)f(c)<0,则令b= c(此时零点x0∈(a,c))
③若f(b)f(c)<0,则令a= c(此时零点x0∈(c,b))
(4)判断是否达到精确度ε,即若|a-b|< ε,则得到零点的近似值a(或b);否则重复2~4。

思考:由|a-b|<ε可知,区间[a,b]中任意一个值都是零点x0的满足精确度ε的近似值,这是为什么呢?(当然为了方便,这里统一取区间端点a(或b)作为零点的近似值。

7、练习:
(1)求出方程x 2-2x-1=0的一个近似解(精确度0.1)(只求大于0的那个)
(2)用二分法求函数y=f(x)在)2,1( x 内零点近似值的过程中得到f(1)<0,f(1.5)>0,取区间中点c=1.25且f(1.25)<0,则函数的零点落在区间( ) 3)用二分法求f(x)=3x-x-4的一个零点,其参考数据如下: f(1.6000)=0.200
f(1.5875)=0.133 f(1.5750)=0.067 f(1.5625)=0.003 f(1.5562)=—0.029 f(1.5500)=—0.060
据此可得方程3x-x-4=0的一个近似解(精确度为0.01)为____________
(四)小结
1、适用范围:用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适用。

2、步骤: 确定初区间
求中点,算其函数值
缩小区间
算长度,比精度
下结论 A.(1,1.25) B.(1.25,1.5) C. (1.5,2) D.不能确定
返 回。

相关文档
最新文档