用二分法求方程的近似解

合集下载

用二分法求方程的近似解(带练习)

用二分法求方程的近似解(带练习)

4.5.2用二分法求方程的近似解1.二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点__c__.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则__c__就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时零点x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可借助口诀记忆:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点的个数分别为()A.4,4 B.3,4C.5,4 D.4,3D解析:图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的零点个数为3,故选D.2.若函数f(x)在(1,2)内有1个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次C 解析:设对区间(1,2)至少二等分n 次,初始区间长为1. 第1次二等分后区间长为12;第2次二等分后区间长为122;第3次二等分后区间长为123;…第n 次二等分后区间长为12n .根据题意,得12n <0.01,∴n >log 2100. ∵6<log 2100<7, ∴n ≥7.故对区间(1,2)至少二等分7次.【例1】下面关于二分法的叙述中,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循,无法在计算机上完成D .只能用二分法求函数的零点B 解析:用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A 错误;二分法是一种程序化的运算,可以在计算机上完成,故选项C 错误;求函数的零点的方法还有方程法、函数图象法等,故选项D 错误.故选B.运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数的零点.1.下列关于函数f(x),x∈[a,b]的命题中,正确的是()A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解A解析:使用二分法必须满足二分法的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.2.已知下列四个函数图象,其中能用二分法求出函数零点的是()A解析:由二分法的定义与原理知A选项正确.【例2】利用二分法求方程x2-x-1=0的近似解(精确度为0.3).解:令f(x)=x2-x-1,由于f(0)=-1<0,f(1)=-1<0,f(2)=1>0,故可取区间(1,2)作为计算的初始区间.用二分法逐次计算,列表如下:零点所在区间中点的值中点函数值(1,2) 1.5 -0.25(1.5,2) 1.75 0.312 5(1.5,1.75) 1.625 0.015 625∵|1.75-1.5|=0.25<0.3,∴方程x2-x-1=0的近似解可取1.5或1.75.二分法的步骤证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点.(精确度为0.1)证明:∵函数f(x)=2x+3x-6,∴f(1)=-1<0,f(2)=4>0.∴f(x)在区间(1,2)内有零点.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点.设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5).取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25).取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则该函数的零点近似解为1.25.探究题1某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得的近似值的精确度达到0.1,则应将区间D等分的次数至少是________次.5解析:第一次等分,则根在区间(2,3)内或(3,4)内,此时精确度ε>0.1;不妨设根在(2,3)内,第二次等分,则根在区间(2,2.5)内或(2.5,3)内,此时精确度ε>0.1;不妨设根在(2,2.5)内,第三次等分,则根在区间(2,2.25)内或(2.25,2.5)内,此时精确度ε>0.1;不妨设根在(2,2.25)内,第四次等分,则根在区间(2,2.125)内或(2.125,2.25)内,此时精确度ε>0.1;不妨设根在(2,2.125)内,第五次等分,则根在区间(2,2.062 5)内或(2.062 5,2.125)内,此时精确度ε<0.1.满足题目要求,故至少要等分5次.探究题2在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为()A.0.68 B.0.72 C.0.7 D.0.6C解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=12×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.区分好“精确度”与“精确到”.3.现实生活中,有很多问题可以用二分法来解决,例如线路断路、地下管道的堵塞、水管的泄漏等.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量轻一点),现在只有一台天平,应用适当的方法最多称几次就可以发现这枚假币?将26枚金币平均分成两份,放在天平上,假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚金币平均分成两份,则假币一定在轻的那3枚金币里面;将这3枚金币任意拿出2枚放在天平上,若平衡,则剩下的那一枚是假币,若不平衡,则轻的那一枚是假币.依据上述分析,最多称4次就可以发现这枚假币.用二分法求方程的近似解练习(30分钟60分)1.(5分)定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)<0,用二分法求x0时,当fa+b2=0时,函数f(x)的零点是() A.(a,b)外的点B.a+b2C.区间a,a+b2或a+b2,b内的任意一个实数D.x=a或bB解析:由fa+b2=0知a+b2是零点,且在(a,b)内.2.(5分)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示.x 1.25 1.312 5 1.375 1.437 5 1.51.562 5f(x) -0.871 6 -0.578 8 -0.281 30.021 01 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.3C解析:由题意可知f(x)为增函数.由f(1.375)•f(1.437 5)<0,可知方程2x+3x=7的近似解可取为1.4.故选C.3.(5分)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下.f(1)≈-2 f(1.5)≈0.625 f(1.25)≈-0.984f(1.375)≈-0.260 f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25 B.1.375 C.1.42 D.1.5C解析:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.406 25,1.437 5)之间,且1.437 5-1.406 25<0.05.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.4.(5分)用二分法求方程ln x-2+x=0在区间[1,2]上零点的近似值时,先取区间中点c=32,则下一个含根的区间是32,2.5.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确到0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后面的过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断,方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.1.5,1.75,1.875,1.812 5解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).6.(5分)利用计算器,列出部分自变量和函数值的对应值如表:x -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0y=2x 0.329 9 0.378 9 0.435 3 0.5 0.574 30.659 8 0.757 9 0.870 6 1y=x2 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04 0 若方程2x=x2有一个根位于区间(a,a+0.4)(a在表格中第一行里的数据中取值),则a 的值为________.-1或-0.8解析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0,f(-0.8)<0, f(-0.4)>0,∴方程的根在区间(-1,-0.6)与(-0.8,-0.4)内.∴a=-1或a=-0.8.7.(5分)用二分法求方程x2=2的正实根的近似解(精确度为0.001)时,如果选取初始区间是[1.4,1.5],则达到精确度要求至少需要计算________次.7解析:设至少需要计算n次,则n满足0.12n<0.001,即2n>100,因为n∈N*,且27=128,故要达到精确度要求至少需要计算7次.8.(12分)以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在零点x0,填表:区间中点m f(m)的符号区间长度解:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为区间中点m f(m)的符号区间长度(1,2) 1.5 + 1(1,1.5) 1.25 +0.5(1,1.25) 1.125 -0.25(1,125,1.25) 1.187 5 +0.125(1.125,1.187 5) 0.062 5因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.9.(13分)求方程x2-2x-1=0的一个大于零的近似解(精确度为0.1).解:设f(x)=x2-2x-1,先画出函数图象的草图,如图所示.因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上,方程x2-2x-1=0有一解,记为x1,取2和3的中间数2.5,因为f(2.5)=0.25>0,所以x1∈(2,2.5),再取2与2.5的中间数2.25,因为f(2.25)=-0.437 5<0,所以x1∈(2.25,2.5),如此继续下去,得f(2.375)<0,f(2.437 5)>0,则x1∈(2.375,2.4375),因为|2.437 5-2.375|=0.062 5<0.1.所以此方程大于零的近似解为2.437 5.。

2022-2023高一上期末复习重难点函数的应用(二)(解析版)

2022-2023高一上期末复习重难点函数的应用(二)(解析版)

2022-2023高一上期末复习重难点函数的应用(二)一、单选题1.关于用二分法求方程的近似解,下列说法正确的是( )A .用二分法求方程的近似解一定可以得到()0f x =在[],a b 内的所有根B .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的重根C .用二分法求方程的近似解有可能得出()0f x =在[],a b 内没有根D .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的精确解 【答案】D【分析】根据二分法求近似解的定义,可得答案.【解析】利用二分法求方程()0f x =在[],a b 内的近似解,即在区间[],a b 内肯定有根存在,而对于重根无法求解出来,且所得的近似解可能是[],a b 内的精确解. 故选:D.2.函数f (x )=x 2﹣4x +4的零点是( ) A .(0,2) B .(2,0)C .2D .4【答案】C【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点. 【解析】由f (x )=x 2﹣4x +4=0得,x =2, 所以函数f (x )=x 2﹣4x +4的零点是2, 故选:C .3.若函数()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,则()()11f f -⋅的值( ) A .大于零 B .小于零C .等于零D .不能确定【答案】D【分析】由题意,分类讨论()()1,1f f -不同情况下的正负,从而得出不同的结论.【解析】因为()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,若()()10,10-<>f f (或()()10,10-><f f ),此时()()110f f -⋅<;若()10f -=(或()10f =),此时()()110-⋅=f f ;若()()10,10->>f f (或()()10,10-<<f f ),此时()()110f f -⋅>,所以()()11f f -⋅的值不能确定. 故选:D4.函数()()ln 1f x x x=+-的零点所在的大致区间是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【分析】计算区间端点处函数值,根据零点存在定理确定.【解析】()()21ln 11ln 2201f =+-=-<,()()2ln 21ln 31022f =+-=->由()21201f x x x'=+>+,则()f x 在()0,∞+上单调递增. 所以函数()()2ln 1f x x x=+-的零点所在的大致区间是()1,2故选:B5.函数()22xf x x =+的零点所在的区间为( )A .0,1B .1,0C .1,2D .()2,3【答案】B【分析】根据函数解析式,判断()1f -、()0f 等函数值的符号,由零点存在性定理即可确定零点所在的区间.【解析】()3102f -=-<,()010f =>,且函数为增函数,由函数零点存在定理,()f x 的零点所在的区间是1,0.故选:B.6.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( )A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】作出f (x )图像,判断y =m 与y =f (x )图像有3个交点时m 的范围即可.【解析】∵()()g x f x m =-有3个零点, ∴()()0g x f x m =-=有三个实根,即直线y m =与()y f x =的图像有三个交点. 作出()y f x =图像,由图可知,实数m 的取值范围是(0,1). 故选:C.R (2,2)-内的零点个数至少为( )A .1B .2C .3D .4【答案】C【分析】根据奇函数()f x 的定义域为R 可得(0)0f =,由(2)(1)0f f -=≠和奇函数的性质可得(2)(1)0f f <、(2)(1)0f f --<,利用零点的存在性定理即可得出结果.【解析】奇函数()f x 的定义域为R ,其图象为一条连续不断的曲线, 得(0)0f =,由(2)(1)0f f -=≠得(2)(1)0f f -=≠, 所以(2)(1)0f f <,故函数在(12),之间至少存在一个零点,由奇函数的性质可知函数在(21)--,之间至少存在一个零点, 所以函数在(22)-,之间至少存在3个零点. 故选:C8.已知定义在R 上的函数()f x 的图像连续不断,若存在常数R λ∈,使得()()0f x f x λλ++=对于任意的实数x 恒成立,则称()f x 是“回旋函数”.若函数()f x 是“回旋函数”,且2λ=,则()f x 在[]0,2022上( ) A .至多有2022个零点 B .至多有1011个零点 C .至少有2022个零点 D .至少有1011个零点 【答案】D【分析】根据已知可得:()()2200f f +=,当()00f ≠时利用零点存在定理,可以判定区间()0,2内至少有一个零点,进而判定()2,4,()4,6,…,()2020,2022上均至少有一个零点,得到()f x 在[]0,2022上至少有1011个零点.可以构造“回旋函数”,使之恰好有1011个零点;当()00f =时,可以得到()()()0220220f f f ==⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点.从而排除BC,判定D 正确;举特例函数()0f x =,或者构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,可以排除A .【解析】因为()()220f x f x ++=对任意的实数x 恒成立,令0x =,得()()2200f f +=.若()00f ≠,则()2f 与()0f 异号,即()()200f f ⋅<,由零点存在定理得()f x 在()0,2上至少存在一个零点.由于()()220f k f k ++=,得到()20()f k k Z ≠∈,进而()()()220f k f k f k +=-<⎡⎤⎣⎦,所以()f x 在区间()2,4,()4,6,…,()2020,2022内均至少有一个零点,所以()f x 在[]0,2022上至少有1011个零点.构造函数()1,022(2),222()x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有1011个零点.若()00f =,则()()()()()024620220f f f f f ====⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点. 综上所述,()f x 在[]0,2022上至少有1011个零点,且可能有1011个零点,故C 错误,D 正确; 可能零点各数个数至少1012,大于1011,故B 错误;对于A,[解法一]取函数()0f x =,满足()()220f x f x ++=,但()f x 在[]0,2022上处处是零点,故A 错误.[解法二] 构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有2023个零点,故A 错误. 故选:D .9.对于函数()f x ,若()00f x x =,则称0x 为函数()f x 的“不动点”;若()()00f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数()()2R f x x a a =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是( )A .14⎛⎤-∞ ⎥⎝⎦,B .34∞⎛⎫-+ ⎪⎝⎭, C .3144⎛⎤- ⎥⎝⎦,D .3144⎡⎤-⎢⎥⎣⎦,【答案】D【分析】函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解,然后利用判别式即得. 【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解, 由()f x x =,得20x x a -+=有解,所以140a -≥,解得14a ≤. 由()()1221f x x f x x ⎧=⎪⎨=⎪⎩,,得212221x a x x a x ⎧+=⎨+=⎩,,两式相减,得()()121221x x x x x x -+=-,因为12x x ≠,所以211x x =--,消去2x ,得21110x x a +++=,因为方程21110x x a +++=无解或仅有两个相等的实根,所以()1410a -+≤,解得34a ≥-,故a 的取值范围是3144⎡⎤-⎢⎥⎣⎦,.故选:D.10.已知()313log f x x x =-时,当0a b c <<<时,满足()()()0f a f b f c ⋅⋅<,则关于以下两个结论正确的判断是( )①函数()y f x =只有一个零点;②函数()y f x =的零点必定在区间(a ,b )内. A .①②均对 B .①对,②错 C .①错,②对 D .①②均错 【答案】B【分析】由题可得函数在()0,∞+上为增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭,再结合零点存在定理及符号法则即可判断.【解析】因为13y x =和13log y x=-均为区间()0,∞+上的严格增函数,因此函数1313log y x x =-也是区间()0,∞+上的严格增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭.所以()y f x =只有一个零点,①对.因为()()()0f a f b f c ⋅⋅<, 所以()()(),,f a f b f c 的符号为两正一负或者全负,又因为0a b c <<<, 所以必有()0f a <,()0f b <,()0f c <或者()0f a <,()0f b >,()0f c >.当()0f a <,()0f b <,()0f c <时,零点在区间(),c +∞内;当()0f a <,()0f b >,()0f c >时,零点在区间(a ,b )内,所以②错. 故选:B .11.函数()21,25,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数()()()g x f x t t R =-∈有3个不同的零点a ,b ,c ,则222a b c ++的取值范围是( ) A .[)16,32 B .[)16,34C .(]18,32D .()18,34【答案】D【分析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,利用图象得出,,a b c 的性质、范围,从而可求得结论.【解析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,如图,则1221a b -=-,45c <<,222a b +=,2(16,32)c∈,所以1822234a b c <++<. 故选:D .【点睛】关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.12.已知函数()2log ,01,0x x f x x x ⎧>⎪=⎨+≤⎪⎩若()()()()1234f x f x f x f x ===(1234,,,x x x x 互不相等),则1234x x x x +++的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎡⎤-⎢⎥⎣⎦C .10,2⎡⎫⎪⎢⎣⎭D .10,2⎛⎤⎥⎝⎦【答案】D【分析】先画函数图象,再进行数形结合得到122x x +=-和2324log log x x =,结合对勾函数单调性解得441x x +的范围,即得结果. 【解析】作出函数()y f x =的图象,如图所示:设1234x x x x <<<,则()12212x x +=⨯-=-.因为2324log log x x =,所以2324log log x x -=, 所以()2324234log log log 0x x x x +==,所以341x x =,即341x x=.当2log 1x =时,解得12x =或2x =,所以412x <≤.设34441t x x x x =+=+, 因为函数1y x x =+在()1,+∞上单调递增,所以441111212x x +<+≤+,即34522x x <+≤, 所以1234102x x x x <+++≤. 故选:D.二、多选题13.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确到0.01时,所需二分区间的次数可以为( ) A .5 B .6C .7D .8【答案】CD【分析】由原来区间的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n,由10.012n ≤即可求解. 【解析】由题意,知区间[]0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确到0.01, ∴10.012n≤,解得7n ≥, 故选:CD .A .已知方程8x e x =-的解在()(),1k k k Z +∈内,则1k =B .函数()223f x x x =--的零点是()1,0-,()3,0C .函数3x y =,3log y x =的图像关于y x =对称D .用二分法求方程3380x x +-=在()1,2x ∈内的近似解的过程中得到()10f <,()1.50f >,()1.250f <,则方程的根落在区间()1.25,1.5上 【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数3x y =与函数3log y x =互为反函数判断选项C.【解析】对于选项A ,令()=8xf x e x +-,因为()f x 在R 上是增函数,且()()2170,260f e f e =-<=->,所以方程8x e x =-的解在()1,2,所以1k =,故A 正确;对于选项B ,令2230x x --=得=1x -或3x =,故函数()f x 的零点为1-和3,故B 错误; 对于选项C ,函数3x y =与函数3log y x =互为反函数,所以它们的图像关于y x =对称,故C 正确; 对于选项D ,由于()()()()1.2550,1 1.250f f f f ⋅<⋅>,所以由零点存在性定理可得方程的根落在区间()1.25,1.5上,故D 正确.故选:ACD15.(多选)已知函数f x 在区间[],a b 上的图象是一条连续不断的曲线,若0f a f b ⋅<,则在区间[],a b 上( )A .方程()0f x =没有实数根B .方程()0f x =至多有一个实数根C .若函数()f x 单调,则()0f x =必有唯一的实数根D .若函数()f x 不单调,则()0f x =至少有一个实数根【答案】CD【分析】根据零点存在定理可得答案.【解析】由函数零点存在定理,知函数()f x 在区间[],a b 上至少有一个零点, 所以若函数()f x 不单调,则()0f x =至少有一个实数根,若函数()f x 单调,则函数()f x 有唯一的零点,即()0f x =必有唯一的实数根, 故选:CD .16.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,令()()h x f x k =-,则下列说法正确的是( )A .函数()f x 的单调递增区间为()0,+∞B .当(]43k ,∈--时,()h x 有3个零点C .当2k =-时,()h x 的所有零点之和为-1D .当(),4k ∈-∞-时,()h x 有1个零点 【答案】BD【分析】画出()f x 的图象,然后逐一判断即可. 【解析】()f x 的图象如下:由图象可知,()f x 的增区间为()()1,0,0,-+∞,故A 错误当(]43k ,∈--时,()y f x =与y k =有3个交点,即()h x 有3个零点,故B 正确; 当2k =-时,由2232x x +-=-可得12x =-±,由2ln 2x -+=-可得1x = 所以()h x 的所有零点之和为1212--+=-,故C 错误;当(),4k ∈-∞-时,()y f x =与y k =有1个交点,即()h x 有1个零点,故D 正确; 故选:BD三、填空题17.函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【分析】由函数零点解出a 的值后再计算另一个零点,或利用韦达定理计算即可. 【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.R ③当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-;④()f x 恰有两个零点,请写出函数()f x 的一个解析式________【答案】2()1f x x =- (答案不唯一)【分析】由题意可得函数()f x 是偶函数,且在(0,)+∞上为增函数,函数图象与x 轴只有2个交点,由此可得函数解析式【解析】因为x ∀∈R ,()()f x f x =-,所以()f x 是偶函数,因为当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-, 所以()f x 在(0,)+∞上为增函数, 因为()f x 恰有两个零点,所以()f x 图象与x 轴只有2个交点,所以函数()f x 的一个解析式可以为2()1f x x =-, 故答案为:2()1f x x =- (答案不唯一) 19.已知()f x 是定义域为()(),00,∞-+∞的奇函数,函数()()g x f x x=+,()11f =-,当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立.现有下列四个结论:①()g x 在()0,∞+上单调递增;②()g x 的图象与x 轴有2个交点;③()()1326f f +-<;④不等式()0g x >的解集为()()1,00,1-.___________【答案】②③【分析】根据给定条件,探讨函数()g x 的性质,再逐一分析各个命题即可判断作答. 【解析】因当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立,则()()122111f x f x x x ->-恒成立, 即()()121211f x f x x x +>+恒成立,因此()()12g x g x >恒成立,则()g x 在()0,∞+上单调递减, 而()f x 是()(),00,∞-+∞上的奇函数,1y x=是()(),00,∞-+∞上的奇函数,则()g x 是()(),00,∞-+∞上的奇函数,因此函数()g x 是()(),00,∞-+∞上的奇函数,且在()0,∞+上单调递减,命题①不正确;因()11f =-,即()()11101g f =+=,()10g -=,显然()g x 在(),0∞-上单调递减,于是得()g x 的图象与x 轴有2个交点,命题②正确;显然()()32g g <,即()()113232f f +<+,则()()1326f f -<,因此()()1326f f +-<,命题③正确;因奇函数()g x 在(),0∞-,()0,∞+上单调递减,且()1(1)0g g -==,则当()0,1x ∈时,()0g x >,当(),1x ∈-∞-时,()0g x >,不等式()0g x >的解集为()(),10,1-∞-⋃,命题④不正确. 故答案为:②③20.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()11y f x =,()22y f x =,()33y f x =,则在区间[]13,x x 上()f x 可以用二次函数()()()()111212f x y k x x k x x x x =+-+--来近似代替,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-.若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π的近似值是_______. 【答案】2425##0.96【分析】根据题意先求出123,,y y y ,进而求出12,,k k k ,然后求得()f x ,最后求得2sin 5π的近似值. 【解析】函数()sin y f x x ==在10x =,22x π=,3x π=处的函数值分别为()100y f ==,212y f π⎛⎫== ⎪⎝⎭,()30y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--, 故()22224442f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭, 即2244sin x x x ππ≈-+,所以2224242sin 555πππππ⎛⎫≈-⨯+⨯= ⎪⎝⎭2425. 故答案为:2425.四、解答题21.已知函数()()()ln 3ln 3f x x x =++-.(1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点. 【答案】(1)证明见解析; (2)22-和22【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<,∴函数的定义域为{}33x x -<<,且定义域关于原点对称, 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=,∴291x -=,解得22x =±. ∴函数()f x 的零点为22-和22.22.已知函数3f x a =-(0a >且1a ≠),若函数y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集. 【答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可; (2)解不等式即可求出解集.【解析】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24), 所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0. 所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32, 所以x ≥1.则f (x )≥6的解集为[1,+∞).23.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格P (元)与时间t (天)的函数关系是()()20025,,452530,,t t t N P t t N ⎧+<<∈⎪=⎨≤≤∈⎪⎩日销售量Q (件)与时间t (天)的函数关系是()40030,Q t t t =-+<≤∈N . (1)设该商品的日销售额为y 元,请写出y 与t 的函数关系式(商品的日销售额=该商品每件的销售价格×日销售量);(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大.【答案】(1)()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)日销售额的最大值为900元,且11月10日销售额最大.【分析】(1)根据题目条件中给出的公式,直接计算,可得答案; (2)根据二次函数的性质,结合取值范围,可得答案. (1)由题意知()()()()()2040025,,45402530,,t t t t N y P Q t t t N ⎧+-<<∈⎪=⋅=⎨⨯-≤≤∈⎪⎩即()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)当025t <<,t ∈N 时,()222080010900y t t t =-++=--+, 所以当10t =时,max 900y =;当2530t ≤≤,t ∈N 时,180045y t =-,所以当25t =时,max 675y =. 因为900675>,所以日销售额的最大值为900元,且11月10日销售额最大.24.已知函数f x 是定义在R 上的偶函数,且当0x ≤时,f x x mx =+,函数f x 在轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有4个不相等的实数根,求实数a 的取值范围.【答案】(1)()222,02,0x x x f x x x x ⎧+≤=⎨->⎩ (2)()1,0-【分析】(1)利用()20f -=可求0x ≤时()f x 的解析式,当0x >时,利用奇偶性()()=f x f x -可求得0x >时的()f x 的解析式,由此可得结果;(2)作出()f x 图象,将问题转化为()f x 与y a =有4个交点,数形结合可得结果. (1)由图象知:()20f -=,即420m -=,解得:2m =,∴当0x ≤时,()22f x x x =+;当0x >时,0x -<,()()2222f x x x x x ∴-=--=-,()f x 为R 上的偶函数,∴当0x >时,()()22f x f x x x =-=-;综上所述:()222,02,0x x x f x x x x ⎧+≤=⎨->⎩;(2)()f x 为偶函数,f x 图象关于y 轴对称,可得()f x 图象如下图所示,()0f x a -=有4个不相等的实数根,等价于()f x 与y a =有4个不同的交点, 由图象可知:10a -<<,即实数a 的取值范围为()1,0-. 25.已知函数()()20f x ax bx c a =++>,且()12a f =-.(1)求证:函数()f x 有两个不同的零点;(2)设1x ,2x 是函数()f x 的两个不同的零点,求12x x -的取值范围.【答案】(1)证明见解析 (2))2,⎡+∞⎣【分析】(1)根据()12a f =-可得32ac b =--,再代入证明判别式大于0即可;(2)根据韦达定理化简可得21222b x x a ⎛⎫-=++ ⎪⎝⎭,进而求得范围即可.(1)∵()12a f abc =++=-,∴32ac b =--.∴()232a f x ax bx b =+--.对于方程()0f x =,()222223464222a b a b b a ab a b a ⎛⎫∆=---=++=++ ⎪⎝⎭,∴0∆>恒成立.又0a >,∴函数()f x 有两个不同的零点. (2)由1x ,2x 是函数()f x 的两个不同的零点,得1x ,2x 是方程()0f x =的两个根.∴12b x x a+=-,1232b x x a =--.∴()2221212123442222b b b x x x x x x a a a ⎛⎫⎛⎫⎛⎫-=+-=----=++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴12x x -的取值范围是)2,⎡+∞⎣.26.已知函数33f x a =+⋅为偶函数.(1)求实数a 的值;(2)设函数()()33x g x f x x -=+--的零点为0x ,求证:()0529210f x <<.【答案】(1)1a = (2)证明见解析【分析】(1)由()()f x f x -=可得答案;(2)求出()g x ,利用函数()g x 在R 上单调性得3030log 2log 2.51x <<<<. 再利用单调性定义判断出()f x 在()0,+∞上单调递增,利用单调性可得答案. (1)由()()f x f x -=,得3333x x x x a a --+⋅=+⋅,()223131-=⋅-x xa ,所以1a =,此时()33-=+x x f x ,x R ∈时,()()33--=+=x xf x f x ,()f x 为偶函数,所以1a =; (2) 由(1)得()33x x f x -=+,所以()333333xx x x g x x x --=++--=+-,因为函数()g x 在R 上单调递增,且()3log 2g 32log 230=+-<,()3log 2.5g 332.5log 2.53log 30.50=+->-=,所以3030log 2log 2.51x <<<<,又对任意120x x <<,()()1211221212123333333333x x x x x x x x x x f x f x ----=+--=--⋅()12121331033x x x x⎛⎫=--< ⎪⋅⎝⎭,所以()()12f x f x <,即()f x 在()0,+∞上单调递增, 所以()()()303log 2log 2.5f f x f <<, 即()0529210f x <<. 27.给出下面两个条件:①函数()的图象与直线只有一个交点;②函数()的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______.(1)求()f x 的解析式;(2)若对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,求实数m 的取值范围;(3)若函数()()()213232x xg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.【答案】(1)选①()22f x x x =-,选②()22f x x x =-(2)(],16-∞-(3)311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭【分析】(1)利用已知条件求出a 、b 的值,可得出()22f x x x c =-+.选①,由题意可得出()11f =-,可得出c 的值,即可得出函数()f x 的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数()f x 的解析式;(2)3log h x =,[]2,3h ∈-,由参变量分离法可得出()min 2m f h ≤-⎡⎤⎣⎦,结合二次函数的基本性质可求得实数m 的取值范围;(3)令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()22f x x x c =-+.选①,因为函数()f x 的图象与直线1y =-只有一个交点,所以()1121f c =-+=-,解得0c ,所以()f x 的解析式为()22f x x x =-.选②,设1x 、2x 是函数()f x 的两个零点,则122x x -=,且440c ∆=->,可得1c <, 由根与系数的关系可知122x x +=,12x x c =, 所以()21212124442x x x x x x c -=+-=-=,解得0c ,所以()f x 的解析式为()22f x x x =-.(2)解:由()32log 0f x m +≤,得()32log m f x ≤-,当1,279x ⎡⎤∈⎢⎥⎣⎦时,[]3log 2,3x ∈-,令3log h x =,则[]2,3h ∈-,所以对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,等价于()2m f h ≤-在[]2,3h ∈-上恒成立,所以()()min 22216m f h f ≤-=--=-⎡⎤⎣⎦,所以实数m 的取值范围为(],16-∞-. (3)解:因为函数()()()213232x xg x t f =--⨯-有且仅有一个零点,令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,因为()22f x x x =-,所以()221420t n tn ---=有且仅有一个正实根,当210t -=,即12t =时,方程可化为220n --=,解得1n =-,不符合题意; 当210t ->,即12t >时,函数()22142y t x tx =---的图象是开口向上的抛物线,且恒过点()0,2-,所以方程()221420t n tn ---=恒有一个正实根;当210t -<,即12t时,要使得()221420t n tn ---=有且仅有一个正实根, ()21682102021t t tt ⎧=+-=⎪⎨>⎪-⎩,解得312t +=-. 综上,实数t 的取值范围为311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.28.已知函数10f x ax bx a =++≠的图象关于直线x =1对称,且函数2y f x x =+为偶函数,函数()12x g x =-.(1)求函数()f x 的表达式;(2)求证:方程()()0f x g x +=在区间[]0,1上有唯一实数根; (3)若存在实数m ,使得()()f m g n =,求实数n 的取值范围. 【答案】(1)()()21f x x =- (2)证明见解析 (3)(],0-∞【分析】(1)根据二次函数的对称轴以及奇偶性即可求解,a b ,进而可求解析式, (2)根据函数的单调性以及零点存在性定理即可判断, (3)将条件转化为函数值域,即可求解. (1)∵()21f x ax bx =++的图象关于直线x =1对称,∴122bb a a-=⇒=-. 又()()2221y f x x ax b x =+=+++为偶函数,∴=2b -,=1a .∴()()22211f x x x x =-+=-. (2)设()()()()2112x h x f x g x x =+=-+-,∵()010h =>,()110h =-<,∴()()0?10h h <. 又()()21f x x =-,()12xg x =-在区间[]0,1上均单调递减,∴()h x 在区间[]0,1上单调递减,∴()h x 在区间[]0,1上存在唯一零点. ∴方程()()0f x g x +=在区间[]0,1上有唯一实数根. (3)由题可知()()210f x x =-≥,()121xg x =-<,若存在实数m ,使得()()f m g n =,则()[)0,1g n ∈, 即120n -≥,解得0n ≤.∴n 的取值范围是(],0-∞. 29.若函数()y f x =同时满足:①函数在整个定义域是严格增函数或严格减函数;②存在区间[],a b ,使得函数在区间[],a b 上的值域为22,a b ⎡⎤⎣⎦,则称函数()f x 是该定义域上的“闭函数”.(1)判断()2f x x =-是不是R 上的“闭函数”?若是,求出区间[],a b ;若不是,说明理由; (2)若()()211f x x t x =-≥是“闭函数”,求实数t 的取值范围;(3)若()()2222f x x kx k =-+≤在1,33⎡⎤⎢⎥⎣⎦上的最小值()g k 是“闭函数”,求a 、b 满足的条件.【答案】(1)不是,理由见解析;(2)3,14⎛⎤ ⎥⎝⎦;(3)222a b +=且11733a b ≤<≤. 【分析】(1)利用“闭函数”的定义判断函数()2f x x =-是否满足①②,由此可得出结论;(2)分析可知函数()21h m m m t =-+-在[)0,m ∈+∞有两个零点,利用二次函数的零点分布可得出关于实数t 的不等式组,由此可解得实数t 的取值范围;(3)利用二次函数的基本性质求得()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩,然后分13a b <≤、123a b <≤≤、123a b ≤<≤三种情况讨论,分析函数()g k 的单调性,结合“闭函数”的定义可得出关于a 、b 的等式,由此可得出a 、b 满足的条件.【解析】(1)函数()2f x x =-为R 上的增函数,若函数()2f x x =-为“闭函数”,则存在a 、()b a b <,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()2222f a a a f b b b⎧=-=⎪⎨=-=⎪⎩,则关于x 的方程220x x -+=至少有两个不等的实根, 因为180∆=-<,故方程220x x -+=无实根,因此,函数()f x 不是“闭函数”; (2)因为函数()21f x x t =-+为[)1,+∞上的增函数, 若函数()21f x x t =-+为[)1,+∞上的“闭函数”,则存在a 、[)()1,b a b ∈+∞<,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()222211f a a t a f b b t b⎧=-+=⎪⎨=-+=⎪⎩,所以,关于x 的方程221x t x -+=在[)1,+∞上有两个不等的实根,令210m x =-≥,设()21h m m m t =-+-,则函数()h m 在[)0,m ∈+∞有两个零点,所以,()()1410010t h t ⎧∆=-->⎪⎨=-≥⎪⎩,解得314t <≤,因此,实数t 的取值范围是3,14⎛⎤⎥⎝⎦;(3)因为()()222f x x k k =-+-.当13k <时,函数()f x 在1,33⎡⎤⎢⎥⎣⎦上单调递增,则()1192393k g k f ⎛⎫==- ⎪⎝⎭;当123k ≤≤时,()()22g k f k k ==-.综上所述,()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩. 所以,函数()g k 在1,3⎛⎫-∞ ⎪⎝⎭上为减函数,在1,23⎡⎤⎢⎥⎣⎦上也为减函数.①当13a b <≤时,则()()221929319293a g a b b g b a⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两式作差得()()()23a b a b a b -=-+,因为a b <,故23a b +=,因为13a b <<,则23a b +<,矛盾;②当123a b <≤≤时,则有222192932ab b a⎧-=⎪⎨⎪-=⎩,消去2b 可得29610a a -+=,解得13a =,不合乎题意;③当123a b ≤<≤时,则()()222222g a a b g b b a⎧=-=⎪⎨=-=⎪⎩,可得222a b +=.因此,a 、b 满足的条件为222a b +=且11733a b ≤<≤. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。

用二分法求方程的近似解

用二分法求方程的近似解

用二分法求方程的近似解在数学的世界里,求解方程的根是一个重要且常见的问题。

当方程无法通过常规的代数方法直接求出精确解时,我们就需要借助一些数值方法来逼近方程的解,其中二分法就是一种简单而有效的方法。

二分法,顾名思义,就是通过不断地将区间一分为二,逐步缩小解所在的范围,从而求得方程近似解的方法。

为了更好地理解二分法,让我们先来看一个具体的例子。

假设我们要求解方程$f(x) = x^2 2 = 0$在区间$1, 2$内的近似解。

首先,我们计算区间两端点的函数值$f(1) =-1$,$f(2) = 2$。

因为$f(1) < 0$且$f(2) > 0$,所以根据零点存在定理,方程在区间$1, 2$内至少有一个根。

接下来,我们取区间的中点$x_0 =\frac{1 + 2}{2} = 15$,计算$f(15) = 15^2 2 = 025$。

由于$f(15) > 0$,所以根在区间$1, 15$内。

然后,我们再取新区间$1, 15$的中点$x_1 =\frac{1 + 15}{2} =125$,计算$f(125) = 125^2 2 =-04375$。

因为$f(125) < 0$,所以根在区间$125, 15$内。

就这样不断重复上述过程,每次都将区间缩小一半,直到区间的长度足够小,此时区间的中点就可以作为方程的近似解。

那么,为什么二分法能够有效地逼近方程的解呢?这是因为它基于了零点存在定理,即如果函数$f(x)$在区间$a, b$上连续,且$f(a)f(b)< 0$,那么在区间$(a, b)$内至少存在一个零点。

通过不断缩小包含零点的区间,我们就能够越来越接近零点的真实位置。

在实际应用中,二分法具有许多优点。

首先,它的原理简单易懂,容易实现。

只需要进行简单的计算和比较,就能够逐步逼近方程的解。

其次,二分法具有一定的稳定性。

即使函数在某些点上的性质不太好,比如不连续或者不可导,二分法仍然能够发挥作用。

然而,二分法也并非完美无缺。

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。

它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。

二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。

在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。

这时候,二分法就成为了一种简单而有效的求解方法。

通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。

在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。

通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。

1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。

特别是对于非线性方程,往往无法用代数方法得到精确解析解。

我们需要借助数值计算方法来求得近似解。

二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。

在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。

掌握二分法求方程的近似解有着重要的意义。

本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。

1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。

通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。

通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。

本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。

通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。

用二分法求方程的近似解课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

用二分法求方程的近似解课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册
7 5
- + -6<0,因此f(x)的零点在区间 ,
64 8 4
4 2

7 5
,
4 2
1,
5
2
上.
上,
上.
【方法总结】通过二分法不断缩小根所在区间长度,直到符合某个选项中的区间.用二分法求方程近似解,若没有给出初
始区间,首先要选初始区间,这个区间既要包含所求的根,又要使其长度尽可能小.
高中数学
必修第一册
A. 2.52
B. 2.56
C. 2.66
D. 2.75
5. [多选题]下列函数图象均与x轴有交点,其中不能用二分法求图象所对应函数的零点的是(AC)
A
B
C
D
高中数学
必修第一册
配套江苏版教材
6. 函数f(x)=x2+ax+b有零点,但不能用二分法求出,则a,b的关系是 a2=4b .
7. 某同学在借助计算器求“方程lg x=2-x的近似解(精确度0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,
第8章
8.1
二分法与求方程近似解
8.1.2
用二分法求方程的近似解
高中数学
必修第一册
配套江苏版教材
学习目标
1. 通过具体实例,理解二分法的概念和适用条件,了解二分法是求方程近似解的常用方法,并从中
体会函数与方程之间的联系.
2. 借助于计算器或信息技术手段用二分法求方程的近似解.
核心素养:数学运算、逻辑推理.
∵ f(0)=c>0,∴ a>0.
1
取区间[0,1]的中点2,则
1
2
3
3
1

3.1.2用二分法求方程的近似解课件人教新课标

3.1.2用二分法求方程的近似解课件人教新课标

方法点评 用二分法求方程 f(x)=0(或g(x)=h(x))近似解的基本 步骤: 1.寻找解所在区间 (1)图象法 先画出y = f(x)图象,视察图象与x轴的交点横坐标所 处的范围;
或画出y=g(x)和y=h(x)的图象,视察两图象的交点横坐 标的范围. (2)函数法 把方程均转换为 f(x)=0的情势,再利用函数y=f(x) 的有关性质(如单调性)来判断解所在的区间.
2.y=f(x)满足f(a)f(b)<0,则在(a,b)内必有零点.
思考:对下列图象中的函数,能否用二分法求函数零
点的近似值?为什么? y y
o
x
o x
不行,因为不满足 f(a)*f(b)<0
1.二分法的原理 2.二分法的应用:求方程近似解
世间没有一种具有真正价值的东西,可以 不经过艰苦辛勤的劳动而得到。
列出下表:
根所在区间
区间端点函数值符号 中点值 中点函数值符号
(2,3)
f(2)<0,f(3)>0
2.5
f(2.5)<0
(2.5,3) (2.5,2.75)
f(2.5)<0,f(3)>0 2.75 f(2.5)<0,f(2.75)>0 2.625
f(2.75)>0 f(2.625)>0
(2.5,2.625)
x 0 1 23 4 5 6 7
8
f(x) -6 -2 3 10 21 40 75 142 273
因为f(1)·f(2)<0所以 f(x)= 2x+3x-7在(1,2)内
有零点x0,取(1,2)的中点x1=1.5,f(1.5)≈ 0.33,
因为f(1)·f(1.5)<0 所以x0 ∈(1,1.5) 取(1,1.5)的中点x2=1.25 ,f(1.25)= -0.87,因

3.1.2用二分法求方程的近似解(s必修一 数学 优秀课件)

3.1.2用二分法求方程的近似解(s必修一 数学 优秀课件)

f (2.75) 0.512 0
f (2.5) f (2.75) 0 所以零点在区间(2.5,2.75)内.
结论:由于 (2,3) (2.5,3) (2.5, 2.75) 所以零点所在的范围确实越来越小
用二分法求方程的近似解:
口 诀
定区间,找中点, 中值计算两边看. 同号去,异号算, 零点落在异号间. 周而复始怎么办? 精确度上来判断.
x 2 bx c, x 0 5.设函数 f ( x) ,若f (– 4) = f (0), x0 2,
f (– 2) = – 2,则关于x的方程f (x) = x的解的个数为( (B ) 2 (C )3 (D )4

(A )1
6.若直线y = 2a与函数y = | a x– 1 |(a > 0且a ≠ 1)的
函数f(x)的一个零点在(-1,0)内,另一个零点在(2,3)内
y
如何进一步有效缩小根所在的区间? 第一步:得到初始区间(2,3) 第二步:取2与3的平均数2.5 第三步:再取2与2.5的平均数2.25 如此继续取下去: 若要求结精确度为0.1,则何时停 止操作?
y=x2-2x-1
-1 0 1 2 3 2.25 2
15
10
y
-
(2,3)
+
2.5 2.75 2.625
-0.084
0.512
-20
1
5
(2.5,3) +
0.5
-10 0.25
-(2.5,2.75)+
0.215
o
5
10
x
-(2.5,2.625)+ 2.5625
(2.5,2.5625)

用二分法求方程的近似解(很实用)通用课件

用二分法求方程的近似解(很实用)通用课件

使用数学软件实现二分法
总结词
数学软件如Matlab、Mathematica等提 供了强大的符号计算和数值计算功能, 适合用于实现二分法。
VS
详细描述
这些数学软件通常提供了内置的二分法函 数,可以直接调用。用户只需要输入方程 的形式和初始区间,软件会自动调用二分 法函数来求解近似解。
使用在线工具实现二分法
二分法的原理
总结词
二分法基于函数的连续性和零点的存在性定理,通过不断缩小搜索区间来逼近零点。
详细描述
二分法利用了函数在区间端点上的函数值异号的性质,每次迭代都将搜索区间缩小一半,从而以较快 的速度逼近零点。这个过程一直持续到找到满足精度要求的零点或者搜索区间长度小于某个阈值。
二分法的适用范围
总结词
二分法适用于寻找连续函数在某个区间内的零点。
详细描述
二分法要求函数在零点所在的区间内连续,且在区间的端点上的函数值异号。对于一些不满足这些条件的函数, 如分段函数或有多个零点的函数,二分法可能无法找到正确的零点。因此,在使用二分法之前,需要先对函数进 行适当的分析和验证。
02
二分法的基本步骤
确定初始区间
首先需要确定方程有解的初始区间 ,可以通过代入法或观察法得到。
计算中点
在初始区间内取中点,并计算中点 的函数值。
判断中点性质
根据中点的函数值与区间端点的函 数值进行比较,确定下一步的搜索 区间。
迭代搜索
不断重复上述步骤,每次将搜索区 间缩小一半,直到达到所需的精度 要求。
求函数的零点
01
确定初始区间
同样需要确定函数有零点的初 始区间。
02
计算中点
在初始区间内取中点,并计算 中点的函数值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中点 c ,计算f(c),如果f(c)=0,那么 c 就是函数的零点;如果不为0,通过比较
中点与两个端点函数值的正负情况,即可 从而将范围缩小了一半,以此方法重复进
行„„
判断零点是在(a,c)内,还是在(c,b)内,
问题
解方程 : • ln x 2 x 6 0
找函数• ( x ) ln x 2 x 6的零点 f
借助计算器用二分法求 x 3x 1 0
3
的近似解(精确度0.1).
方程的近似解为
x 0.3125或0.375.
作业
1.课外作业: 课本P92 习题3.1 3,4,5 A组
2.课外搜索:请通过网络、杂志等途径 寻找“方程求解”的数学历史.
求函数f x ln x 2x 6在区间 2, 零点的近似值.(精确度为0.01) 3
区间 中点的值 中点函数 近似值 -0.084 0.512 0.215 0.066 -0.009 0.029 0.010 0.001 区间长度
(2,3) (2.5,3) (2.5,2.75) (2.5,2.625) (2.5,2.5625) (2.53125,2.5625) (2.53125,2.546875) (2.53125,2.5390625)
问题5: 你能归纳出“给定精确度ε,用二 分法求函数零点近似值的步骤”吗?
1.确定区间 a, b ,验证 f a f b 0 ,给定精确度 2.求区间 a, b 的中点 c ; 3.计算 f c ; (1)若 f c 0 ,则 c 就是函数的零点; (2)若 f a f c 0 ,则令 b
x 2.53125
y
二分法概念
a
0 b x

y f x ,通过不断地把函数 f x 的零点所在的区
对于在区间 a, b 上连续不断且 f a f b 0 的函
间一分为二,使区间的两个端点逐步逼近零点,进而得到 零点近似值的方法叫做二分法.
二分法的实质:就是将函数零点所在的 区间不断地一分为二,使新得到的区间 不断变小,两个端点逐步逼近零点.
A.(1,0)
B.(1,2)
C .(0,1)
D.(2,3)
问题:你会解下列方程吗?
2x-6=0; 2x2-3x+1=0; lnx+2x-6=0 你会求方程lnx+2x-6=0的近似解吗?
思 路

求方程根的问题 相应函数的零点问题

求方程 ln x 2 x 6 0的近似解的问题 可以转化为函数 f x ln x 2 x 6 在区 间(2,3)内零点的近似值。
给定精确度 ,用二分法求函数 f x 零点近似 值的步骤如下:

;
(3)若 f c f b 0 ,则令 a c (此时零点 x0 4.判断是否达到精确度 近似值 a(或
c(此时零点 x0 a, c).
:即若 a b ,则得到零点
c, b).
(2,3)
逐渐缩小函数f ( x ) ln x 2 x 6的零点所在范围
在区间(2,3)内零点的近似值.
区间 (2,3) 中点 的值 2.5 中点函数 近似值 -0.084 0.512 0.215 0.066 -0.009 区间长度 1 0.5 0.25 0.125 0.0625
(2.5,3) 2.75 (2.5,2.75) 2.625 (2.5,2.625) 2.5625 (2.5,2.5625) 2.53125 (?,?) …
b);否则重复2~4.
尝试:借助计算器或计算机用二分法求方程 2x+3x=7的近似解(精确度0.1).
先确定零点的范围;再用二分法去求方程的近似解
列表
x
f x 2 x 3x 7
0
1
2
3
4
5
6
7
8
-6
-2
3
10
21
40
75
142
273
绘制函数图像
解:由图像和函数值表可知,f 1 0, f 2 0, 则f 1 f 2 0, 所以f x 在 1, 2 内有一个零点x0 .
小结
方程
用二分法求 方程的近似解
函数
1.寻找解所在的区间 2.不断二分解所在的区间 3.根据精确度得出近似解 逼近思想 二分法 数形结合 转化思想
通过本节课的学习,你学会了 哪些知识? 基本知识:1. 二分法的定义; 2.用 二分法求解方程的近似解的步骤. 二分法求方程近似解的口诀: 定区间,找中点, 同号去,异号算, 周而复始怎么办? 中值计算两边看; 零点落在异号间; 精确度上来判断.
如何找到零点近似值 ??
在已知存在零点的区间确定函数的 零点的近似值,实际上就是如何缩小零 点所在的范围,或是如何得到一个更小
的区间,使得零点还在里面,从而得到
零点的近似值。 思考:如何缩小零点所在的区间?
游戏规则: 给出一件商品,请你猜 出它的准确价格,我们给的 提示只有“高了”和“低 了”。给出的商品价格在100 ~ 200之间的整数,如果你能 在规定的次数之内猜中 价格,这件商品就是你的了。
夯实基础
成就未来
3.1.2 用二分法 求方程的近似解
祁东二中 谭雪峰
上节回忆
1、函数的零点的定义:
使f(x)=0的实数x叫做函数y=f(x)的零点
结论:
方程f ( x) 0有实数根 函数y f ( x)的图象与x轴有交点 函数y f ( x)有零点
上节回忆
2、如何判断函数y=f(x)在区间[a,b]上是否 有零点? (1)函数y=f(x)在区间[a,b]上的图象是连 续不断的一条曲线 (2) f(a)· f(b)<0
思考: 通过这种方法,是否可以得到任 意精确度的近似值? (如精确度 为0.01)
精确度为0.01,即零点值与近 似值的差的绝对值要小于或等于 0.01
结论 1.通过这样的方法,我们可以得到任意精确度的零点近似值. 2.给定一个精确度,即要求误差不超过某个数如0.01时,可 以通过有限次不断地重复上述缩小零点所在区间的方法步骤, 而使最终所得的零点所在的小区间内的任意一点,与零点的误 差都不超过给定的精确度,即都可以作为零点的近似值. 3.本题中,如在精确度为0.01的要求下,我们可以将区间 (2.53125,2.5390625)内的任意点及端点作为此函数在区间(2, 3)内的零点近似值. 4.若再将近似值保留两为小数,那么2.53,2.54都可以作 为在精确度为0.01的要求下的函数在(2,3)内的零点的近似 值.一般地,为便于计算机操作,常取区间端点作为零点的 近似值,即2.53125
2.5 2.75 2.625 2.5625 2.53125 2.546875 2.5390625 2.53515625
1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125
设函数零点为 如图
=2.53125, b =2.5390625,则 a x b. x0 , a 0 . . .
取 1, 2 区间的中点x1 1.5, f 1.5 0.33,因为
f 1 f 1.5 0所以x0 1,1.5 .
取(1,1.5)的中点x2=1.25 ,f(1.25)= -0.87, 因为f(1.25)· f(1.5)<0,所以x0∈(1.25,1.5) 同理可得, x0∈(1.375,1.5),x0∈(1.375, 1.4375),由于 |1.375-1.4375|=0.0625< 0.1 所以,原方程的近似解可取为1.4375
x0 a b 由于 a b 2.53125 2.5390625 0.0078125 0.01,
所以
x0 a b a 0.01, x0 b a b 0.01,
所以我们可将此区间内的任意一点作为函数 零点的近似值,特别地,可以将区间端点作为零 点的近似值. 所以方程的近似解为
思考:区间[a,b]上零点是否是唯一的?
思考二: 如果函数y=f(x)在区间[a,b]上的图 象是连续不断的一条曲线,那么当
f(a)· f(b)>0时,函数y=f(x)在区间
(a,b)内一定没有零点吗?
上节回忆
练习:
函数 f ( x) x x 1 在下列哪个区间内 有零点? (C )
3
游戏: “看商品猜价格”,请同学 们猜一下下面这部科学计算器(120~ 200元间)的价格。要求:误差小于1元 探究:你猜这件商品的价格,是如何 想的?在误差范围内如何做才能以最 快的速度猜中?
(对半猜)
这能提供求确定
函数零点的思路吗
思路:用区间两个端点的中点, 将区间一分为二„„
对于一个已知零点所在区间[a,b],取
相关文档
最新文档