2008-2014历年考研数学一真题及答案详解资料
考研数一真题及解析

考研数一真题及解析考研数学一是考研数学科目的一部分,是考研数学中的基础部分,也是很多考生备战考研的重点之一。
熟悉考研数一的真题及其解析是提高考生数学水平的重要途径。
本文将重点介绍考研数一的真题及其解析,帮助考生更好地备战考研。
一、初试真题1. 2008 年数学一真题考研数一的真题分为选择题和非选择题两部分。
选择题中包括单项选择题和多项选择题,非选择题则是需要考生展开计算、推导或证明的题目。
2. 2012 年数学一真题考研数一的真题内容主要涵盖数学分析、高等代数、概率论与数理统计、数论等多个数学学科。
考生需要具备扎实的数学基础知识和解题能力,才能顺利应对考试。
3. 2016 年数学一真题数学一考试要求考生对数学基本概念、基本原理、基本方法、基本技能进行灵活运用。
在备考期间,考生需要深入学习和掌握各种数学知识,并通过真题进行练习和巩固。
二、解析方法1. 真题解析的重要性通过对真题进行仔细分析和解析,可以帮助考生理解并掌握每个知识点的考点和解题思路。
同时,真题解析还能帮助考生总结并发现自己的薄弱环节,及时进行弥补。
2. 解题技巧解析真题时,考生应注重提高自己的解题技巧,如适当使用数学公式和定理、灵活运用数学方法、注意题目中的关键信息等。
通过不断的解析真题,考生可以提高自己的解题速度和准确性。
3. 知识的系统化整理在解析真题时,考生应注意将所学的知识进行系统化整理。
这样有助于考生在解答问题时能够将各个知识要点联系起来,形成一个完整的解题思路。
三、备考建议1. 合理安排学习时间备考考研数一需要长时间的系统性学习和练习。
考生应根据自己的实际情况合理安排学习时间,保持良好的学习节奏。
2. 制定学习计划备考过程中,考生应根据自己的时间安排和能力状况制定详细的学习计划。
合理安排每天的学习内容和任务,确保能够充分复习和巩固所学知识。
3. 做好笔记和总结备考过程中,考生应做好笔记和总结。
将重要知识点和解题思路整理成笔记,有助于备考过程中的回顾和复习。
考研数一08真题

考研数一08真题2008年考研数学一真题中,试题主要分为两个部分:选择题和填空题。
选择题部分包括20道选择题,填空题部分包括10道填空题。
本文将以试题题号为标记逐一解析各道题目。
选择题部分解析:题目1:设A是n阶方阵,且满足A^2 = A,则下列结论正确的是()A. A = 0B. A = E(单位矩阵)C. A是对称方阵D. A的秩为1这道题目考察了对方阵幂运算的理解。
根据A^2 = A,我们可以发现A作为方阵必然有两种可能:A是零矩阵或者A是单位矩阵。
因此,选项B“A = E”为正确答案。
题目2:设f(x) = x^3 - 3x,则f'(x)的零点的个数是()A. 0B. 1C. 2D. 3这道题目考察了对函数的导数与零点的关系的理解。
f'(x)是f(x)的导函数,即f'(x) = 3x^2 - 3。
根据函数导数存在零点的性质,当f'(x) = 0时,f(x)存在极值点或转折点。
解方程3x^2 - 3 = 0,得到x = ±1。
因此,f'(x)的零点有2个,选项C“2”为正确答案。
填空题部分解析:题目1:若a是方程x^4 - x^3 - x + 1 = 0的一个实根,则a^3 - a^2 -a + 1的值等于________。
这道题目考察了对方程实根的运算。
首先,我们可以将方程x^4 -x^3 - x + 1 = 0进行变形,得到x(x^3 - x^2 - 1) + 1 = 0。
因为a是方程的一个实根,所以该式等于0,即a(a^3 - a^2 - 1) = -1。
因此,a^3 - a^2 -a + 1 = (-1)/a,即填空的值为-1/a。
题目2:设f(x) = (cosx + sinx)^2,g(x) = (cosx - sinx)^2,则f(x) -g(x)的最小值是________。
这道题目考察了对函数最小值的求解。
我们先展开f(x)与g(x):f(x) = cos^2 x + 2sinx cosx + sin^2 xg(x) = cos^2 x - 2sinx cosx + sin^2 x再计算f(x) - g(x):f(x) - g(x) = 4sinx cosx则f(x) - g(x)的值不为负数,且取最小值0,因此填空的答案为0。
2008考研数一真题答案及详细解析

nx
2
=1-- 六3 -.I,-
41记10=70 1
(—1y+1 n2
cos
nx,
0� 正女.
令x = O,有
2
穴
,=(-l)n+l
f(O) = l--3 +4n�= l n 2
,
又f(O)=l, 所以 (20)证 (I) r(A)=r(a矿+PJJT)
I:=(-l)n -1
ne=l
n"
2
=— 1穴2"
a2 2a l
矿 2a,,,
以下用数学归纳法证明D n =Cn+Da气
当n = l时 , D 1 = 2a, 结论成立.
2a 当n = 2时 , 几=
a
1 = 3a2 ,结论成立.
2a
假设结论对小于n的情况成立.将D n 按第1行展开 , 得 矿1
0 2a 1
D ,, = 2aD n_l -
矿 2a 1
尸 2-2z 2= 0,
2x+3z = 5,
解得
(� — x= — 5,
1
x= l,
5, 或{y�],
之 = 5,
之 = 1.
根据几何意义,曲线 C 上存在距离 xOy 面最远的点和最近的点,故所求点依次为( — 5' — 5,5)
和(1,1,1).
08) CI) 证
对任意的x, 由于J是连续函数,所以
所以所求微分方程为
y/f/ -y"+4y'-4y=O.
(4) B
解 若{xn }单调,则由f(x)在(— =, 十=)内单调有界知,订(xn )}单调有界,因此
2008-2014历年考研数学一真题及答案详解资料

个区域 Dk k 1,2,3,4 , I k
y cos xdxdy , 则 max I k
1k 4
Dk
(A) I1 (C) I 3
(B)
I2
(D)
I4
(3) 设函数 y f x 在区间 1,3 上的图形为 f (x)
x
则函数 F x f t dt 的图形为 0
O
-2
0 12
3
x
-1
f (x)
1
-2
0 123
二、填空题 (9-14 小题 , 每小题 4 分, 共 24 分, 请将答案写在答题纸指定位置上 .)
(9) 微分方程 xy y 0 满足条件 y 1 1 的解是 y
.
(10) 曲线 sin xy ln y x x 在点 0,1 处的切线方程为
.
(11) 已知幂级数 an x 2 n 在 x 0 处收敛 , 在 x 4 处发散 , 则幂级数 an x 3 n 的
BO
6
(A) O 3B*
2A* O
(C) O 3A*
2B* O
(B) O 2B*
3 A* O
(D) O 2 A*
3B* O
(7) 设随机变量 X 的分布函数为 F x 0.3 x 0.7 x 1 , 其中 x 为标准正态分
2
布函数 , 则 EX
(A)0
(B)0.3
(C)0.7
(D)1
(8) 设随机变量 X 与 Y 相互独立 , 且 X 服从标准正态分布 N 0,1 , Y 的概率分布为
x y 3z 5
(16)( 本题满分 10 分) 计算曲线积分 sin 2xdx 2 x2 1 ydy , 其中 L 是曲线 y sin x 上从点 0,0 到点 ,0 的
2008考研数学(一)试题及详细答案解析

1
ydV x2dxdy .
x2 y2 4
中国教育在线考研频道
中国教育在线() 中国最权威考研门户
0 1
(x2 y2 )dxdy 1
2
d
2 r2 rdr
16 4 .
xydydz xdzdx x2dxdy
.
【答案】 4 .
【详解】作辅助面 1 : z 0 取下侧.则由高斯公式,有
xydydz xdzdx x2dxdy
xydydz xdzdx x2dxdy xydydz xdzdx x2dxdy
x o(sin2 3x2
x)
)
中国教育在线考研频道
中国教育在线() 中国最权威考研门户
1. 6
【详解
2】
lim
x0
sin
x
sin(sin x4
x)
sin
x
sin x sin(sin x)sin x
lim x0
sin4 x
(8)设随机变量 X N(0,1) , Y N(1, 4) , 且相关系数 XY 1,则【 】
(A) P{Y 2X 1} 1
(B) P{Y 2X 1} 1
(C) P{Y 2X 1} 1
(D) P{Y 2X 1} 1
【答案】应选 (D).
【详解】用排除法.设Y aX b .由 XY 1 ,知 X ,Y 正相关,得 a 0 .排除(A)
定理,知 f (x) 至少有一个零点.
又
f (x) 2ln(2 x2 )
4x2 2 x2
2014年考研数一真题及答案解析(完整版)

2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)B(2)D(3)D(4)B(5)B(6)A(7)(B)(8)(D)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)012=---z y x(10)11=-)(f(11)12+=x xy ln (12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x )e (x lim xtdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x xx x x x x 则令(16)【答案】20202232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y yx y )(y 20-==或舍。
x y 2-=时,21106606248062480633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y04914190141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。
2014年全国考研数学一真题及详细解答.doc

2014硕士研究生入学考试 数学一 一、选择题1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2 (C )x x y 1sin += (D )xx y 12sin +=2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),(( )(A )⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),( (B )⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (121020dr r r f d dr r r f d(D )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min )sin cos (,,则=+x b x a sin cos 11( )(A )x sin 2 (B )x cos 2 (C )x sin π2 (D )x cos π25.行列式dc dc b a b a0000000等于( ) (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +-6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的( )(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D )非充分非必要条件7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( ) (A )0.1 (B )0.2 (C )0.3 (D )0.48.设连续型随机变量21X X ,相互独立,且方差均存在,21X X ,的概率密度分别为)(),(x f x f 21,随机变量1Y 的概率密度为))()(()(y f y f y f Y 21211+=,随机变量)(21221X X Y +=,则( )(A )2121DY DY EY EY >>, (B )2121DY DY EY EY ==, (C )2121DY DY EY EY <=, (D )2121DY DY EY EY >=,二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .13.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 14.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其它,,),(02322θθθθx xx f ,其中θ是未知参数,n X X X ,,, 21是来自总体的简单样本,若∑=ni i X C 12是2θ的无偏估计,则常数C = .三、解答题15.(本题满分10分) 求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)cos (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑(1) 证明0=∞→n n a lim ;(2) 证明级数∑∞=1n nnb a 收敛.19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n n b 收敛.20.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵.(3) 求方程组0=AX 的一个基础解系; (4) 求满足E AB =的所有矩阵. 21.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100相似.22.(本题满分11分)设随机变量X 的分布为2121====)()(X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布210,),,(=i i U .(5) 求Y 的分布函数; (6) 求期望).(Y E23.(本题满分11分)设总体X 的分布函数为⎪⎩⎪⎨⎧<≥-=-00012x x e x F x ,,),(θθ,其中θ为未知的大于零的参数,n X X X ,,, 21是来自总体的简单随机样本,(1)求)(),(2X E X E ;(2)求θ的极大似然估计量.(3)是否存在常数a ,使得对任意的0>ε,都有0=⎭⎬⎫⎩⎨⎧≥-∞→εθa P n n ^lim .2013年考研数学一解析1.【详解】对于xx y 1sin +=,可知1=∞→x yx lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )2.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的.显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C ) 【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.【详解】积分区域如图所示。
2014考研数学(一)真题

2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。
(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。
,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。
(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。
(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。
(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数20()ln(2)x f x t dt =+⎰则()f x '的零点个数(A)0 (B)1(C)2 (D)3(2)函数(,)arctan x f x y y=在点(0,1)处的梯度等于(A)i (B)-i (C)j (D)-j(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是(A)440y y y y ''''''+--= (B)440y y y y ''''''+++= (C)440y y y y ''''''--+= (D)440y y y y ''''''-+-= (4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是 (A)若{}n x 收敛,则{}()n f x 收敛 (B)若{}n x 单调,则{}()n f x 收敛 (C)若{}()n f x 收敛,则{}n x 收敛 (D)若{}()n f x 单调,则{}n x 收敛 (5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则(A)-E A 不可逆,+E A 不可逆 (B)-E A 不可逆,+E A 可逆(C)-E A 可逆,+E A 可逆 (D)-E A 可逆,+E A 不可逆(6)设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 在正交变换下的标准方程的图形如图,则A 的正特征值个数为(A)0 (B)1 (C)2(D)3(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为 (A)()2F x (B) ()()F x F y (C) ()211F x --⎡⎤⎣⎦ (D) ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦ (8)设随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则 (A){}211P Y X =--= (B){}211P Y X =-= (C){}211P Y X =-+= (D){}211P Y X =+=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (9)微分方程0xy y '+=满足条件()11y =的解是y = . (10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 .(11)已知幂级数()02nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数()03nn n a x ∞=-∑的收敛域为 .(12)设曲面∑是224z x y =--的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ .(13)设A 为2阶矩阵,12,αα为线性无关的2维列向量,12120,2==+A αA ααα,则A 的非零特征值为 .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分10分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦.(16)(本题满分10分)计算曲线积分()2sin 221L xdx x ydy +-⎰,其中L 是曲线sin y x =上从点()0,0到点(),0π的一段.(17)(本题满分10分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求曲线C 距离XOY 面最远的点和最近的点.(18)(本题满分10分) 设()f x 是连续函数,(1)利用定义证明函数()()0xF x f t dt =⎰可导,且()()F x f x '=.(2)当()f x 是以2为周期的周期函数时,证明函数()22()()xG x f t dt x f t dt =-⎰⎰也是以2为周期的周期函数.(19)(本题满分10分)()21(0)f x x xπ=-≤≤,用余弦级数展开,并求()1211nnn-∞=-∑的和.(20)(本题满分11分)T T=+Aααββ,Tα为α的转置,Tβ为β的转置.证明:(1)()2r≤A. (2)若,αβ线性相关,则()2r<A.(21)(本题满分11分)设矩阵2221212n na a a a a ⨯⎛⎫⎪ ⎪= ⎪⎪⎝⎭A ,现矩阵A 满足方程=AX B ,其中()1,,T n x x =X ,()1,0,,0=B ,(1)求证()1nn a =+A .(3)a 为何值,方程组有无穷多解,求通解.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+,(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭. (2)求Z 的概率密度.(23)(本题满分11分)设12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n=- (1)证明T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-(B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I (B)2I (C)3I (D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A) (B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则(A)当1n n b ∞=∑收敛时,1n n n a b ∞=∑收敛. (B)当1n n b ∞=∑发散时,1n n n a b ∞=∑发散.(C)当1n n b ∞=∑收敛时,221n nn a b ∞=∑收敛. (D)当1n n b ∞=∑发散时,221n n n a b ∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为(A)101220033⎛⎫⎪⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪-⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵()f x2 31 -2-11()f x2 31 -1 1 ()f x2 31 -2-11()f x2 31 -2-111 ()f x-2 0 2 3-1O(A)**32O B AO ⎛⎫ ⎪⎝⎭(B)**23OB AO ⎛⎫⎪⎝⎭(C)**32O ABO ⎛⎫⎪⎝⎭(D)**23OA BO⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0 (B)0.3(C)0.7 (D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1(C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ .(10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e x y C C x =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = . (11)已知曲线(2:0L y x x =≤≤,则L xds =⎰ .(12)设(){}222,,1x y z x y z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T=αβ,其中T α为α的转置,则矩阵Tβα的非零特征值为 .(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分)设n a 为曲线ny x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--⎛⎫ ⎪=- ⎪⎪--⎝⎭A ,1112-⎛⎫⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值; (2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1) 求{}10p X Z ==. (2)求二维随机变量(),X Y 概率分布(23)(本题满分11 分)2x λ-来自总体X 的简单随机样本.(1)求参数λ的矩估计量. (2)求参数λ的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦= (A)1 (B)e (C)e a b - (D)e b a -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= (A)x (B)z(C)x - (D)z -(3)设,m n 为正整数,则反常积分0⎰的收敛性(A)仅与m 取值有关 (B)仅与n 取值有关 (C)与,m n 取值都有关 (D)与,m n 取值都无关(A)12001(1)(1)xdx dy x y ++⎰⎰(B)1001(1)(1)xdx dy x y ++⎰⎰(C)11001(1)(1)dx dy x y ++⎰⎰(D)112001(1)(1)dx dy x y ++⎰⎰ (5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则(A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B (C)秩(),n =A 秩()m =B (D)秩(),n =A 秩()n =B (6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ (B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(7)设随机变量X的分布函数()F x = 00101,21e 2x x x x -<≤≤->则{1}P X ==(A)0 (B)1 (C)11e 2-- (D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf xx x ≤> (0,0)a b >>为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b += (D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0),则曲线积分2L xydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = .(13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T T α=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k ===则2EX = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分10分)求微分方程322e x y y y x '''-+=的通解.(16)(本题满分10分)求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(本题满分10分)(1)比较10ln [ln(1)]n t t dt +⎰与10ln (1,2,)n t t dt n =⎰的大小,说明理由 (2) 记10ln [ln(1)](1,2,),nn u t t dt n =+=⎰求极限lim .n x u →∞(18)(本题满分10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P点的轨迹,C并计算曲面积分,I dS∑=其中∑是椭球面S位于曲线C上方的部分.(20)(本题满分11分) 设11010,1,111aλλλ⎛⎫⎛⎫⎪ ⎪=-=⎪ ⎪⎪ ⎪⎝⎭⎝⎭A b已知线性方程组=A x b存在两个不同的解.(1)求,.aλ(2)求方程组=A x b的通解.(21)(本题满分11分)设二次型123(,,)T f x x x =A x x 在正交变换x y =Q 下的标准形为2212,y y +且Q的第三列为(.22T (1)求.A(2)证明+A E 为正定矩阵,其中E 为3阶单位矩阵.(22)(本题满分11分)设二维随机变量()X Y +的概率密度为2222(,)e ,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x(23)(本题满分11 分) 设总体X 的概率分布为其中(0,1)θ∈未知,以i N 来表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3),i =试求常数123,,,a a a 使31i i i T a N ==∑为θ的无偏估计量,并求T 的方差.2011年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) 1、曲线432)4()3()2)(1(----=x x x x x y 的拐点是( )A (1,0)B (2,0)C (3,0)D (4,0)2、设数列{}n a 单调减少,且0lim =∞→n n a 。