消弧和消谐的工作原理
消弧消谐原理

消弧消谐原理
《消弧消谐原理》
消弧消谐原理是应用振动与控制理论的一个重要研究方向,是一种可以有效抑制或减弱机械系统受到外力激励而引起的振动反应的
一种方法。
它具有高效率、低损耗、准确控制振动、携带质量低的特点,是近几十年来振动控制领域发展迅猛的一个新技术。
本文主要介绍消弧消谐原理的定义、技术原理以及产品应用等内容。
一、定义
消弧消谐原理又叫噪声及振动消弧原理,它是指利用控制力抑制振动及噪声的一种理论,属于振动与控制技术的一种应用。
它是利用控制力和抗振动驱动力抑制机械系统振动反应的一种技术,其被控制的系统需要具有可控的习性和可激活的抗振动力。
二、技术原理
消弧消谐原理是在主动反馈技术基础上发展起来的一项新技术,其原理如下:
1、对控制被激振物体的输入力量作出相应的抑制力,使其不加大物体本身的振动强度;
2、采用增大抗振动力的方法,能够有效抑制物体的振动;
3、可以有效减弱机械系统中传导出的振动信号;
4、可以有效地削减机械系统中的振动噪声。
三、应用
消弧消谐原理在电子、机械、汽车、船舶、飞机等行业有着广泛的应用,可以有效减弱机器的振动、噪声等。
比如,用消弧消谐原理可以有效减少工程机械的振动,比如挖掘机、搅拌机等;可以有效削减汽车、船舶、飞机等的振动、噪声,使行驶中的乘客得到非常愉悦的体验;可以有效抑制电器、电子元件等发出的噪声,使它们的机能正常发挥。
总之,消弧消谐原理是一项先进的有效技术,在抑制噪声及振动方面有着重要的应用,为工业发展贡献了重要的一份力量。
消弧线圈和消弧消谐及过电压保护装置范文

消弧线圈和消弧消谐及过电压保护装置范文一、引言随着电力系统的发展,电力设备规模和电压等级不断提高,同时对设备运行的可靠性和安全性提出了更高的要求。
过电压将对电网设备和电源系统造成严重的损害,甚至会导致设备损坏或停机,给生产和生活带来严重的影响。
因此,过电压的保护成为电力系统中一个重要的研究领域。
消弧线圈和消弧消谐及过电压保护装置作为常用的过电压保护装置,在电力系统中有着广泛的应用。
二、消弧线圈消弧线圈是一种通过调整电路参数来减小或消除电流过零瞬间的过电压保护装置。
它是由一个带有磁芯的线圈和一个调节电阻组成。
消弧线圈通过将电感元件串联在电路中,使电流在达到零时产生电感电动势,从而阻止电流突变,减小或消除过电压。
消弧线圈通常通过选择合适的电感值来实现对电流突变的抑制。
在电流过零瞬间,消弧线圈产生的感应电动势与电路中的电感电势相互抵消,使电流突变减小。
消弧线圈还能阻止电压的突变,减小或消除过电压。
在电力系统中,消弧线圈常用于保护发电机、变压器等重要设备,以减小过电压对设备的损害。
消弧线圈的工作原理主要是利用电感元件在电流通过时产生的感应电动势来减小或消除电流突变。
通过选择合适的电感值和调节电阻,可以使电感电动势与电路中的电感电势相互抵消,达到抑制电流突变的目的。
消弧线圈减小或消除电流突变,从而减小或消除过电压。
三、消弧消谐及过电压保护装置消弧消谐及过电压保护装置是一种能够同时实现对电流突变和谐振过电压的抑制的装置。
它是由一个消弧线圈和一个并联电容组成的。
消弧消谐及过电压保护装置通过调节电感元件的电感值和并联电容的容值来实现对电流突变和谐振过电压的控制。
在电流突变时,消弧消谐及过电压保护装置通过调节电感元件的电感值,使电感电动势与电路中的电感电势相互抵消,减小或消除电流突变。
在谐振过电压时,通过调节并联电容的容值,使电流通过消弧消谐及过电压保护装置时产生的谐振电动势与电路中的谐振电势相互抵消,减小或消除谐振过电压。
消弧消谐PT柜原理完整版

消弧消谐P T柜原理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】消弧消谐柜(PT柜)原理GYXH消弧、消谐及过电压保护装置我国现有的运行规程规定,对3~35kV中性点非直接接地的电网,发生接地故障时,允许继续运行两小时,如经上级有关部门批准,还可以延长。
但规程对于“单相接地故障”的概念未做明确界定,如单相接地故障为金属性接地,故障相电压降为零,其余两相的对地电压将升高至线电压U L,因而这类电网的电气设备如变压器、电压/电流互感器、断路器及电缆等的对地绝缘水平,都能满足长期承受线电压作用而不损坏的要求。
但是,如果单相接地故障为弧光接地,则其过电压一般为~倍的相电压,在这样高的过电压持续作用下,势必造成固体绝缘的积累性损伤,在健全相形成绝缘的薄弱环节,进而发展为相间短路事故。
传统观念认为,3~35kV电网属于中压配电网,此类电网中内部过电压幅值不高,所以,危及电网绝缘安全的主要因素不是内部过电压,而是大气过电压,因而长期以来采取的过电压保护措施仅仅针对防止大气过电压,主要技术措施仅限于装设各种类型的避雷器,其保护值较高,对于内部过电压起不到限制作用。
随着电网的发展,架空线路逐步被固体绝缘的电缆线路所取代。
由于固体绝缘击穿的积累效应,其内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及由此激发的铁磁谐振过电压,已成为这类电网安全运行的一大威胁。
其中以单相弧光接地过电压最为严重。
弧光接地过电压会使电压互感器发生饱和,激发铁磁谐振,导致电压互感器严重过载,造成熔断器熔断或互感器烧毁。
由于弧光接地过电压持续时间长,能量极易超过避雷器的承受能力,导致避雷器爆炸。
目前国内大多采用消弧线圈补偿或自动跟踪补偿式消弧线圈接地方式解决弧光接地过电压问题,其优点是:1、降低了故障点的残流,有利于接地电弧的熄灭;2、避免了长时间燃弧而导致相间弧光短路。
消弧消谐的原理及作用

消弧消谐柜的原理作用说的直白一点就是:当电路出现短路发生电弧接地时,迅速转化为金属接地。
金属性接地后,非故障相上的过电压立即稳定,系统中的设备可以在这个电压下安全运行;由于电弧被熄灭,过电压被限制在安全水平,故障不会再继续发展。
过电压的能量降低到过电压保护器允许的能量指标以内,避免了过电压保护器爆炸事故;母线过电压被限制在较低的水平,可避免激发铁磁谐振过电压。
消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
JZXH消弧消谐选线及过电压保护装置使用说明书一、概述我国3~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类电网在发生单相金属性直接接地时,非故障相的对地电压将升高到线电压,三相线电压量值不变,且仍具有120。
的相位差,三相用电设备的工作并未受到影响,因而不影响电能的正常传输。
所以国家标准规定这类电网在发生单相接地故障后允许短时间带故障运行,提高了该类电网的供电的可靠性。
现有的运行规程规定,中性点非有效接地系统发生单相接地故障时,允许运行两小时,但规程未对“单相接地故障”的概念加以明确界定。
如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。
但是,如果单相接地故障为间歇性弧光接地,则会在系统中产生达3.5倍相电压峰值的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,在健全相的绝缘薄弱环节造成绝缘对地击穿,进而发展成为相间短路事故。
消弧消谐

消弧消谐培训一、消弧线圈的主要作用:在电网发生单相接地时产生电感电流以补偿电网电容电流,使故障点残流变小,达到自行熄弧、消除故障的目的。
消弧线圈的使用,对抑制稳定电弧过电压,消除电磁式压变饱和引起的铁磁谐振过电压,降低线路故障跳闸率方面起到明显效果。
二、消谐装置的工作原理:电网中存在大量储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器断口的电容等电容元件,这些元件组成了许多串联或并联振荡回路。
在正常情况下不可能产生振荡,但当系统发生故障或某种原因引起电网参数变化(如接地短路、线路跳闸、空载线路合闸、三相不同期合闸等),就可能引起谐振。
电压互感器等一类的电感元件在正常工作电压下,通常铁芯刺痛密度不高,铁芯不饱和,如在过电压情况下铁芯饱和,电感会迅速降低,从而与电容产生谐振,这时谐振称为铁磁谐振。
正常运行时,电压互感器开口三角的电压3U0理论上为0V,在实际中一般也不会超过10V,但系统发生单相接地时,3U0迅速升高到30V,甚至更高,达120V,形成过压。
在形成的谐波中含量比重最大的为16.67HZ,25HZ,150HZ三种谐波,其他分量比较小,一般忽略。
因此消谐装置一般都是通过检测这三种频率的谐波电压值判断是否发生谐振。
三、系统谐振过电压事故的处理方法:1、发生谐振过电压时,应先检查以下项目,并汇报调度及领导。
1)保护动作情况、后台电压参数、特别是3UO 值、信号、仪表指示、开关跳闸情况。
2)PT 柜上消谐装置记录情况。
2、处理谐振过电压事故的关键是破坏谐振条件,值班人员应根据系统情况、操作情况做出正确判断,不经调度按以下方法处理,然后将处理结果汇报调度。
1)由于操作而产生的谐振过电压,一般可立即恢复到操作以前的运行状态。
2)运行中发生的谐振过电压,可以试断开一条不重要负荷的线路,消除谐振。
3)接地后发生的谐振,应立即断开接地线路。
四、谐振现象:基波谐振:发生基波谐振时,相对地电压有以下两种现象:1) 一相电压下降(不为零),两相电压升高超过线电压或电压表顶表;2) 两相电压下降(不为零),一相电压升高或电压表顶表;其相对地电压的过电压小于或等于3倍相电压;2、高频谐振:发生高频谐振时,其相对地电压的过电压小于或等于4倍相电压,三相对地电压一起升高,远远超过线电压或电压表顶表。
2023年消弧线圈和消弧消谐及过电压保护装置

2023年消弧线圈和消弧消谐及过电压保护装置消弧线圈是一种常用的电气设备,用于在高压电路中消除电弧。
消弧线圈通过在电路中产生磁场,将电弧强制熄灭,从而保护其他电气设备和操作人员的安全。
消弧线圈通常由一个绕组和一个铁心组成,绕组通过电流产生磁场,铁心则用于集中和放大磁场。
消弧线圈的工作原理主要是利用磁场的作用,将电弧中的电流转换为热量,使电弧熄灭。
当电弧发生时,电流会通过消弧线圈的绕组,产生一个磁场。
这个磁场会与电弧中的电流相互作用,使电弧受到一个力的作用,使电弧偏离电极,最终导致电弧熄灭。
消弧线圈还可以用于消除过电压,即电压突然升高到很高的值。
当发生过电压时,消弧线圈可以通过磁场的反作用力降低电压,从而保护其他电气设备不受损坏。
过电压通常是由电路中的故障引起的,如雷击、感应电压等,如果不及时消除,会对设备和电路造成严重损坏。
消弧线圈还可以用于消除电路中的谐振。
谐振是指电路中的电感和电容之间形成共振,产生高幅度的电压和电流。
谐振不仅会对设备和电路造成损坏,还会引起火灾和爆炸等安全事故。
消弧线圈通过调整电路的谐振频率,将电路从谐振状态中解脱出来,达到消除谐振的目的。
过电压保护装置是一种用于防止过电压的设备。
过电压是指电路中的电压突然升高到很高的值,可能对设备和电路造成损坏。
过电压保护装置可以通过吸收、抑制或分散过电压,达到保护设备和电路的目的。
过电压保护装置的工作原理主要是利用电阻、电容、电感等元件的特性,对过电压进行分散和吸收。
当电路中的电压升高到超过一定阈值时,过电压保护装置会自动启动,将过电压分散到地线或其他回路中,从而保护设备和电路。
过电压保护装置通常包括熔断器、放电管、放电电阻等组件。
熔断器用于在电路中过电压时断开电路,避免过电压对设备和电路造成损坏。
放电管则用于将过电压导向地线或其他回路中,将过电压分散。
总结而言,消弧线圈和过电压保护装置是两种常用的电气设备,用于保护其他电气设备和操作人员的安全。
消弧线圈和消弧消谐及过电压保护装置

消弧线圈和消弧消谐及过电压保护装置是现代电力系统中非常重要的设备。
它们在电力系统中起着保护设备和人员安全的作用。
本文将详细介绍消弧线圈和消弧消谐及过电压保护装置的工作原理、应用领域以及相关技术。
一、消弧线圈消弧线圈是一种用于保护电力设备的设备,在电力系统中广泛应用。
它的主要作用是将发生故障时产生的电弧消除,防止电弧引起的进一步损坏。
1. 工作原理消弧线圈通过产生额外的磁场干扰电弧的起弧过程,使电弧得到消除。
它通常由弧抑制线圈和控制线圈组成。
当故障发生时,电弧开始形成,此时通过弧抑制线圈产生强烈的磁场,干扰电弧的燃烧过程,从而使电弧失去能量,最终被熄灭。
控制线圈用于检测故障电流,并快速控制弧抑制线圈的工作。
2. 应用领域消弧线圈主要用于高压电力设备,如变压器、断路器、隔离开关等。
它能有效地保护设备免受电弧损害,提高设备的使用寿命和可靠性。
3. 技术发展随着电力系统的发展,消弧线圈的技术也在不断进步。
目前,有一些新型的消弧线圈已经出现,如共振电弧线圈、电流型消弧线圈等。
这些新技术的出现,使消弧线圈的性能和可靠性得到了进一步提高。
二、消弧消谐及过电压保护装置消弧消谐及过电压保护装置是一种用于保护电力设备的先进装置。
它能够对电力系统中的谐波和过电压进行检测和处理,从而保护设备不受谐波和过电压的影响。
1. 工作原理消弧消谐及过电压保护装置通过对电力系统中的电压和电流进行采样和分析,检测电力系统中的谐波和过电压。
一旦检测到谐波和过电压,装置会立即采取相应的措施,如切断电源或调整系统参数,以保护设备免受谐波和过电压的损害。
2. 应用领域消弧消谐及过电压保护装置广泛应用于电力系统中的各种设备,如发电机、变压器、电力电子设备等。
它能够保护设备不受谐波和过电压的影响,提高设备的可靠性和安全性。
3. 技术发展随着电力系统中的电子设备和非线性负载的增加,谐波和过电压问题变得越来越严重。
消弧消谐及过电压保护装置的技术也在不断发展。
电力系统常见消谐方案

电力系统常见消谐方案什么是消弧消谐?消弧和消谐一般都针对中性点不接地系统。
在中性点不接地系统中,当零序电容过大时(主要由线路和电缆的对地电容形成)使单相接地电流增加,当对地发生间歇性故障时,不容易息弧,造成弧光接地,引起过电压,危及系统的安全,同时也使人体触电伤亡的几率增高。
因此一般当接地电流超过10A时就需要装设消弧线圈,以补偿接地电流。
当不接地系统中相对地之间存在非线性感性负载时(如电压互感器),系统的扰动极可能引发零序电容与感抗的谐振,随着谐振电压的提高,非线性感抗会减小,并使振荡加剧,最后维持在一个叫高的电压水平下,引起很高的对地过电压,这个谐振也叫铁磁谐振。
这个谐振可以在电压互感器的二次侧安装消谐设备来消除或减弱。
下面我们来看看电力系统中常见的几种消谐方案。
(1)微机消谐装置微机消谐装置也称二次消谐器,被安装在电压互感器(PT)的开口三角绕组上。
正常运行或者发生单相接地故障时装置不动作,而一旦判定电网发生铁磁谐振时,便会使正反并联在开口三角两端的 2 只晶闸管交替过零触发导通以限制和阻尼铁磁谐振,当谐振消除后晶闸管自行截止,必要时可以重复动作。
装置起动消谐期间,晶闸管全导通,呈低阻态,电阻为几 mΩ至几十 mΩ。
如此小的电阻值足以阻尼高频、基频及分频 3 种谐振,而且对整个电网有效,即一个系统中只需选择 1 台互感器安装消谐装置即可。
微机消谐装置的主要缺点是难以正确区分基波谐振和单相接地。
目前,对基波谐振和单相接地故障判据的主要区别在于零序电压 U0 的高低。
通常,基频谐振定为当 U0≥150V 时;当 30V≤U0<145V 时定为单相接地故障。
为了防止在单相接地时由于装置误动使 PT 长时间过负荷而烧毁的情况发生,通常将该装置基频谐振的判据电压定得比较高。
这样,在工频位移电压不是很高的情况下(如空母线合闸)装置将无法动作,就可能使某些励磁特性欠佳、铁心易饱和 PT 的熔丝熔断。
而且这种装置当电网对地电容较大时,它对防止间歇性接地或接地消失瞬间互感器因瞬时饱和涌流而造成熔丝熔断的事故无能为力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感可用改变接入绕组的匝数加以调节。
在正常运行状态下,由于系统中性点的电压是三相不对称电压,数值很小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。
一般采用过补偿方式,就是电感电流略大于电容电流消弧线圈是一种带铁芯的电感线圈。
它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
消弧线圈和消弧消谐及过电压保护装置长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。
因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。
现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。
如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。
但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。
一、相接地电容电流的危害中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面:1.弧光接地过电压的危害当电容电流一旦过大,接地点电弧不能自行熄灭。
当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。
2.造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。
3.交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。
4.接地电弧引起瓦斯煤尘爆炸二、消弧线圈的作用电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。
同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的发生概率。
三、消弧线圈接地方式存在的一些问题:1.单相接地故障时,非故障相对地电压升高到 3 相电压以上,持续时间长、波及全系统设备,可能引起第二点绝缘击穿,引起事故扩大事故。
2.消弧线圈不能补偿谐波电流,有些城市电网谐波电流占的比例达5%-15%,仅谐波电流就可能远大于10A,仍然可能发生弧光接地过电压。
3.对于电容电流很大的配电网,如果通过补偿要使单相接地故障电流Ijd <10A,就必须使系统保持较小的脱谐度,系统的脱谐度过小,对由于三相电容不对称引起的中性点位移电压会产生较强的放大作用,使中性点电压偏移超过规程允许值(<15%Un),保护将发出接地故障信号。
另外脱谐度太小,系统运行在接近谐振补偿状态,将给系统运行带来极大的潜在危险(谐振过电压);要保证中性点位移电压不超过规程允许值,就要增大脱谐度,然而,脱谐度过大,将导致残余接地电流太大(Ijd >10A),又可能引起间歇性弧光接地过电压。
很难保证既使残余接地电流Ijd <10A,又保证中性点位移电压不超过规程允许值这两个相互制约的条件。
3.消弧线圈的调节范围受到调节容量限制,调节容量与额定之比一般为1/2,如按终期要求选择,工程初期系统电容电流小,消弧线圈的最小补偿电流偏大,可能投不上;如按工程初期的要求选择,工程终期系统电容电流大,消弧线圈的最大补偿电流又偏小,也不能满足合理补偿的要求。
4.在运行中,消弧线圈各分接头的标称电流和实际电流会出现较大误差,运行中就发生过由于实际电流与名牌电流误差较大而导致谐振的现象。
5.由于系统的运行方式及系统电压经常变化,系统的电容电流经常变化,跟踪补偿困难。
目前的自动跟踪补偿装置呈百花齐放的景象,实际运行考验时间较短,运行情况还不理想。
而且价格高、结构复杂、维护量大,不适应无人值班变电站的要求。
6.由于上述原因,中性点经消弧线圈接地仅能降低弧光接地过电压的概率,不能消除弧光接地过电压,也不能降低弧光接地过电压的幅值,弧光过电压倍数也很高。
7.寻找单相接地故障线路困难,目前许多小电流接地选线方法的选线成功率还不理想,往往还要采用试拉法。
8.采用试拉法时,既造成非故障线路短时停电,又会引起操作过电压。
9.系统谐振过电压高,谐振过电压持续时间长并波及全系统设备,常造成PT烧坏、或PT熔断器熔断。
武高所和广州供电局在区庄变电站试验中测得1/2分频谐振过电压达2PU,测得由合闸操作激发的3次高频谐振过电压达4PU,测得A相导线断线并接地于负荷侧时,谐振过电压值为3.8PU。
10.电缆排管或电缆隧道内的电缆发生单相接地时,不及时断开故障线路,可能引起火灾,上海某35KV系统电缆就发生过单相接地一小时后引起火灾,烧毁电缆隧道中40多条电缆的重大事故。
11.寻找故障线路时间较长,在带接地故障运行期间,容易引起人身触电事故。
12.单相接地时,非故障相电压升高至线电压或更高,在不能及时检出故障点的情况下,无间隙金属氧化物(MOA)避雷器长时间在线电压下运行,容易损坏甚至爆炸。
弧光接地过电压、谐振过电压幅值高、持续时间长,MOA由于动作负载问题,一般不要求WGMOA系统内过电压,不能有效利用MOA的优良特性,不利于MOA在配电网的推广使用。
四、以电缆线路为主的配电网的特点:1.单位长度的电缆线路的电容电流比架空线路电容电流大10几倍,以电缆为主的城市电网对地电容电流很大。
2.电缆线路受外界环境条件(雷电、外力、树木、大风等)影响小,瞬时接地故障很少,接地故障一般都是永久性故障。
3.电缆线路发生接地故障时,接地电弧为封闭性电弧,电弧不易自行熄灭,如不及时跳闸,很容易造成相间短路,扩大事故。
4.电缆为弱绝缘设备。
例如,10kV交联聚乙稀电缆的一分钟工频耐压为28KV ,而一般10kV 配电设备的绝缘水平为42kV 。
在消弧线圈接地系统中,由于查找故障点时间较长,电缆长时间承受工频或暂态过电压作用,易发展成相间故障,造成一线或多线跳闸。
5.在电缆线路中,高频振荡电流幅值大衰减慢,高频振荡电流远大于工频电流,在工频电流过零时高频振荡电流仍然有很大的幅值,维持弧光燃烧取决于高频振荡电流衰减的快慢和工频电流,消弧线圈不能补偿高频振荡电流,又由于在电缆线路中消弧线圈补偿后的残流大,消弧线圈在电缆线路中不能消弧。
五、PT谐振1.PT谐振PT谐振对于yo/yo电磁式PT,在正常情况下线路发生单相接地不会出现铁磁谐振过电压,但在下列条件下,就可能引发铁磁谐振。
(1)对于中性点不接地系统,当系统发生单相接地时,故障点流过电容电流,未接地的两相相电压升高3倍。
但是,一旦接地故障点消除,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈经其自身的接地点流入大地,在这一瞬间电压突变过程中,PT高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。
(2)系统发生铁磁谐振。
近年来,由于配电线路用户PT、电子控制电焊机、调速电机等数量的增加,使得10kV配电系统的电气参数发生了很大的变化,导致谐振的频繁出现。
在系统谐振时,PT将产生过电压使电流激增,此时除了造成一次侧熔断器熔断外,还将导致PT烧毁。
个别情况下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。
(3)线路检修,事先不向调度部门申请办理停电手续,随意带负荷拉开分支线路隔离刀闸或带负荷拉开配电变压器的高压跌落开关,造成刀闸间弧光短路而引发谐振。
(4)当配电变压器内部发生单相接地故障时,故障电流将通过抗电能力强的绝缘油对地放电,也会产生不稳定的电弧激发电网谐振。
(5)运行人员送电操作程序不对,未拉开PT高压侧刀闸就直接带PT向空母线送电,引起PT铁磁谐振。
六、新型的消弧消谐及过电压保护装置这里介绍一种新型的消弧消谐及过电压保护装置SXH(安徽赛普电力保护有限公司专利产品)此装置原理如下:(1)如果接地是稳定的金属性接地、稳定性电阻接地或TV断线故障,微机控制器发出指示和告警信号,等待值班人员或微机选线装置处理。
(2)如果接地故障是不稳定的间歇性弧光接地,则微机控制器判断接地的相别,同时发出指令使故障相的真空接触器闭合,投入高能限压器,限制故障相的弧道恢复电压,吸收接地引起的电磁能量,减缓系统振荡,使弧道的介质恢复抗电强度Ujf大于弧道恢复电压U hf。
使恢复电压无法再次击穿故障点,从而完成消弧。
数秒后,令故障相的高压真空接触器断开,如果是短暂的弧光接地,系统恢复正常运行;如果接地故障时稳定的弧光接地,控制器令故障相和接地的高压真空接触器KD同时闭合,使系统由稳定的弧光接地故障快速转变成稳定的金属性接地,装置认定此故障为永久性电弧接地故障,等待值班人员或微机选线装置处理。
2.系统发生谐振时,微机控制器根据谐振类型进行不同的消谐:(1) 如果系统发生的谐振是分频谐振,微机控制器瞬间短接PT的开口三角绕组,破坏谐振参数,消除谐振。
如果系统发生的谐振是工频或高频谐振,微机控制器在PT的开口三角绕组接入大功率消谐电阻进行消谐。
七.此装置的优点在中性点非有效接地电网中安装此装置后,可防止电气设备的绝缘故障,并有如下优点:1.能将各类过电压限制到较低的电压水平,使因过电压引起的绝缘事故大为减少。