小升初应用题解题技巧
小学数学奥数解题技巧 第96讲典型应用题

3
小升初数学解题技巧 第96讲 典型应用题
【平均数问题】
例3 某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩是 75.5分和81分。问:这个班男、女生人数的比是多少?
讲析:因男生平均比全班平均少2.5分,而女生平均比全班平均的多3分, 故可知
6
小升初数学解题技巧 第96讲 典型应用题
【行程问题】
例3甲班与乙班学生同时从学校出发去某公园。甲班步行的速度是每小时4千 米,乙班步行的速度是每小时3千米。学校有一辆大客车,它的速度是每小时 48千米。这辆车恰好能坐一个班的学生。为了使两班学生在最短时间内到达, 那么甲班学生与乙班学生需要步行的距离之比是____。
讲析:如图5.30,当乙丙在D点相遇时,甲已行至C点。可先求出乙、两相 遇的时间,也就是乙行距离AD的时间。 乙每分钟比甲多走 10米,多少分钟就多走了CD呢?而CD的距离,就是甲、 丙2分钟共行的距离:(70+50)×2=240(米)。
于是可知,乙行AD的时间是240÷10=24(分钟)。 所以,AB两地相距米数是(70+60)×24=3120(米)
如果评1个一等奖,2个二等奖,3个三等奖时,每个一等奖的奖 金为:
9
小升初数学解题技巧 第96讲 典型应用题
【倍数问题】
例3 甲、乙两个小朋友各有一袋糖,每袋糖都不到20粒。如果甲给乙一定数量 的糖后,甲的糖就是乙的糖粒数的2倍。如果乙给甲同样数量的糖后,甲的糖 就是乙的糖粒数的3倍。那么,甲、乙两个小朋友共有糖____粒。
5
小升初数学解题技巧 第96讲 典型应用题
【行程问题】
例2 甲、乙两车分别从A、B两城同时相向而行,第一次在离A城30千米处相 遇。相遇后两车又继续前行,分别到达对方城市后,又立即返回,在离A城42 千米处第二次相遇。求A、B两城的距离。
数学应用题答题技巧

数学应用题答题技巧
1. 嘿,仔细读题可是关键啊!就像你走路得看清路一样。
比如题目说小明有 5 个苹果,给了小红 2 个,问还剩几个。
你要是没看清数字,那不就答错啦!所以读题要认真仔细,可别马虎哟!
2. 画图解题超有用的呀!这就好比给你一团乱麻,你画个图不就理清啦。
像有道题是算几个图形的面积,你画个图出来,一目了然,答案不就轻松找到啦!
3. 找关键信息很重要呢!好比在一堆东西里找宝贝。
比如题目里说周末去公园,那这就是个重要提示呢,做题可得抓住这些关键啊,不然咋答对呢!
4. 大胆假设也不错呀!就像摸着石头过河。
比如算一个数除以另一个数是多少,你先假设一个数试试看,说不定就能找到规律呢!
5. 检查答案可不能忘啊!这就像出门前得照照镜子看看有没有问题。
做完题检查下步骤对不对,算的数对不对,这样才放心呀!
6. 多思考几种方法呀,别在一棵树上吊死!好比去一个地方可以走好几条路呢。
一道题可能有多种解法,都试试,说不定有更简单快捷的呢!
7. 不要死磕难题呀,该放就放!就像爬山遇到陡壁,先绕过去嘛。
要是一道题难住了,别一直纠结,先去做后面的,最后再回来看看,说不定就有灵感啦!
总之,掌握这些数学应用题答题技巧,做题就会又快又准,不信你试试呀!。
做数学应用题的技巧

做数学应用题的技巧做数学应用题的技巧一.归一问题解答含义及方法牢记题中的数量关系,仔细阅读应用题给出的意思。
含义:在解答应用题时,先要求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
数量关系:总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数解答思路及方法:先求出单一量,以单一量为标准,求出所要求的数量。
二.归总问题解答含义及方法含义:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路和方法: 先求出总数量,再根据题意得出所求的数量。
三.和差问题解答含义及方法含义:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
数量关系:大数=(和+差)÷ 2 小数=(和-差)÷ 2解题思路和方法:简单的题目可以直接套用公式;复杂的题目变通后再用公式。
四.和倍问题解答含义及方法含义:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
数量关系:总和÷(几倍+1)=较小的数总和 - 较小的数 = 较大的数较小的数×几倍 = 较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。
五.差倍问题解答含义及方法含义:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
数量关系:两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。
小升初分数应用题

小升初分数应用题 专题简析解答分数应用题关键是正确理解、运用单位“1”。
题中如果有几个不同的“1”,必须根据具体情况,将不同的单位“1”转化成统一的“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点: 1、题中有几种量相比较时,要选择与各个已知条件关系密切,便于直接解答的数量为“1”。
2、题中数量发生变化的,一般要选择不变量为“1”。
3、掌握转化单位“1”的方法。
如x 是Y 的a b ,则y 是x 的b a ,则x 是总数的ba a,诸如此类的一些转化方法。
4、是中有明显的等量关系,也可以用列方程的方法去解。
5、分数应用题也可用把未知量具体化的方法去解答。
典型例题例1.幼儿园老师把一袋糖分给甲、乙、丙三个小朋友。
先把总数的51多6粒分给甲,再把剩下的51多9粒分给乙,最后剩下的都给了丙,结果3人得至的糖一样多。
这袋糖共有多产粒?例2.水果市场运来香蕉、苹果、橘子、梨四种水果,其中橘子、苹果共30吨,香蕉、橘子、梨共45吨。
橘子正好占运来水果总数的132。
一共运来水果多少吨?例3.某车间男工人数是女工人数的两倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?例4.人民公园里原来柳树是树木总棵数的52。
今年又栽了50棵。
这样柳树的棵数就占了全部的115。
原来一共有多少棵?例5.新胜小学原来短跳绳的根数是长短跳绳总数的85。
后来又买进24根长跳绳,这时短跳绳是总数的125。
短跳绳有多少根?例6.甲、乙、丙三人合做一批零件。
甲做的是乙、丙的21,乙做的是甲、两的31,丙做了25个,这批零件有多少个?例7.甲筐苹果比乙筐苹果得14千克。
甲筐卖出74,乙筐卖出52后,两筐剩下的苹果的重量相等。
原来甲筐朋多少千克苹果?例8.一辆汽车由甲地开住乙地,31的路程是平路,速度是每小时40千米。
31的路程是上坡路,速度是每小时30千米;31的路程是下坡路,速度是每小时60千米。
小升初数学应用题工程问题专题解题技巧练习题

工程问题应用题的解答方法1、工程问题的基本数量关系是:工作总量=工作效率×工作时间。
解题时,要抓住这一关系,灵活地运用这一数量关系提高解题能力。
2、以工作效率为突破,工作效率是解答工程问题的要点。
如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
3、抓住完成工作的几个过程或几种变化,工程问题中常出现单独做,几人合作或轮流做,分析时一定要对应工作每一阶段的工作量、工作时间来确定单独做或合作的工作效率。
4、抓住总题中的工作时间比、工作效率比、工作量比或隐蔽的条件来确定工作效率,或者确定工作效率之间的关系。
一般来说,单独的工作效率或合作的工作效率是解答工程问题的关键。
◎工程问题能力提升训练1、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。
现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。
乙队休息了几天?2、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。
现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。
这样一共用了几天时间?3、加工一批零件,甲独做需6天完成,乙独做需8天完成,两人同时加工,完成任务时,甲比乙多做30个,这批零件共有多少个?4、两支粗细、长短不同的蜡烛,长的一支可以点6小时,短的一支可以点9小时,将它们同时点燃,两小时后,两支蜡烛所余下的长度正好相等。
原来短蜡烛的长度是长蜡烛长度的几分之几?5、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。
有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。
丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的货物。
丙帮助甲搬运了几小时?6、一项工程,甲独做需12小时,乙独做需18小时,若甲先做1小时,然后乙接替甲做1小时,再由甲接乙做1小时,……,两人如此交替工作,问完成任务时共用多少小时?7、一项工程,甲独做需15小时完成,乙独做需18小时,丙需20小时完成。
【免费】小升初数学:4大类必考应用题解题方法和技巧详解

小升初数学:4大类必考应用题解题方法和技巧详解对于基础知识的复习,我们要弄清来龙去脉,沟通相互关系,掌握推证过程,注意表达形式,归纳记忆方法,明确主要用途。
1一般应用题一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。
●要点:从条件入手?从问题入手?从条件入手分析时,要随时注意题目的问题从问题入手分析时,要随时注意题目的已知条件。
●例题如下:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。
剩下的如果平均每天生产150个,还需几天完成?●思路分析:已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。
已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。
2典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。
(一)求平均数应用题●解答求平均数问题的规律是:总数量÷对应总份数=平均数注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。
●例题如下:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?●思路分析:要求这天平均每小时碾米约多少千克,需解决以下三个问题:1、这一天总共碾了多少米?(一天包括上午、下午)。
2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。
3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。
)(二)归一问题●归一问题的题目结构是:题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。
●解题规律先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。
小学数学应用题解题技巧大全

⼩学数学应⽤题解题技巧⼤全⼩升初应⽤题⼤全,可分为⼀般应⽤题与典型应⽤题。
1、归⼀问题【含义】在解题时,先求出⼀份是多少(即单⼀量),然后以单⼀量为标准,求出所要求的数量。
这类应⽤题叫做归⼀问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求⼏份的数量另⼀总量÷(总量÷份数)=所求份数【解题思路和⽅法】先求出单⼀量,以单⼀量为标准,求出所要求的数量。
例1:买5⽀铅笔要0.6元钱,买同样的铅笔16⽀,需要多少钱?解(1)买1⽀铅笔多少钱?0.6÷5=0.12(元)(2)买16⽀铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2:3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式:90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3:5辆汽车4次可以运送100吨钢材,如果⽤同样的7辆汽车运送105吨钢材,需要运⼏次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运⼏次?105÷35=3(次)列成综合算式:105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、⼏⼩时(⼏天)的总⼯作量、⼏公亩地上的总产量、⼏⼩时⾏的总路程等。
小升初数学50道经典应用题解题思路+模板太全了

已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初应用题大全,可分为一般应用题与典型应用题。
1.归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱÷5=(元)(2)买16支铅笔需要多少钱×16=(元)列成综合算式÷5×16=×16=(元)答:需要元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材5×7=35(吨)(3)105吨钢材7辆汽车需要运几次105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2.归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米×791=(米)(2)现在可以做多少套÷=904(套)列成综合算式×791÷=904(套)答:现在可以做904套。
例2小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页24×12=288(页)(2)小明几天可以读完《红岩》288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。
例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克50×30=1500(千克)(2)这批蔬菜可以吃多少天1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。
3.和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4.和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵248÷(3+1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。
例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。
那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。
5.差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解(1)杏树有多少棵124÷(3-1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。
例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。
例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。
6.倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍3700÷100=37(倍)(2)可以榨油多少千克40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍48000÷300=160(倍)(2)共植树多少棵400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。
例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍800÷4=200(倍)(2)800亩收入多少元11111×200=2222200(元)(3)16000亩是800亩的几倍16000÷800=20(倍)(4)16000亩收入多少元2222200×20=(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入元。