齿轮精度等级的选择

合集下载

齿轮常用的精度等级

齿轮常用的精度等级

齿轮常用的精度等级齿轮是一种常见的机械传动元件,广泛应用于各种机械设备中。

齿轮的精度等级是衡量齿轮质量和精度的重要指标,主要用于标识齿轮的精度要求和使用范围。

常用的齿轮精度等级包括粗糙、普通、精密和高精密等级。

粗糙精度等级的齿轮是指制造工艺较为简单,精度要求较低的齿轮。

这种齿轮适用于速度较低、负载较小的场合,如家用电器中的传动装置。

粗糙精度等级的齿轮制造成本低,但其传动效率较低,噪音和振动较大。

普通精度等级的齿轮是指制造工艺较为一般,精度要求适中的齿轮。

这种齿轮适用于一般机械设备中的传动装置,如汽车、农机等。

普通精度等级的齿轮制造成本适中,传动效率和噪音振动性能相对较好。

精密精度等级的齿轮是指制造工艺较为精细,精度要求较高的齿轮。

这种齿轮适用于要求较高传动精度和较小噪音振动的场合,如机床、精密仪器等。

精密精度等级的齿轮制造成本较高,但传动效率和噪音振动性能都较好。

高精密精度等级的齿轮是指制造工艺非常精细,精度要求非常高的齿轮。

这种齿轮适用于要求极高传动精度和极小噪音振动的场合,如航空航天、精密仪器等。

高精密精度等级的齿轮制造成本非常高,但传动效率和噪音振动性能都非常优秀。

齿轮的精度等级不仅与齿轮的制造工艺有关,还与齿轮的设计和使用条件密切相关。

在选择齿轮精度等级时,需要根据具体的使用要求和经济条件进行综合考虑。

对于一些要求传动精度高、噪音振动小的场合,可以选择高精密精度等级的齿轮;而对于一些速度较低、负载较小的场合,可以选择粗糙精度等级的齿轮。

齿轮精度等级的提高可以通过改进齿轮的制造工艺、提高齿轮的设计精度、采用更好的材料等方式实现。

随着科技的进步和工艺的改进,齿轮的精度等级将不断提高,为各种机械设备的高效传动提供更好的支持。

齿轮的精度等级是衡量齿轮质量和精度的重要指标。

不同精度等级的齿轮适用于不同的场合,具有不同的传动效率和噪音振动性能。

在选择齿轮精度等级时,需要根据具体的使用要求和经济条件进行综合考虑,以实现最佳的传动效果。

齿轮传动精度等级及其选择

齿轮传动精度等级及其选择
齿向线的误差
载荷分布的均匀性
表35.2-2-48常用精度等级齿轮的加工方法及应用范围
精度等级
5级(精密级)
6级(高精度级)
7级(比较高的精度级)
8级(中等级)
9~10级(低精度级)
加工方法
展成
展成
展成或仿行
任意
齿面最终精加工
磨齿
磨齿或剃齿
不淬火刀具加工,淬火磨齿、剃齿、研磨、绗磨
不磨齿。必要时剃齿或研磨
表35.2-2-47齿轮各项公差分组
公差组
公差与极限偏差项目
误差特性
对传动性能的主要影响

Fi′,FP,FPK,Fi″,Fr,Fw,
以齿轮一转为周期的误差
传动运动的平稳性

Fi′,ff,±f Pt,±fPb,fi″,ffβ
在齿轮一周内多次周期地重复出现的误差
传动的平稳性、噪声、振动

Fβ,Fb,±fPx
97(96.5)以上
注:括号效率包括轴承损失效率
表35.2-49齿轮第II组精度与圆周速度关系
不需要精加工
Ra
0.8
0.8
1.6
3.2~6.3
12.5~25
应用范围பைடு நூலகம்
高速下平稳旋转
高速、载荷小或反转齿轮,需要运动有配合的齿轮,中速减速器齿轮,飞机、汽车制造中的齿轮
一般机械齿轮,特别不重要的飞机、汽车、拖拉机齿轮;起重机、农业机械、普通减速器齿轮
效率
99(98.5)以上
99(98.5)以上
98(97.5)以上

塑料齿轮精度标准

塑料齿轮精度标准

塑料齿轮精度标准主要分为以下几个方面:
1. 精度等级:塑料齿轮的精度等级通常较低,一般在9-11级。

被称为精密塑料齿轮的产品,其精度等级也通常不超过8级。

而7级塑料齿轮则较为罕见。

2. 公差计算:塑料齿轮的公差计算需要参考国际标准,如ISO精度制标准体系。

在计算公差时,需要考虑塑料齿轮的材料、制造工艺以及使用环境等因素。

3. 齿形误差和齿向误差:由于塑料齿轮的弹性模量较小,其齿形误差和齿向误差对轮系啮合噪音的敏感度较低。

因此,在实际应用中,塑料齿轮的齿形误差和齿向误差可以相对较大。

4. 啮合品质和噪音效果:塑料齿轮的啮合品质和噪音效果主要取决于其精度等级和制造工艺。

在满足使用要求的前提下,塑料齿轮的啮合品质和噪音效果可以与金属齿轮相媲美。

5. 创新与发展:虽然塑料齿轮的发展已经取得了很多成果,但是相较于金属齿轮,塑料齿轮在创新方面还有很大的发展空间。

目前,塑料齿轮的资料相对较少,很多方面还需要借鉴金属齿轮的经验。

齿轮常用的精度等级

齿轮常用的精度等级

齿轮常用的精度等级齿轮是一种常见的动力传动装置,广泛应用于机械设备中。

在齿轮制造过程中,精度等级是一个非常重要的指标。

精度等级表示齿轮的制造精度和传动效率,对于保证齿轮的正常运转和提高机械设备的性能至关重要。

常用的齿轮精度等级有以下几种:1. 3级精度3级精度是齿轮制造中的一种较低精度等级。

齿轮的加工精度、尺寸公差和齿形偏差较大。

这种精度等级适用于一些传动要求不高的场合,如一些低速、低负荷的设备。

2. 4级精度4级精度是齿轮制造中的一种中等精度等级。

相比于3级精度,4级精度的齿轮加工精度、尺寸公差和齿形偏差要求更高。

这种精度等级适用于一些中速、中负荷的设备,如一些机床、输送机械等。

3. 5级精度5级精度是齿轮制造中的一种较高精度等级。

相比于4级精度,5级精度的齿轮加工精度、尺寸公差和齿形偏差要求更高。

这种精度等级适用于一些高速、高负荷的设备,如一些汽车变速器、航空发动机等。

4. 6级精度6级精度是齿轮制造中的一种较高精度等级。

相比于5级精度,6级精度的齿轮加工精度、尺寸公差和齿形偏差要求更高。

这种精度等级适用于一些对传动效率和噪声要求极高的设备,如一些高速电机、精密仪器等。

在齿轮制造过程中,要保证齿轮的精度等级,需要注意以下几点:1. 材料选择齿轮的材料选择对于保证其精度等级至关重要。

应选择具有良好机械性能和热处理性能的材料,如优质合金钢等。

2. 设备选择齿轮的加工设备也是影响其精度等级的重要因素。

应选择具备高精度的齿轮加工设备,如数控齿轮磨床、数控齿轮滚齿机等。

3. 加工工艺齿轮的加工工艺也是影响其精度等级的关键因素。

应采用合理的加工工艺,如精密滚刀、精密磨齿等,以保证齿轮的加工精度。

4. 检测手段齿轮的精度等级需要通过检测手段进行验证。

常用的检测手段包括齿轮测量仪、轮廓仪等。

通过这些手段可以对齿轮的尺寸公差、齿形偏差等进行精确测量,以保证其精度等级。

齿轮的精度等级是保证其正常运转和提高机械设备性能的重要指标。

齿轮新老精度等级代号中俄对照对比

齿轮新老精度等级代号中俄对照对比

齿轮新老精度等级代号中俄对照对比摘要:1.齿轮精度等级代号的概念和重要性2.中俄对照齿轮精度等级代号表3.齿轮精度等级代号在中俄两国的应用和差异4.影响齿轮精度等级代号差异的原因分析5.齿轮精度等级代号差异对中俄两国工业发展的影响正文:一、齿轮精度等级代号的概念和重要性齿轮精度等级代号是用于表示齿轮精度等级的符号和数字,它反映了齿轮的加工精度和齿轮副的传动性能。

齿轮精度等级代号是齿轮制造和使用中不可或缺的重要参数,对于保证齿轮传动的平稳性、噪音、寿命等方面具有重要意义。

二、中俄对照齿轮精度等级代号表在中俄两国的齿轮精度等级代号中,有许多相似之处,但也存在一些差异。

以下是中俄对照齿轮精度等级代号表:中国齿轮精度等级代号:00、01、02、03、04、05、06、07、08、09、10俄罗斯齿轮精度等级代号:00、01、02、03、04、05、06、07、08、09、10从上表可以看出,中俄两国的齿轮精度等级代号基本一致。

三、齿轮精度等级代号在中俄两国的应用和差异尽管中俄两国的齿轮精度等级代号在符号和数字上基本一致,但在实际应用中,两国的齿轮精度等级代号仍存在一些差异。

主要表现在以下几个方面:1.齿轮精度等级代号的选用标准:中俄两国在齿轮精度等级代号的选用上存在差异,这主要体现在两国的齿轮设计规范和标准上。

2.齿轮精度等级代号的加工要求:中俄两国在齿轮精度等级代号的加工要求上存在差异,这主要体现在两国的齿轮加工工艺和设备上。

3.齿轮精度等级代号的检测方法:中俄两国在齿轮精度等级代号的检测方法上存在差异,这主要体现在两国的齿轮检测设备和检测标准上。

四、影响齿轮精度等级代号差异的原因分析1.标准制度差异:中俄两国在齿轮精度等级代号方面存在差异,主要原因是两国的标准制度不同,导致齿轮精度等级代号的选用、加工和检测等方面存在差异。

2.齿轮加工技术差异:中俄两国在齿轮加工技术方面存在差异,导致齿轮精度等级代号的加工要求和检测方法等方面存在差异。

齿轮新老精度等级代号中俄对照对比

齿轮新老精度等级代号中俄对照对比

齿轮新老精度等级代号中俄对照对比一、引言齿轮作为机械传动的重要组成部分,其精度等级在很大程度上影响着整个传动系统的性能。

为了更好地理解和应用齿轮精度等级,本文将对中俄两国齿轮精度等级代号进行对比分析,以期为工程实践提供参考。

二、齿轮精度等级的含义及划分1.中国齿轮精度等级划分在我国,齿轮精度等级主要分为0级、1级、2级、3级、4级、5级、6级、7级、8级、9级十个等级,等级越高,精度越高。

2.俄罗斯齿轮精度等级划分在俄罗斯,齿轮精度等级分为C、D、E、F、G、H、J、K、L、M十个等级,等级越高,精度越高。

三、中俄齿轮精度等级代号的对比1.相同点中俄两国齿轮精度等级都采用了等级制度,等级越高,表示精度越高。

2.不同点中俄两国齿轮精度等级的划分方式和代号有所不同。

我国采用0级至9级划分,俄罗斯采用C级至M级划分。

此外,两国在精度等级的细分和表示方法上也存在差异。

四、影响齿轮精度等级的因素1.材料齿轮的材料对其精度等级有很大影响。

一般来说,硬度高、密度均匀的材料制成的齿轮精度更高。

2.加工工艺加工工艺对齿轮精度等级也有很大影响。

例如,采用数控加工、精密磨削等先进工艺可以提高齿轮的精度等级。

3.热处理热处理是提高齿轮精度等级的关键环节。

精确控制热处理过程,可以有效提高齿轮的硬度、强度和韧性,从而提高精度等级。

五、提高齿轮精度等级的方法1.优化设计通过改进齿轮设计,如加大模数、减小齿轮副间隙等,可以提高齿轮精度等级。

2.改进加工工艺采用先进的加工工艺,如数控加工、精密磨削等,可以提高齿轮的精度等级。

3.精确控制热处理过程精确控制热处理工艺参数,如保温时间、升温速率、冷却速率等,可以提高齿轮的精度等级。

六、结论齿轮精度等级是衡量齿轮传动性能的重要指标。

通过对比中俄两国齿轮精度等级代号,分析影响齿轮精度等级的因素,以及提出提高齿轮精度等级的方法,本文为工程实践提供了有益的参考。

齿轮精度等级

齿轮精度等级

齿轮精度等级■ ■ ■齿轮共有13个精度等级,用数字0〜12由低到高的顺序排列,0级最高,12级最低。

齿轮精度等级的选择,应根据传动的用途、使用条件、传动功率、圆周速度、性能指标或其他技术要求来确定。

表13给出了不同机械传动中齿轮采用的精度等级。

表14推荐了5〜9级精度齿轮所采用的切齿方法和使用范围等。

表13不同机械传动中齿轮采用的精度等级应用范围精度等级应用范围精度等级测量齿轮2〜5 航空发动机4〜7透平减速器3〜6 拖拉机6〜9金属切削机床3〜8 通用减速器6〜8内燃机车6〜7 轧钢机5〜10电气机车6〜7 矿用绞车8〜10轻型汽车5〜8 起重机械6〜10载重汽车6〜9 农业机器8〜10表14齿轮的精度等级和加工方法及使用范围齿轮及齿轮副规定了 12个精度等级,第1级的精度最高,第12级的精度最低。

齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。

齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。

编者按:大地涵藏万物,孕育生命,被誉为人类的母亲。

但是,近年来,伴随我国工业化的快速发展,大地不断遭到各种污染的伤害。

仅仅因土壤污染防治不足、环境监管乏力,导致的食品药品安全事件就频频发生,2008年以来,全国已发生百余起重大污染事故。

目前我国大地污染现状严峻,成因十分复杂,形成令人扼腕的“大地之殇”。

《经济参考报》以此为主题,探寻大地污染背后所触及的我国农业、工业、城市化进程中关于生存与发展的一系列深层矛盾与两难抉择,并以“大地之殇”系列报道的形式在“深度”版推出,敬请关注。

大地之殇一•黑土地之悲占全国粮食总产五分之一的东北黑土区是我国最重要的商品粮基地,但一个并不为多数人了解的严峻事实是,支撑粮食产量的黑土层却在过去半个多世纪里减少了50%,并在继续变薄,几百年才形成一厘米的黑土层正以每年近一厘米的速度消失。

齿轮精度等级的确定

齿轮精度等级的确定

齿轮精度等级的确定1 齿轮几何精度齿轮几何精度是指齿轮结构尺寸及形状的精度,它直接关系到机器的各项性能,其精度的高低是机械产品的质量水平的衡量指标之一,会直接影响工作效率和产品质量,因此我们要求齿轮应经常保持高精度。

为了能有效地确定齿轮几何精度,关于齿轮几何形状应有明确的规定,根据不同级别配置不同的精度等级,现将它们归纳如下:2 齿轮精度等级(1)等级0:它是指齿面、齿槽及齿内侧面的精度最高,用于较高精度的机械设备。

(2)等级1:齿轮的齿槽、齿面、齿内侧面的工作精度适用于中等精度要求的机械设备。

(3)等级2:齿轮齿数量多宽度小,齿轮精度要求不高,可以满足一般机械设备的齿轮精度要求。

(4)等级3:齿轮齿数量多宽度大,齿轮精度要求不高,可以满足一般机械设备的齿轮精度要求,但各精度尺寸偏差较大。

3 严格控制在选用和使用齿轮时,要严格控制内外轮毂之间的尺寸公差以及其他相关参数,同时也要注意检查齿轮材料的质量,以保证机械的稳定、可靠的工作性能,确保机械产品的质量与精度。

另外,在齿轮加工过程中也需要采用适当的控制手段来确保其几何精度的合格性,这样就能确保大小或形状的精度。

4 维护保养齿轮精度的维护与保养也同样重要,定期检查、润滑及更换旧部件,这些细节工作都会影响齿轮精度。

此外,应注意保持该机械部件的清洁,以防止由于灰尘和油污而降低精度。

此外,应注意在安装或拆卸齿轮的过程中有效的控制其安装或拆卸的法兰面或连接面的精度,以确保其几何精度的合格性。

总之,齿轮几何精度是机械产品质量水平甚至工作效率无可比拟的重要因素。

正确识别和理解齿轮精度等级,以便选用合理的手段,使用恰当的方法,选择合适的齿轮,可以有效地提高机械产品的质量与稳定性,获得更高的精度水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轮齿的失效形式作者:佚名文章来源:网络转载点击数: 129 更新时间:2006-7-18正常情况下,齿轮的失效都集中在轮齿部位。

其主要失效形式有:● 轮齿折断整体折断,一般发生在齿根,这是因为轮齿相当于一个悬臂梁,受力后其齿根部位弯曲应力最大,并受应力集中影响。

局部折断,主要由载荷集中造成,通常发生于轮齿的一端(图18-1a)。

在齿轮制造安装不良或轴的变形过大时,载荷集中于轮齿的一端,容易引起轮齿的局部折断。

图18-1 轮齿的失效形式a)局部折断b)齿面点蚀c)齿面胶合d)磨粒磨损e)塑性变形齿轮经长期使用,在载荷多次重复作用下引起的轮齿折断,称疲劳折断;由于短时超过额定载荷(包括一次作用的尖峰载荷)而引起的轮齿折断,称过载折断。

二者损伤机理不同,断口形态各异,设计计算方法也不尽相同。

一般地说,为防止轮齿折断,齿轮必须具有足够大的模数。

其次,增大齿根过渡圆角半径、降低表面粗糙度值、进行齿面强化处理、减轻轮齿加工过程中的损伤,均有利于提高轮齿抗疲劳折断的能力。

而尽可能消除载荷分布不均现象,则有利于避免轮齿的局部折断。

为避免轮齿折断,通常应对齿轮轮齿进行抗弯曲疲劳强度的计算。

必要时,还应进行抗弯曲静强度验算。

● 齿面点蚀轮齿工作时,其工作齿面上的接触应力是随时间而变化的脉动循环应力。

齿面长时间在这种循环接触应力作用下,可能会出现微小的金属剥落而形成一些浅坑(麻点),这种现象称为齿面点蚀(图18-1b)。

齿面点蚀通常发生在润滑良好的闭式齿轮传动中。

实践证明,点蚀的部位多发生在轮齿节线附近靠齿根的一侧。

这主要是由于该处通常只有一对轮齿啮合,接触应力较高的缘故。

提高齿面硬度,降低齿面粗糙度值,采用粘度较高的润滑油以及进行合理的变位等,都能提高齿面抗疲劳点蚀的能力。

其中最有效的方法就是提高其齿面硬度。

为了避免出现齿面点蚀,对于闭式齿轮传动,通常需要进行齿面接触疲劳强度计算。

●齿面胶合齿面胶合是相啮合轮齿的表面,在一定压力下直接接触发生粘着,并随着齿轮的相对运动,发生齿面金属撕脱或转移的一种粘着磨损现象(图18-1c)。

一般说,胶合总是在重载条件下发生。

按其形成的条件,又可分为热胶合和冷胶合。

热胶合发生于高速、重载的齿轮传动中。

由于重载和较大的相对滑动速度,在轮齿间引起局部瞬时高温,导致油膜破裂,从而使两接触齿面金属间产生局部“焊合”而形成胶合。

冷胶合则发生于低速、重载的齿轮传动中。

它是由于齿面接触压力过大,直接导致油膜压溃而产生的胶合。

采用极压型润滑油、提高齿面硬度、降低齿面粗糙度值、合理选择齿轮参数并进行变位等,均有利于提高齿轮的抗胶合能力。

为了防止胶合,对于高速、重载的齿轮传动,可进行抗胶合承载能力的计算。

● 齿面磨粒磨损当铁屑、粉尘等微粒进入齿轮的啮合部位时,将引起齿面的磨粒磨损(图18-1d)。

闭式齿轮传动,只要经常注意润滑油的更换和清洁,一般不会发生磨粒磨损。

开式齿轮传动,由于齿轮外露,其主要失效形式为磨粒磨损。

磨粒磨损不仅导致轮齿失去正确的齿形,还会由于齿厚不断减薄而最终引起断齿。

与闭式齿轮传动不同,一般认为,开式齿轮传动不会出现齿面点蚀现象。

这是因为磨损速度比较快,齿面还来不及达到点蚀的程度,其表层材料就已经被磨掉的缘故。

● 齿面塑性变形重载时,在摩擦力的作用下,齿轮可能产生齿面塑性变形(也称齿面塑性流动),从而使轮齿原有的正确齿形遭受破坏。

如图18-1e所示,在主、从动齿轮上由于齿面摩擦力方向不同,其齿面变形的表现形式也不同。

对于主动齿轮,在节线附近形成凹槽;对于从动齿轮,在节线附近形成凸脊。

齿轮精度等级的选择作者:佚名文章来源:网络转载点击数: 758 更新时间:2006-7-18在渐开线圆柱齿轮和锥齿轮精度标准(GB/T 10095.1—2001和GB/T 10095.2—2001)中,分别对圆柱齿轮和锥齿轮规定有12个精度等级,按精度的高低依次为:1、2、…、12。

并根据对运动准确性、传动平稳性和载荷分布均匀性的要求不同,将每个精度等级的各项公差依次分成三个组,即第Ⅰ公差组、第Ⅱ公差组和第Ⅲ公差组。

此外,还规定了齿坯公差、齿轮副侧隙和图样标注等各项内容。

齿轮精度等级应根据传动的用途、使用条件、传动功率和圆周速度等确定。

表18-2给出了各种精度等级齿轮的使用和加工方法等,供选择精度等级时参考。

常用5~9级精度齿轮允许的最大圆周速度见表18-3。

表18-2 齿轮精度等级、使用和加工情况精度等级使用和加工情况2 、3(特高精度)检验用的齿轮,高速齿轮及在重载下要求特别安全可靠的齿轮。

需用特殊的工艺方法制造4 、5(高精度)用于高精度传动链及某些危险场合下工作的齿轮,如汽轮机齿轮,航空齿轮等。

需要磨齿加工6 、7(较高精度)用于中等速度的齿轮和要求安全可靠工作的车辆齿轮。

一般需要采用磨齿或剃齿工艺,也可用高精度的滚齿加工8 、9(中等精度)用于一般设备中速度不高的齿轮。

通常用滚齿或插齿加工10 ~12(低精度)低速传动用不重要的齿轮。

其中12级齿轮可不经切削加工而由铸造成形方法得到表18-3 动力传动齿轮的最大圆周速度(单位:m∕s)第Ⅱ公差组精度等级圆柱齿轮传动锥齿轮传动直齿斜齿直齿曲线齿5级及其以上6级7级8级9级≥15<15<10<6<2≥30<30<15<10<4≥12<12<8<4<1.5≥20<20<10<7<3注:锥齿轮传动的圆周速度按平均直径计算。

⑴闭式传动闭式传动的主要失效形式为齿面点蚀和轮齿的弯曲疲劳折断。

当采用软齿面(齿面硬度≤350HBS)时,其齿面接触疲劳强度相对较低。

因此,一般应首先按齿面接触疲劳强度条件,计算齿轮的分度圆直径及其主要几何参数(如中心距、齿宽等),然后再对其轮齿的抗弯曲疲劳强度进行校核。

当采用硬齿面(齿面硬度>350HBS)时,则一般应首先按齿轮的抗弯曲疲劳强度条件,确定齿轮的模数及其主要几何参数,然后再校核其齿面接触疲劳强度。

⑵开式传动开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳折断。

由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对其进行抗弯曲疲劳强度计算,并采用适当加大模数的方法来考虑磨粒磨损的影响。

本手册中的圆柱齿轮精度摘自(GB10095—88),现将有关规定和定义简要说明如下:(1) 精度等级齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。

齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。

齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组ⅢF β、F b、±F Px齿向线的误差载荷分布的均匀性根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。

齿轮传动精度等级的选用按机器类型选择按速度、加工、工作条件选择机器类型精度等级机器类型精度等级测量齿轮3~5 一般用途减速器6~8 透平机用减速器3~6 载重汽车6~9金属切削机床3~8 拖拉机及轧钢机的小齿轮6~10航空发动机4~7 起重机械7~10轻便汽车5~8 矿山用卷扬机8~10 内燃机车和电气机车5~8 农业机械8~11轮类零件的结构设计作者:佚名文章来源:网络转载点击数: 165 更新时间:2006-7-24轮类零件的类型很多,本节主要介绍齿轮、蜗轮、带轮等轮类传动件的结构设计。

1.轮类零件的结构轮类零件大多为盘状结构,基本由轮缘、腹板(或轮辐)和轮毂三部分组成,如图26-1所示。

通常轮缘位于外部,是实现特定传动功能的部位;轮毂是与轴实现连接的部分;腹板或轮辐介于轮缘和轮毂之间,起连接轮缘和轮毂的作用。

a) 腹板式结构 b) 轮辐式结构 c) 实心式结构图图26-1 轮类零件的结构 2.轮类零件结构设计的基本要求和通用尺寸轮类零件结构设计的主要任务是完成轮缘、腹板(轮辐)及轮毂的结构型式及尺寸的确定。

这部分结构尺寸通常是根据各种零件通用尺寸设计规范中推荐的经验公式确定,这也是结构设计的常用方法。

在进行轮类零件结构设计时,应注意以下基本要求:1) 轮缘的设计轮类零件靠轮缘的工作部分与其它传动件的接触传递运动和动力,为保证其工作部分具有良好的工作性能,轮缘在整体上应有一定的强度和刚度。

对于有腹板(轮辐)的轮类零件,结构设计中主要是确定轮缘的厚度。

2) 腹板(轮辐)的设计中等直径的轮类零件常采用锻造毛坯,做成腹板式结构(图26-1a)。

腹板的型式有多种,随零件的类型、尺寸和毛坯的制造工艺等因素而不同。

设计中应考虑节省材料、减轻重量、简化制造工艺。

在高速条件下工作的零件,还应注意腹板结构对振动和噪声的影响。

一般结构设计中主要是确定腹板的厚度。

轮缘和腹板多为整体式结构。

但有时为节约贵重金属,也可将轮缘和腹板用不同材料分别制造加工,然后将二者连接装配成一体。

这种结构称为组合式结构,常见于尺寸较大的蜗轮、齿轮等零件。

具体连接方法见表26-1中组合式蜗轮。

直径较大的轮类零件,受锻造设备的限制常选用铸造毛坯,并做成轮辐式结构(图26-1b)。

结构设计时应合理确定轮辐的个数及其横截面形状和尺寸,重要场合应通过强度计算确定,具体方法可参考有关设计资料。

小直径轮类零件常不设腹板或轮辐,而采用轮缘与轮毂直接相连的实心式结构(图26-1c)。

3) 轮毂的设计轮类零件通过轮毂与轴的连接传递运动和载荷,轮毂的形状、尺寸和位置将直接影响其承载能力和零件整体与轴的定位精度。

(1)轮毂在轴向应有适当的宽度(2)轮毂在径向应有一定的厚度(3)轮毂、轮缘和腹板应有合理的相对位置(4)注意轮毂端面设计以上四点都有一些具体注意事项。

注意事项适当的宽度轮毂在轴向应有适当的宽度。

轮毂通过毂孔表面与轴的配合实现零件的径向定位,为保证足够的定位精度和承载能力,轮毂的宽度不能过小。

圆柱齿轮轮毂的宽度不应小于齿宽。

对于锥齿轮、蜗轮等轴向力较大的零件,轮毂宽度宜取大些。

轮毂宽度一般根据轴的直径确定。

一定的厚度轮毂在径向应有一定的厚度。

轮毂与轴常用键和过盈连接,为保证连接强度和载荷传递能力,轮毂需要足够的厚度。

通常可根据轴的直径确定轮毂的厚度。

实心结构的齿轮采用键连接时,毂孔上的键槽对轮毂的强度有所削弱,故轮毂的剩余厚度e应满足一定要求(见表26-1中实心式齿轮)。

e值不满足要求时,应将齿轮与轴做成一体。

但一体式结构的齿轮加工不便,而且齿轮一旦失效,将与轴同时报废。

因此e值满足要求时,齿轮与轴应设计成分体式结构。

合理的相对位置轮毂、轮缘和腹板应有合理的相对位置。

通常轮毂与轮缘和腹板对称布置,但有时轮毂也可偏置。

如图26-2a所示的链轮,当传递载荷较小时,与轴采用紧定螺钉联接,故轮毂设计成偏置的结构;当齿轮产生齿向载荷分布不均时,若将腹板向受力较小的一侧偏置(图26-2b),使受力较大一侧轮齿的刚度下降,则有利于改善轮齿的受力情况;对于轴向力方向固定的零件,通常将轮毂向轴向力指向一侧偏置,如表26-中实心式和腹板式锥齿轮。

相关文档
最新文档