2013隐身技术的发展

合集下载

电磁波隐身技术的研究

电磁波隐身技术的研究

电磁散射与隐身技术导论课程大作业报告学院:电子工程学院专业:电磁场与无线技术班级: 021061学号: 02106020姓名:赖贤军电子邮件: 92065436@日期: 2013 年 06 月成绩:指导教师:姜文电磁波隐身技术的研究隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。

即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。

1.隐身技术及其历史背景现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。

隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。

隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。

它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。

简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。

早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。

当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。

由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。

2.隐身技术的工作原理隐身技术的主要就是反雷达探测。

雷达是一种利用无线电波发现目标并测定其他位置的装置。

雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。

隐身技术及隐身武器装备的发展历程

隐身技术及隐身武器装备的发展历程

隐身技术及隐身武器装备的发展历程隐身技术是20世纪发展起来的一门新兴军事技术,伴随着科学技术的进步而日趋成熟。

隐身技术涉及的技术领域十分广泛,已经从最初应用在飞机的可视性控制,拓展到各种武器装备的雷达、红外、声、光、电磁等各种目标特征信号的控制。

隐身技术给现代战争的思维模式和作战方式带来了根本性的变化,隐身与反隐身已成为战争双方争夺信息资源的重要手段。

纵观隐身技术及隐身武器装备的发展历程,可以把它分成3个发展阶段。

起步阶段(20世纪70年代以前)隐身技术发端于视觉隐身。

第一次世界大战时期,德国、法国均开始在覆盖飞机的蒙皮上喷涂伪装色。

在第二次世界大战中,为了对付目视探测威胁和刚刚发展起来的雷达、声纳探测威胁,通过降低武器的目标特征信号进行隐蔽进攻的概念已经逐渐形成,并且在飞机、潜艇等武器中开始应用。

二次世界大战后,地面发射和空中发射的防御性导弹迅速发展起来,导弹与雷达火控系统的结合极大地提高了防空系统的作战效能。

1960年,美国U-2高空侦察机被苏联的SA-2防空导弹击落后,美国开始重视侦察机和巡航导弹的雷达目标特征信号控制技术研究,先后研制了SR-71“黑鸟”高空侦察机、AGM-28B“猎犬”空对地巡航导弹等具有一定隐身性能的武器,为美国隐身技术的发展奠定了基础。

SR-71是美国洛克希德公司为美国中央情报局研制的高空、高速侦察机,可以在27千米高空以3马赫的速度飞行。

SR-71采用了双三角机翼、平底机身的翼身融合隐身外形,飞机表面涂有能吸收雷达波和红外线的磁性吸波材料。

因此SR-71具有一定的雷达隐身性能和红外隐身性能。

(SR-71“黑岛”高空侦察机为美国隐身技术的发展奠定了基础。

)AGM-28B“猎犬”导弹是罗克韦尔公司研制的战略/战术空地巡航导弹,最大飞行速度2马赫,射程960千米。

它采用鸭式气动布局,进气道唇口采用了雷达吸波结构。

发展阶段(20世纪70~80年代)美国是现代隐身技术发展的先驱。

隐身技术的发展趋势

隐身技术的发展趋势

隐身技术的发展趋势隐身技术是指可以使人或物体具备隐身能力的技术,早在20世纪60年代就有科学家开始研究隐身技术,如今随着科技的不断进步,隐身技术也取得了长足的发展。

未来隐身技术的发展趋势主要包括以下几个方面。

首先,隐身材料的发展将是隐身技术的一个重要方向。

隐身材料是隐身技术的基础,通过使用特殊的材料,可以使物体对电磁波的反射、吸收和散射减小,从而达到隐身的效果。

目前已经出现了一些隐身材料,如纳米结构材料、金属材料和碳纤维材料等。

未来隐身材料的发展将更加注重成本降低和实用性提高,同时也会深入研究材料的光学、电磁等特性,以实现更为完美的隐身效果。

其次,隐身技术的应用范围将进一步拓展。

目前隐身技术主要应用于军事领域,用于战机、导弹等军事装备的隐身。

未来随着技术的发展,隐身技术将逐渐应用于民用领域,如汽车、建筑物等。

隐身汽车可以降低车辆的反射信号,减小被雷达侦测的可能性;隐身建筑物可以减少外部环境对建筑物的影响,提升建筑物的抗风防火等能力。

隐身技术的应用范围拓展将使人们的生活更加便利和安全。

第三,隐身技术的研究将更加注重多领域的交叉融合。

隐身技术的研究需要涉及到光学、物理、材料等多个学科的知识。

未来隐身技术的研究将更加注重学科交叉融合,如将电子技术与光学技术相结合,实现更为高效的隐身效果;将材料学知识与光学特性相结合,研究出更为适应不同环境的隐身材料。

多学科的交叉融合将为隐身技术的发展提供更多的可能性和突破口。

最后,隐身技术的发展还需要制定相应的规范和法律。

随着隐身技术的不断发展和应用,可能会引发一系列的安全和伦理问题,如是否合法使用隐身技术、如何防止隐身技术被滥用等。

因此,未来隐身技术的发展还需要制定相应的规范和法律,确保隐身技术的应用符合社会的法律和伦理标准。

总之,隐身技术的发展趋势主要包括隐身材料的发展、应用范围的拓展、学科交叉融合和规范法律的制定。

未来隐身技术的发展将使我们的生活更加便利和安全。

舰船隐身技术发展历程

舰船隐身技术发展历程

舰船隐身技术发展历程
舰船隐身技术是指减少舰船在雷达、红外线、声纳等各种探测系统中的探测和识别能力,以达到隐身的目的。

隐身技术的发展历程可以分为以下几个阶段:
第一阶段:早期掩蔽技术(20世纪40年代-50年代)
早期的隐身技术主要是采用进行掩蔽,包括改变舰船造型,使用反射马赛克涂装,装置烟幕弹等提高舰船的掩蔽能力。

第二阶段:被动隐身技术(20世纪60年代-70年代)
被动隐身技术采用吸波材料涂覆,改变船体形状和角度,使舰船可以避免被雷达和红外线探测到。

第三阶段:主动隐身技术(20世纪80年代-90年代)
主动隐身技术是通过反射回波波形的改变,使敌方雷达无法判读舰船的真实位置。

被动隐身技术与主动隐身技术的结合大大提高了舰船的隐身能力。

第四阶段:多源信息融合隐身技术(21世纪初)
多源信息融合技术是指利用雷达、红外线、声纳等多种探测系统收集的信息,在计算机内进行处理和融合,提高舰船的隐身效果。

此外,船体材料和造型设计也不断更新升级,提升隐身能力。

综上所述,舰船隐身技术的发展经历了多个阶段,从早期掩蔽技术,到被动隐身技术和主动隐身技术,再到多源信息融合技术,都是在不断创新和提高隐身能力的过程中不断发展的。

我国制成使生物隐形的“隐身衣”

我国制成使生物隐形的“隐身衣”
责编:蔡忠
电话:2262757
2013年11月4日
星期一
czjjxw@
科技
■ 生命科技
05
我国制成使生物隐形的 “ 隐身衣”
据新华社电 改变材料对电磁波的折 射率,就能够将物体隐藏起来。 中国科学家 运用这一原理, 研制出了能够在可见光波 段将生物隐形的隐身器件。 “ 我们在可见光中实验实现了物体的 隐身, 而且无需使用精密设计的纳米电磁 材料。 ”浙江大学国际电磁科学院陈红胜教 授团队与新加坡南洋理工大学等国际团队 合作,使用玻璃,制造出了能够在水中隐形 的六边形柱状隐身器件和能够在空气中隐 形的多边形隐身器件。 两种隐身器件使金 鱼和猫成功隐形。 “ 这意味着隐身器件不仅能够隐藏像 猫、鱼这样大的物体,生物还能和隐身器件 一起活动, 隐身效果并不会因此受到影 响。 ”陈红胜说。 陈红胜介绍,目前应用的隐身技术,如 隐形飞机,大部分是通过吸收电磁波,让反 射回去的电磁波达到最小,但他认为,这种 技术并不是通常理解的 “ 隐身衣”技术。 人之所以能看到物体, 是因为光射到 物体上后,被物体阻挡并反射到人的眼睛。 英国理论物理学家约翰 - 彭德里在 2006 年 提出了利用坐标变换的方法设计隐身衣, 使电磁波能够绕过被隐身的区域, 按照原 来的方向传播,从而可以使物体完全隐形, 奠定了隐身衣研究的理论体系。 但通过这种方法设计出的隐形器件理 论上只能够在某一个电磁频率上实现完美 的隐身效果,很难在较宽的频段实现。 “ 进入隐身衣的光线要绕过物体,所以走 过的路径长;没有进入隐身衣的光线是一条 直线,走过的路径短。完美的隐身衣要求所有 的光线保持相 的材料对不同光线具有不同的折射率,也只 能在很窄的频段实现隐身。 ”陈红胜说。 此外,隐身衣的参数复杂,若要在可见 光频段实现隐身需要精 细 的纳米加工精 度,对工艺要求非常苛刻。 陈红胜团队对这个理论进 行 了 简化 , 提出了一种可见光波段多边形隐身衣的设

《隐身技术概述》课件

《隐身技术概述》课件

应用前景与发展趋势
陆军
隐身技术的应用可以提升军 事行动的成功率和生存能力。
海军
隐身技术对于海上战舰和潜 艇的隐蔽行动和反制具有重 要意义。
空军
隐身技术可以提高飞机的生 存能力,增加空中打击的效 果。
航天
隐身技术的应用可以保护太空船和卫星等航天 器免受敌方的探测和破坏。
比赛与训练
隐身技术的发展可以为竞赛和训练提供全新的 视野和挑战。
通过干扰、混淆和掩蔽目标的电磁信号,使目标难以被识别和定位。
光学隐身技术
1
光学消隐技术
利用光学材料和结构设计,减少或遮挡目标的光学信号,降低目标在光学波段的 可见性。
2
红外消隐技术
采用吸热材料和冷却装置,降低目标的红外辐射信号,减少被红外探测器发现的 可能性。
3
涂层技术
利用特殊涂层和纹理处理,改变目标的反射和散射特性,达到隐身的效果。
《隐身技术概述》PPT课 件
隐身技术是一项关乎军事和科技的重要领域,本课程将概述隐身技术的定义、 发展历程、分类以及应用前景与发展趋势。
简介
1 隐身技术的定义
隐身技术是指利用各种手段和技术,使目标在电磁、光学、声学等波段难以被探测到的 科技领域。
2 隐身技术的发展历程
隐身技术始于20世纪20年代的雷达探测技术研究,经历了多个阶段的发展和突破。
目前的隐身技术仍存 在一些局限性,如受 到复杂电磁环境和目 标形状的限制。
空间干扰技术
借助干扰源和屏蔽设 备,干扰敌方电磁探 测和定位系统,提高 隐身效果。
合成孔径雷达 技术
利用合成孔径雷达的 高分辨率成像能力, 准确探测和识别隐身 目标。
生物仿生技术
借鉴自然界中隐身生 物的特点和结构,开 发新的隐身材料和技 术。

隐身技术

隐身技术

2014 年春季学期研究生课程考核(读书报告、研究报告)考核科目:现代光学材料与技术选讲学生所在院(系):理学院物理系学生所在学科:光学姓名:学号:学生类别:统招题目:隐身技术的发展隐身技术的发展1、隐身技术的研究背景隐形技术俗称隐身技术,准确的术语应该是“低可探测技术”。

即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征,最大程度地降低对方探测系统发现的概率,使己方目标,己方的武器装备不被敌方的探测系统发现和探测到。

隐形技术是传统伪装技术的一种应用和延伸,它的出现,使伪装技术由防御性走向了进攻,有消极被动变成了积极主动,增强部队的生存能力,提高对敌人的威胁力。

现代无线电技术和雷达探测系统的迅猛发展,极大推动了世界各国防御系统的搜索、跟踪、攻击目标的能力,传统的作战武器受到了越来越严重的威胁。

隐身技术作为提高武器系统生存、突防、打击能力的有效手段,已经成为集陆、海、空三位一体的现代战争中最重要、有效的突防战术技术。

在入侵巴拿马、海湾战争以及刚刚结束的入侵南联盟的战争中,美国的F—117战斗攻击机执行了几千架次的空袭任务,却只损失了一架战机;而B—2隐身轰炸机从美国本土长途奔袭到南联盟执行轰炸任务却未受丝毫威胁。

创造这一奇迹的原因之一就是隐身技术的应用最大限度地保护了战机,隐身技术在提高现代兵器的突防能力方面正发挥着越来越重要的作用。

基于隐身技术在军事中的重要作用,各国相继开展了隐身技术的研究,经过半个多世纪的研究成绩斐然。

从50年代起,美国开展隐身技术研究,经过20多年的发展,70年代开始研制隐身飞机,80年代隐身飞机装备部队并投入使用。

现已装备的F—117A 隐形攻击机、B—2战略轰炸机以及新问世的F—22先进战术隐身战斗机均采用了不同类型的隐身材料。

俄罗斯的S—37隐身战斗机也已问世。

这些雷达隐身战机的相继问世标志着国外隐身技术已进入工程发展阶段。

2隐身技术的发展现状目标隐形性能主要取决于雷达的接收功率和雷达波散射截面的大小,因而降低目标的雷达波散射截面、雷达的接收功率成为隐形技术的主要目标,目前主要有三种途径:外形隐身技术,雷达吸波材料隐身技术和最新提出的超材料隐身技术。

隐身技术及应用

隐身技术及应用

隐身技术及应用隐身技术(Stealth Technology)是一种利用材料、结构和设计来降低飞行器或其他物体在雷达、红外线等探测系统中被探测的能力的技术。

隐身技术最早应用于军事领域,用于减小飞机、导弹等武器系统的雷达截面和热红外特征,从而提高其隐蔽性和生存能力。

隐身技术的应用导致了现代战争方式的变革,同时也有一些民用领域的应用。

本文将首先介绍隐身技术的基本原理和发展历程,然后探讨其在军事和民用领域的应用。

隐身技术的基本原理是通过对飞行器或其他物体的外形、材料和信号反射进行优化,使其尽量减小雷达截面和热红外特征,降低被探测的概率。

隐身技术的发展可以追溯到第二次世界大战后期,当时在英国,科学家们发现将舰船覆盖上能够吸收雷达波的材料可以减小舰船的雷达截面,从而提高其隐蔽性。

自此,隐身技术开始得到军事研究单位的关注,随着雷达技术和其他探测技术的发展,隐身技术也在不断演进和应用。

在军事领域,隐身技术主要应用于飞机、导弹和潜艇等武器系统上。

以飞机为例,隐身飞机主要通过减小雷达截面和热红外特征来提高其隐蔽性。

为了减小雷达截面,隐身飞机通常具有流线型的外形,有平滑的曲线和尖锐的前缘,可以减小雷达波在表面上的反射。

此外,隐身飞机还使用了辐射吸收材料和雷达反射减少涂层等技术,来吸收、散射或折射来自雷达的信号,使其不易被探测。

为了减小热红外特征,隐身飞机使用了吸热涂层和冷却系统等技术,来降低其在红外探测系统中的热辐射。

此外,隐身飞机还可以采用干扰和电子对抗等技术,干扰敌方的雷达探测系统,从而进一步提高其隐蔽性。

隐身技术在军事领域的应用给现代战争带来了重大变革。

隐身飞机的出现使传统的空中防御体系面临巨大挑战,因为传统的雷达和防空导弹系统很难探测和拦截隐身飞机。

此外,隐身技术也拓宽了军事作战的空间和方式,使飞机和导弹等武器系统能够更近距离地接近敌方目标,执行突袭和打击任务。

隐身技术还使得侦察和监视任务更加困难,提高了作战单元的生存能力和战斗效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隐身技术的发展及应用摘要:介绍隐身技术带来了军事装备的变革,并探讨有源和无源隐身原理,并重点介绍了无源隐身中利用理想对消特性、频率差将破坏相干性、相位差的影响、幅度差的影响,以规避雷达对目标的检测。

接着分析了隐身技术的现状及其原理,分别从可见光隐身技术、声波隐身技术、雷达隐身技术、激光隐身技术及红外辐射隐身技术方面介绍了当前所采用隐身技术的原理、方法及其应用。

通过采用可见光、红外及激光隐身兼容技术,更好的达到隐身的效果,即可得隐身兼容技术才是隐身技术的发展方向。

隐身技术迅猛发展,新的隐身方法和技术应运而生。

仿生技术、等离子体隐身技术、“微波传播指示”技术及智能隐身技术丰富和扩展了隐身技术的领域。

在新的隐身方法中,重点介绍了等离子体隐身技术这一典型事例,通过介绍其原理、方法,以及在军事装备上的应用,以便我们把握这一隐身技术的发展方向。

隐身材料的开发和利用一直是隐身技术发展的重要内容,是飞机等隐身兵器实现隐身的基石,接下来介绍了正在研制开发的新型隐身材料:宽频带吸波剂、高分子隐身材料、纳米隐身材料、手征材料、结构吸波材料及智能隐身材料。

新的隐形材料的研制,必将推动隐身技术迈向新的台阶。

隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。

最后,我们探讨了当今反隐身技术的发展,以及探讨反隐身技术的方法:采用长波低频雷达探测技术、采用激光雷达探测技术、采用光电探测技术、采用数据融合技术、采用自动化和智能化技术。

希望隐身技术和反隐身技术,这对矛和盾,能够加快我国的武器装备现代化的进程。

关键词:有效散射截面积(RCS)无源及无源隐身技术等离子体技术1 前言在1991年海湾战争中,美空军F-117A隐身攻击机,共出动1296架次,但未损失一架。

它出动的架次只占联军出动总架次的2%,但它所击中的战略目标却占全部被联军击中的战略目标的40%。

造成这一非凡战绩的原因,除伊拉克防空系统的部署及运作上的不利以外,主要应归功于F-117A的隐身能力。

隐身技术的出现促使战场军事装备向隐身化方向发展。

由于各种新型探测系统和精确制导武器的相继问世,隐身兵器的重要性与日俱增。

以美国为首的各军事强国都在积极研究隐身技术,取得了突破性进展,相继研制出隐身轰炸机、隐身战斗机、隐身巡航导弹、隐身舰船和隐身装甲车等,有的已投入战场使用,在战争中显示出巨大威力。

2 隐身技术的概述现代无线电技术和雷达探测系统的迅猛发展,极大地推动了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁越来越严重。

隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。

隐身技术(又称为目标特征信号控制技术)是通过控制武器系统的信号特征,使其难以被发现、识别和跟踪打击的技术。

即以削弱己方武器系统的观测特征,使敌方的探测器不能发现目标,或使探测距离大大缩短。

一般认为隐身主要包括减少目标的雷达特征、红外特征和电视特征等,其中减少雷达特征主要是减少目标的有效散射截面积(RCS)。

雷达目标(飞机、导弹或军舰等)的隐身方法可分为有源和无源隐身两大类。

迄今为止,西方军事强国,经过几十年研究与实践,对飞机、军舰的无源隐身技术已达成熟阶段;无论采用外形控制隐身,还是涂层吸波隐身,已从微波频段、热频段到光频段,无所不在。

著名产品有F-117A 。

近年年来,随着微型高速计算机技术的发展,有源隐身技术也有了实质性的突破。

2.1无源隐身原理无源隐身是利用外形特征和(或)涂吸波材料等来减小目标的有效雷达截面积,使探测雷达处理不了接收到的微弱回波信号,从而达到隐身的目的。

根据雷达方程可计算得出采用雷达隐身技术后的最大探测距离与目标有效雷达截面积的关系为:1/422311/42231/41/41R =P /(4)P P /(4)P *t r t r G G K λσπλπσσ⎡⎤⎣⎦⎡⎤=⎣⎦= 式中 ,P t 为发射功率;P r 为接收功率;G 为天线增益;λ为雷达工作波长;σ为有效雷达截面积;1R 为雷达最大探测距离;1/42231P /(4)P t r K G λπ⎡⎤=⎣⎦即目标采用隐身技术后与雷达参数有关的系数。

由式(1)看出,1R 与σ成4次方根关系,若降低目标有效雷达截面积σ,则雷达的探测距离1R 就将减少。

如雷达散射截面减小到1/4096,那么雷达的探测距离便缩短到1/8。

可见,采用了隐身技术后,对敌方雷达的探测影响很明显。

2.2有源隐身原理有源隐身技术是雷达目标利用装载的有源设备发射倒相回波,在雷达接收机天线处与目标真实回波相抵消,从而减弱雷达接收到的目标真实回波,达到雷达隐身的效果。

即利用了相参信号的干涉效应,改变目标的散射分布,以减小雷达方向散射功率密度的一种隐身技术,如图1所示。

雷达入射至日标的场强是iE (幅度相为(00,,i E ωϕ)),目标反射场强为(00,,r E ωϕ),目标有效反射面积为0σ;目标有源设备发出的无延迟场强为s 11(,,)s E E ωϕ,其相应的等效反射面积为1σ。

目标反射面积的一般定义为2202E 4R ri E σπ= 在目标回波中加人有源设备发出场强s E 后,目标的综合反射面积变为:()()()2221101001000E 4R 12cos r s c i E t t σπσσσωωϕϕσσ==++--+-⎡⎤⎣⎦(+E )式中,0t 为有源设备发出对消回波的时延,1ϕ为有源设备发出对消回波的相角,1ω为有源设备发出对消回波的角频率,而2s 12E 4R iE σπ= 2.2.1 理想对消特性在有源设备发出对消回波与反射回波全相参、无延时的情况下100,(t 0))ωω==(,这时相位差10ϕϕ-将决定目标综合反射面积c σ的大小。

最佳对消特性应由有源设备控制输出功率就可控制1σ(通过控制幅度E s ),同时控制输出相位1ϕ寻优,以达最佳控制。

当达最佳对消系数时,有10101()k σσϕϕπ⎧=⎪⎨⎪-=⎩(2k+1)为常数(5) 按式(3) 算得c 0σ=,即在雷达方向有效地实现了目标的完全隐身。

这是理想的目标回波的对消特性。

影响有源对消效果的诸因素中,频差10()ωω-影响最大,其次是初相差(10ϕϕ-),幅度差和对消回波延迟。

2.2.2 频率差将破坏相干性目标回波是若干脉冲周斯r nT 积累相加的,对全相参信号而言,当角频差10ωωω∆=-较小时,积累相加会出现一些新特性,若载波初相差10K ϕϕπ-=(+1),回波列以取样函数r n∑(t-nT )表示,则积累相加合成场为010E 2sin sin()2,nt tr E na a T πωωπ=-=Ω=Ω∑(6) 或220n E 4E sin()sin()m ma na ππ=∑∑ (7) 仅在a 为整数时,以上两式才同时为零,即达最佳有源对消;a 为其他数值时,有源对消效果与脉冲积累数有关,m 很大时(如100个),回波积累对消效果基本消失。

2.2.3 相位差的影响当010,c c σσσϕϕϕ=∆=-随变化的归一化曲线为:20lg 20lg sin /2c dB βσϕ=-=-∆ (8)在0180ϕ∆=时,对消效果最好,0β=;而当090ϕ∆=时,则0/245ϕ∆=,0sin 450.707,3dB β==。

说明相位差ϕ∆偏离π的奇数倍越远,有源对消效果越差。

3.4 幅度差的影响当K+1ϕπ∆=(2),且取10m σσ=,则c σ的归一化曲线可表示为:20lg 1m γ=-- (dB ) (9)在(0,2)m ∈时,均产生有源对消、目标反射面积缩减的效果。

该曲线在m =1附近变化剧烈。

如在1m 0.3210;1m 0.0330dB dB γγ-==-==时,而时,。

3 隐身技术的现状及原理通常所说的隐身技术,即目标特征信号减缩技术或被称为“低可探测技术”。

表示目标特征信号的物理量主要有,光学可见度、噪声强度、雷达散射截面(RCS )、红外辐射强度。

以此,目前利用的隐身技术主要可分为可见光隐身技术、声波隐身技术、雷达隐身技术、红外隐身技术及激光隐身技术。

3.1 可见光隐身技术可见光隐身,就是降低军事装备本身的目标特征,使敌方的可见光相机、电视摄像机等光学探测、跟踪、瞄准系统不易发现目标的可见光信号。

采用可见光隐身技术的目的,是通过减少目标与背景之间的亮度、色度和运动的对比特征,达到对目标视觉信号的控制,以降低可见光探测系统发现目标的概率。

可见光隐身技术手段主要采用迷彩、伪装技术,在武器系统表面涂上与背景颜色相近的迷彩,或者在武器表面罩上网。

试验表明,涂敷迷彩具有相当好的隐身效果,如用微光夜视仪观测1000m处坦克的发现概率,无迷彩时为77%,有迷彩时只有33%。

现代迷彩兼有吸波作用,不仅可降低坦克的可见光探测概率,还可减弱坦克的红外辐射。

伪装网是一种通用性的伪装器材,主要用来伪装常温状态的目标,使目标表面形成一定的辐射率分布,以模拟背景的光谱特性,使之融于背景之中%同时在伪装网上采用防可见光的迷彩,可更有效对抗可见光侦察、探测和识别。

此外,各国正在研究各种新的可见光隐身方法,如美国正研究一种电致变色涂敷材料,用不同的电压控制时,材料将显示出不同的特性,使武器颜色随背景变化。

3.2声波隐身技术声波隐身技术,也称为听觉隐身技术。

隐身武器应具有低声特征信号的隐身特点,以用来对抗性能和种类日趋完善的防御探测系统。

飞行器作为主要武器系统之一,它的噪声主要由螺旋桨/旋翼的旋转和涡流噪声,发动机进气、排气、燃烧的噪声,机体空气动力尾流噪声以及涡流噪声等声源组成。

尤其是直升机,因为其飞行高度在50m左右,为了避免被侦测到,同时也避免声触发地雷和导弹的打击,降低噪声是极为重要的。

另外对低空无人机和潜艇来说也存在同样的问题。

针对噪声源,可应用以下降低噪声的措施:(1)减震结构:通过采用具有减震作用的蜂窝夹层结构或镶入减震材料,降低噪声源引起的噪声。

(2)整流结构:设计由许多流线型叶片构成的隔栅,纠正气流的不均匀流动,降低高频谐振。

(3)吸声结构:以吸声材料制成的密集角锥,可以有效地吸收产生的噪声。

降低噪声的措施有时与降低RCS的措施及抑制红外辐射措施是结合的。

3.3雷达隐身技术雷达隐身技术是以电磁波散射理论为基础,为了不被雷达发现,最有效的办法是减少飞行器的雷达截面积RCS。

即采取各种措施使目标在雷达探测波束照射范围内具有极小的雷达截面积,大幅度减少可被敌方雷达接收机截获的电磁波能量,使雷达对目标的探测距离缩短,从而达到隐身的目的。

被实践证明行之有效并投入实用的隐身技术有:外形隐身技术和材料隐身技术。

相关文档
最新文档