高中物理概念大全
高中物理基本概念

高中物理基本概念高中物理基本概念是学习物理的基础,包括力学、电学、光学、原子物理等多个方面。
下面将分别介绍这些基本概念:一、力学基本概念1.速度:描述物体运动快慢的物理量,定义为物体在单位时间内通过的位移。
2.加速度:描述物体速度变化快慢的物理量,定义为物体在单位时间内速度的变化量。
3.牛顿第二定律:物体受到的合外力等于其质量乘以加速度,即F=ma。
4.功:力在物体上产生的位移的乘积,单位为焦耳。
5.动能:物体由于运动而具有的能量,单位为焦耳。
6.势能:物体由于位置或状态而具有的能量,例如重力势能和弹性势能。
7.角速度:描述物体转动快慢的物理量,定义为物体在单位时间内转过的角度。
8.周期:描述物体振动一次所需时间的物理量。
9.频率:描述物体振动快慢的物理量,单位为赫兹。
二、电学基本概念1.电荷:带电粒子或粒子团。
2.电场:电荷周围存在的一种物质,会对放入其中的电荷产生作用力。
3.电势差:两个点之间电势的差值,单位为伏特。
4.电流:电荷在导体中流动形成电流,单位为安培。
5.电阻:导体对电流的阻碍作用,单位为欧姆。
6.电源:提供电能并将其转换为其他形式的能量的装置。
7.电压:电场中两点之间的电势差,单位为伏特。
8.电容:描述电容器储存电荷能力的物理量,单位为法拉。
9.电磁感应:变化的磁场可以引起电场的现象。
三、光学基本概念1.光波:电磁波的一种,包括可见光和不可见光。
2.光速:光在真空中的传播速度,约为3×10^8米/秒。
3.光直线传播:光在同一种均匀介质中沿直线传播的现象。
4.光折射:光从一种介质斜射入另一种介质时,传播方向发生改变的现象。
5.光反射:光射到物体表面时被反射回来的现象。
6.透镜:使光线汇聚或发散的光学元件。
7.凸透镜与凹透镜:凸透镜对光线有汇聚作用,而凹透镜对光线有发散作用。
8.像距与物距:物体到透镜的距离称为物距,而像到透镜的距离称为像距。
四、原子物理基本概念1.原子核:原子的中心部分,包含质子和中子。
高中物理概念大全

高中物理概念大全高中物理是国家课程标准中的一门重要科目,是培养学生科学素养和实践能力的重要途径之一。
以下是高中物理概念大全,收录了高中物理中常见的概念及相关解释。
1. 力:物体之间相互作用的结果,可以造成物体的运动状态改变,通常用牛顿作为单位。
2. 质量:物体所固有的属性,在恒定重力场下的质量即是物体所受重力的大小。
3. 长度:对象末端与对象起始点之间的距离。
4. 时间:运动发生的持续时长,通常用秒作为单位。
5. 加速度:物体的速度变化率,简称为加速度,通常用米每秒平方作为单位。
6. 动量:某个物体的动态性质,是质量与速度的乘积。
7. 能量:物体内在属性,可以进行物理或化学变化。
8. 动能:物体由于速度而具有的能量。
9. 动量守恒:在一个孤立的系统中,该系统总动量始终保持不变。
11. 力的平衡:当作用在物体上的所有力之和为零时,物体处于平衡状态。
12. 频率:某个周期性事件每秒发生的次数,通常用赫兹作为单位。
13. 黏滞力:物体移动时所遇到的阻力,可以看作是物体运动速度的函数,阻碍物体的加速度。
14. 摩擦力:物体表面的相互作用力,可以阻碍物体的运动。
15. 弹性力:当一个物体发生弹性变形时,作用于该物体的力可以恢复原来的形状。
17. 引力:物体之间的相互作用力,由于万有引力定律中的质量和距离而变化。
18. 波长:波形上相邻波峰和波谷之间的距离,通常用米作为单位。
19. 焦距:光线通过透镜或凸面镜后聚焦的距离。
20. 反射率:表面反射的光量占总光量的比率,通常用百分比表示。
21. 折射率:介质中光线的速度相对于真空中光线速度下降的比率。
22. 热量:物体内部内部能源转移的形式。
24. 热传递:热量从一个物体流向另一个物体,可以通过热传导,对流或辐射进行。
25. 声波:纵波传播,能够穿过悬浮的和液化的介质,但无法穿透真空。
高中物理知识点清单(非常详细)

高中物理知识点清单第一章运动的描述第一节描述运动的基本概念一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量.(2)路程是物体运动路径的长度,是标量.2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即=,是矢量.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量.3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小.三、加速度1.定义式:a=;单位是m/s2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同.考点一对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断.3.物体可被看做质点主要有三种情况:(1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点.(3)有转动但转动可以忽略时,可把物体看做质点.考点二平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt→0时的平均速度.(2)对于匀速直线运动,瞬时速度与平均速度相等.考点三速度、速度变化量和加速度的关系2.物体加、减速的判定(1)当a与v同向或夹角为锐角时,物体加速.(2)当a与v垂直时,物体速度大小不变.(3)当a与v反向或夹角为钝角时,物体减速物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v=中当Δt→0时v是瞬时速度.(2)公式a=中当Δt→0时a是瞬时加速度.第二节匀变速直线运动的规律及应用一、匀变速直线运动的基本规律1.速度与时间的关系式:v=v0+at.2.位移与时间的关系式:x=v0t+at2.3.位移与速度的关系式:v2-v=2ax.二、匀变速直线运动的推论1.平均速度公式:=v=.2.位移差公式:Δx=x2-x1=x3-x2=…=xn-xn-1=aT2.可以推广到xm-xn=(m-n)aT2.3.初速度为零的匀加速直线运动比例式(1)1T末,2T末,3T末……瞬时速度之比为:v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.(2)1T内,2T内,3T内……位移之比为:x1∶x2∶x3∶…∶xn=1∶22∶32∶…∶n2.(3)第一个T内,第二个T内,第三个T内……位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶xn=1∶3∶5∶…∶(2n-1).(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶…∶tn=1∶(-1)∶(-)∶…∶(-).三、自由落体运动和竖直上抛运动的规律1.自由落体运动规律(1)速度公式:v=gt.(2)位移公式:h=gt2.(3)速度—位移关系式:v2=2gh.2.竖直上抛运动规律(1)速度公式:v=v0-gt.(2)位移公式:h=v0t-gt2.(3)速度—位移关系式:v2-v=-2gh.(4)上升的最大高度:h=.(5)上升到最大高度用时:t=.考点一匀变速直线运动基本公式的应用1.速度时间公式v=v0+at、位移时间公式x=v0t+at2、位移速度公式v2-v=2ax,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v0=0时,一般以a的方向为正方向.3.求解匀变速直线运动的一般步骤→→→→4.应注意的问题①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二匀变速直线运动推论的应用1.推论公式主要是指:①=v=,②Δx=aT2,①②式都是矢量式,在应用时要注意v0与vt、Δx与a的方向关系.2.①式常与x=·t结合使用,而②式中T表示等时间隔,而不是运动时间.考点三自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g的匀加速直线运动.2.竖直上抛运动的重要特性(1)对称性①时间对称物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB =tBA.②速度对称物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义①图线与时间轴围成的面积表示相应时间内的位移大小.②若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.(4).相同的图线在不同性质的运动图象中含义截然不同,下面我们做一全面比较(见下表).二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若vA=vB时,xA+x0<xB,则能追上;若vA=vB时,xA+x0=xB,则恰好不相撞;若vA=vB时,xA+x0>xB,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路→→→(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v-t图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t内的平均速度等于物体在这段时间内的初速度v0与末速度v的平均值,也等于物体在t时间内中间时刻的瞬时速度,即===v.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T内的位移之差为一恒量,即Δx=xn+1-xn =aT2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx=aT2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况.五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…5.6.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验.四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T内的位移分别为x1、x2、x3、x4、…,若Δx=x2-x1=x3-x2=x4-x3=…则说明物体在做匀变速直线运动,且Δx=aT2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v-t图象.若v-t图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度vn=.3.求加速度的两种方法:(1)逐差法:即根据x4-x1=x5-x2=x6-x3=3aT2(T为相邻两计数点之间的时间间隔),求出a1=,a2=,a3=,再算出a1、a2、a3的平均值a==×=,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用vn=求出打各点时的瞬时速度,描点得v-t图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v-t图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞.5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.第二章相互作用第一节重力弹力摩擦力一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力Ff=μFN,静摩擦力:0≤Ff≤Ffmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则Ff=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式Ff=μFN来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;FN为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.轻杆轻绳轻弹簧弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系.2.力的合成:求几个力的合力的过程.3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则.3.分解的方法(1)按力产生的实际效果进行分解.(2)正交分解.三、矢量和标量1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则.2.标量只有大小没有方向的物理量,求和时按算术法则相加.考点一共点力的合成1.共点力合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小.(2)合力一定,二等大分力的夹角越大,二分力越大.(3)合力可以大于分力,等于分力,也可以小于分力.3.几种特殊情况下力的合成(1)两分力F1、F2互相垂直时(如图甲所示):F合=,tan θ=.甲乙(2)两分力大小相等时,即F1=F2=F时(如图乙所示):F合=2Fcos .(3)两分力大小相等,夹角为120°时,可得F合=F.解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二力的两种分解方法1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个实际分力的方向画出平行四边形;(3)最后由平行四边形和数学知识求出两分力的大小.2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F1、F2、F3…,求合力F时,可把各力沿相互垂直的x 轴、y轴分解.x轴上的合力:Fx=Fx1+Fx2+Fx3+…y轴上的合力:Fy=Fy1+Fy2+Fy3+…合力大小:F=合力方向:与x轴夹角为θ,则tan θ=.一般情况下,应用正交分解法建立坐标系时,应尽量使所求量(或未知量)“落”在坐标轴上,这样解方程较简单,但在本题中,由于两个未知量FAC和FBC与竖直方向夹角已知,所以坐标轴选取了沿水平和竖直两个方向.方法技巧——辅助图法巧解力的合成和分解问题对力分解的唯一性判断、分力最小值的计算以及合力与分力夹角最大值的计算,当力的大小不变方向改变时,通常采取作图法,优点是直观、简捷.第三节受力分析共点力的平衡一、受力分析1.概念把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析.2.受力分析的一般顺序先分析场力(重力、电场力、磁场力等),然后按接触面分析接触力(弹力、摩擦力),最后分析已知力.二、共点力作用下物体的平衡1.平衡状态物体处于静止或匀速直线运动的状态.2.共点力的平衡条件:F合=0或者三、平衡条件的几条重要推论1.二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.2.三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反.3.多力平衡:如果物体受多个共点力作用处于平衡状态,其中任何一个力与其余力的合力大小相等,方向相反.考点一物体的受力分析1.受力分析的基本步骤(1)明确研究对象——即确定分析受力的物体,研究对象可以是单个物体,也可以是多个物体组成的系统.(2)隔离物体分析——将研究对象从周围的物体中隔离出来,进而分析周围物体有哪些对它施加了力的作用.(3)画受力示意图——边分析边将力一一画在受力示意图上,准确标出力的方向,标明各力的符号.2.受力分析的常用方法(1)整体法和隔离法①研究系统外的物体对系统整体的作用力;②研究系统内部各物体之间的相互作用力.(2)假设法在受力分析时,若不能确定某力是否存在,可先对其作出存在或不存在的假设,然后再就该力存在与否对物体运动状态影响的不同来判断该力是否存在.3.受力分析的基本思路1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.2.基本思路:化“动”为“静”,“静”中求“动”.3.基本方法:图解法和解析法.4.图解法分析动态平衡问题的步骤(1)选某一状态对物体进行受力分析;。
高中物理必修3公式定理定律概念大全

高中物理必修3公式定理定律概念大全第一章电场1、电荷、元电荷、电荷守恒(A(1自然界中只存在两种电荷:用_丝绸_摩擦过的_玻璃棒_带正电荷,用_毛皮__摩擦过的__带负电荷。
同种电荷相互_,异种电荷相互_。
电荷的多少叫做_,用_(2用_摩擦_和_感应_的方法都可以使物体带电。
无论那种方法都不能_创造_电荷,也不能_消灭_电荷,只能使电荷在物体上或物体间发生_转移_,在此过程中,电荷的总量_不变_,这就是电荷守恒定律。
2、库仑定律(A(1内容:真空中两个静止点电荷之间的相互作用力,跟它们电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上。
(2公式:122Q Q F k r其中9 N﹒m 2/C23、电场、电场强度、电场线(A(1带电体周围存在着一种物质,这种物质叫_电场_,电荷间的相互作用就是通过_电场_发生的。
(2电场强度(场强①定义:放在电场中某点的电荷所受电场力F跟它的电荷量的比值②公式: E=F/q_由公式可知,场强的单位为牛每库③场强既有大小_,又有方向,是矢量。
方向规定:电场中某点的场强方向跟正电荷在该点所受的电场力的方向相同。
(3电场线可以形象地描述电场的分布。
电场线的疏密程度反映电场的强弱;电场线上某点的切线方向表示该点的场强方向,即电场方向。
匀强电场的电场线特点:距离相等的平行直线。
(几种特殊电场的电场线线分布4、静电的应用及防止(A(1静电的防止:放电现象:火花放电、接地放电、尖端放电等。
避雷针利用_尖端放电_原理来避雷:带电云层靠近建筑物时,避雷针上产生的感应电荷会通过针尖放电,逐渐中和云中的电荷,使建筑物免遭雷击。
(2静电的应用:静电除尘、静电复印、静电喷漆等。
5、电容器、电容、电阻器、电感器。
(A(1两个正对的靠得很近的平行金属板间夹有一层绝缘材料,就构成了平行板电容器。
这层绝缘材料称为电介质。
电容器是容纳电荷的装置。
(2电容器储存电荷的本领大小用电容表示,其国际单位是法拉(F。
第二章静力学(高中物理基本概念归纳整理)

积大小无关
三.摩擦力
3.静摩擦力:两物体间有相对运动趋势产生的摩擦力
方向:与相对运动趋势方向相反,平行接触面。大小:由“平衡条件” “牛顿第 二定律”或者由“牛顿第三定律”求得。
注意: ①静摩擦力存在极大值,即0<f ≤ fmax ②一般最大静摩擦力大于滑动摩擦力,有些题目中假设最大静摩擦力等于滑动摩擦力, 具体看题中条件。 ③摩擦力可以是动力,也可以是阻力。 ④运动的物体受的摩擦力不一定是滑动摩擦力,静止的物体受的摩擦力也不一定是静摩 擦力。 ⑤摩擦力的方向可以与运动方向相同,相反,成任意角度。(注意相对运动与运动的区 别) ⑥摩擦力可以做正功,也可以做负功、不做功。
六.共点力的平衡 2.解题方法:
合成法 分解法 正交分解法 三角形法
3.实例应用:
图解法;相似三角形问题;整体法、隔离法;临界问题;极值问题;圆周角;其它变式 训练(参考应用一、二中几何画板动态课件及例题)
祝你学业有成
2024年4月28日星期日8时28分6秒
注意:A 不受墙壁 支持力
注意:若匀速运 动,B不受摩擦 力
斜面地面均粗糙,B 物体不动,分析A减 速上升过程中各物体 受力情况。
五.共点力、力的合成与分解
1.共点力的合成:
共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力 叫做共点力。(注意三力平衡必共点,除平行力外) 合力与分力:如果某一个力单独作用的效果跟某几个力共同作用的效果相同,这一个力 就是那几个力的合力,这几个力就叫做那个力的分力。 注意:这是一种等效替代的思想。 力的合成:求几个力的合力的过程 遵循规律:平行四边形定则(三角形定则) 注意: ①合力是惟一的; ②只有同一物体所受的力才可合成;作用力与反作用力不可以合成 ③分力与合力在力的作用效果方面是一种等效替代关系,而不是物体的重复受力,故合 力与分力不能共存. 求合力的方法:①作图法②计算法 互成角度的合力与分力关系:0°30°60°90°120°180°…… 求二力,三力合力的范围:
高中物理主要概念

高中物理基本概念【物理学】1、 物理学是一门自然科学,它起始于伽利略和牛顿的年代,经历三个多世纪的发展,它已经成为一门有众多分支的、令人尊敬和热爱的基础科学。
2、 物理学所研究的是自然界中各种物质存在的现象、形式以及它们的性质和运动规律,同时还研究物质的内部结构。
3、 物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。
教材【必修1】第一章:运动的描述:1、 机械运动:物体的空间位置随时间.....的变化,是自然界最简单、最基本的运动形态,称为机械运动,简称为运动。
2、 质点:在某些情况下,为了研究问题方便........,我们可以忽略物...体的大小和形状.......,而突出物体具有质量这个要素,把它简化为...一个有质量的物质点,称为质点。
3、 参考系:要描述一个物体的运动,首先要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化,这种用来做参考的物体称为参考系.......。
4、 坐标系:为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。
有一维、二维、三维坐标系。
5、 路程:路程是物体运动轨迹的长度.....。
6、 位移:物体的位置变化用位移来表示。
我们可以用一条有方向线段来表示位移,起始指向终点......为位移的方向,线段的长度表示位移的大小。
7、 矢量和标量:矢量是有大小和方向,如力、位移、速度、加速度等。
标量只有大小没有方向。
8、 速度:物理学中用位移与发生这段位移所用时间的比值来表示物体运动的快慢.........。
单位是米/秒。
9、 平均速度和瞬时速度:平均速度是描述物体在一段时间t ∆或一段位移x ∆内的平均快慢程度。
用v 表示,它只能粗略描述运动的快慢。
瞬时速度是用来描述物体在某一位置或某一时刻.........物体运动的速度。
在匀速直线运动中,平均速度与瞬时速度相等。
10、打点计时器:打点计时器是一种能够按照相同的时间间隔,在纸带上连续打点的计时仪器....。
人教版高中物理定义概念(必修1、必修2、选修3-5第一章部分)(完整版)

1、路程:物体运动轨迹的长度。
2、位移:从初位置到末位置的有向线段。
3、矢量:既有大小又有方向的物理量叫做矢量。
4、标量:只有大小而没有方向的物理量叫做标量。
5、变化量:物理量的末量减去初量,称作这个物理量的变化量。
6、变化率:物理量的变化量与所用时间的比值,称作这个物理量的变化率。
7、速度:位移与发生这个位移所用时间的比值。
8、速率:瞬时速度的大小。
9、加速度:加速度等于速度的变化量与发生这一变化所用时间的比值。
10、匀变速直线运动:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
(“匀”的意思是速度均匀变化,也就是说加速度是不变的。
)11、自由落体运动:物体只在重力作用下从静止开始下落的运动。
12、力:物体间的相互作用。
13、重力: 是由于地球吸引而使物体受到的力。
注意,重力并不是物体受到地球的吸引力,在必修2第六章《万有引力与航天》会详细介绍。
方向:竖直向下。
14、弹性形变:在形变后能够恢复原状,这种形变叫弹性形变。
15、非弹性形变:不能恢复原来形状的形变叫做非弹性形变。
16、弹性限度:如果形变过大,超过一定的限度,撤去外力后,物体就不能完全恢复原来的形状,这个限度叫做弹性限度。
17、牛顿第一定律:一切物体在没有受到力的作用或所受合力为0时,总保持静止或匀速直线运动状态。
18、惯性:物体保持匀速直线运动或静止状态的特性。
19、牛顿第二定律:物体加速度的大小跟它受到的合力成正比,跟它的质量成反比,加速度的方向跟合力的方向相同。
20、牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
21、平衡状态:包括静止和匀速直线状态。
在共点力作用下物体的平衡条件是:合力为0。
22、超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
23、失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
24、曲线运动:轨迹是曲线的运动。
曲线运动是变速运动。
高中物理全部公式、定理、定律总结大全(绝对精华)

高中物理公式定理定律概念大全必修一第一章 运动的描述一、质点(A )(1)没有形状、大小,而具有质量的点。
(2)质点是一个理想化的物理模型,实际并不存在。
(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。
二、参考系(A )(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。
(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。
对参考系应明确以下几点:①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。
②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。
③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系。
三、路程和位移(A )(1)位移是表示质点位置变化的物理量。
路程是质点运动轨迹的长度。
(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。
因此,位移的大小等于物体的初位置到末位置的直线距离。
路程是标量,它是质点运动轨迹的长度。
因此其大小与运动路径有关。
(3)一般情况下,运动物体的路程与位移大小是不同的。
只有当质点做单一方向的直线运动时,路程与位移的大小才相等。
图2-1-1中质点轨迹ACB 的长度是路程,AB是位移S 。
(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。
路程不能用来表达物体的确切位置。
比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。
四、速度、平均速度和瞬时速度(A )(1)表示物体运动快慢的物理量,它等于位移s 跟发生这段位移所用时间t 的比值。
即v=s/t 。
速度是矢量,既有大小也有方向,其方向就是物体运动的方向。
在国际单位制中,速度的单位是(m/s )米/秒。
(2)平均速度是描述作变速运动物体运动快慢的物理量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必“背”手册一、物理学史篇(一)力学1.1638年,意大利物理学家伽利略用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因.同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向.3.英国物理学家胡克对物理学的贡献:胡克定律;4.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
5. 1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动.6. 人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说.7. 17世纪,德国天文学家开普勒提出开普勒三大定律;8. 牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(体现放大和转换的思想);;9. 1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星.10. 20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体.(二)电磁学1. 1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖.2. 1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律--库仑定律.3. 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针.4. 1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场.5. 1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律.6. 1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象.7. 19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律.8. 1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应.9. 法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向.10. 荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点.11. 汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素.12. 1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子.(最大动能仅取决于磁场和D形盒直径.带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难.13. 1834年,俄国物理学家楞次发表确定感应电流方向的定律--楞次定律.14. 1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律--电磁感应定律.15. 1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一.(三)光学1. 1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律--巴耳末系.2. 1913年,丹麦物理学家波尔最先得出氢原子能级表达式。
(四)波粒二象性1. 1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖.2. 1922年,美国物理学家康普顿在研究石墨中的电子对X 射线的散射时--康普顿效应,证实了光的粒子性.(说明动量守恒定律和能量守恒定律同时适用于微观粒子)3. 1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;4. 1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案.电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高.(五)原子物理学1. 1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型.2. 1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型.由实验结果估计原子核直径数量级为10-15m.3. 1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础.4. 1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构.天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的.衰变快慢与原子所处的物理和化学状态无关.5. 1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素--钋(Po)镭(Ra).6. 1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子--中子.7. 1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖.由此人们认识到原子核由质子和中子组成.8. 1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素.9. 1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变.63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成).10. 1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应).人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料.11. 1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.(六)重要历史人物贡献总结1. 安培(法国物理学家):(1)磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律;(2)安培分子电流假说.2. 洛伦兹(荷兰物理学家):1895年发表了磁场对运动电荷的作用力公式(洛伦兹力).3. 阿斯顿:①发明了质谱仪;②发现非放射性元素的同位素.4. 劳伦斯(美国):发明了回旋加速器.5. 楞次:发现了楞次定律(判断感应电流的方向).6. 汤姆生(英国物理学家):(1)发现了电子(揭示了原子具有复杂的结构);(2)建立了原子的模型--枣糕模型。
7. 卢瑟福(英国物理学家):(1)指导助手进行了α粒子散射实验(记住实验现象);(2)提出了原子的核式结构(记住内容);(3)发现了质子.8. 查德威克:发现了中子。
9. 波尔(丹麦物理学家):波尔原子模型(很好的解释了氢原子光谱).10. 贝克勒尔(法国物理学家):发现天然放射现象(揭示了原子核具有复杂结构)11. 伦琴:发现了伦琴射线(X 射线)。
12. 约里奥•居里和伊丽芙•居里夫妇:①发现了放射性同位素;②发现了正电子。
13. 普朗克:量子论14. 爱因斯坦:①用光子说解释了光电效应;②相对论.15. 麦克斯韦:①建立了完整的电磁理论;②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)二、重要公式篇(一)运动学公式1. 匀变速直线运动公式 (知三求二)(1)0t v v at =+ (无x )(2)2012x v t at =+(无v t )(3)212t x v t at =-(无v 0) (4)2202t v v ax -= (无t )(5)02t v v x t += (无a ) 2.自由落体运动的规律(1)速度公式t v gt =(2)下落高度212h gt =(3)下落时间t(4)落地速度v =3.竖直上抛运动的几个具体值(1)物体上升的时间:01v t g= (2)上升的最大高度: 220011122v H v t gt g=-= (3)物体运动的时间:02v t g =,(4)落回原地的速度:0002v v v g v g=-=-. 4.匀变速直线运动的推论(1)在连续相等的时间内的位移之差为恒定值2x at ∆= (2)某段时间中间时刻的瞬时速度等于这段时间内的平均速度022tt v v v +=(3)某段位移内中间位置的瞬时速度等于2x v (4)初速度为零的匀加速直线运动:①在时间 2 3 t t t 、、…内位移之比为:222123::::1:2:3::n s s s s n =……②第一个t 内、第二个t 内、…位移之比为:::::1:3:5::(21)N s s s s n =-ⅠⅡⅢ……③在位移s 2s 3s 、、…内所用的时间之比为:… ④通过连续相等的位移所用时间之比为:123::::1::::n t t t t =……(5)对末速度为零的匀变速直线运动,可以相应的运用这些规律.①连续相等时间内的位移差:∆s aT =2②以加速度a 做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是321s s s 、、、……s n ,则2()m n s s m n aT -=-5. 打点计时器(1)连续相等时间内的位移差:2x aT ∆=(2)以加速度a 做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是123x x x 、、、……n x ,则2()m n x x m n aT -=-(3)常在打点计时器中进行考察 ①2ACB AC x v v T == ②2CED CE x v v T == ③4AEC AE x v v T==(二)牛顿运动定律1.重力:G mg =2.胡克定律F k x =∆(x ∆是弹簧的形变量) 若弹簧伸长,则0-F k x x =()3.摩擦力:f N μ=4.牛顿第一定律:一切物体总保持静止状态或匀速直线运动状态,直到有外力迫使它改变这种状态为止。