随机过程习题及复习资料
随机过程复习资料.doc

丄20 25 1. 设{2V(r)J>0}是一更新过程,已知P {X. =1} = 1/3, P {X i =2} = 2/3,则 P {N(3) = 2}=§ 2.若Markov 链只存在一个类,则称它是不可约的,若状态同属一类,则d ① 与d(j)的大小关系d ⑴=d(j) (<,>,=)丄 423.设Markov 链的状态空间S = (1,2,3),转移矩阵P=-4..设{B(f),宀 0}是标准 Brown 运动,则 P(B(2)<0) = |.题目:X(/) = sin",U ~U[0,2刃.试判断X(/)为宽平稳还是严平稳过程.解:EX (t) = E(sin Ut) - ~ sin utdu = 01 ® 1= E(sinUtsinUs) = 一 I ——[cos+ 51) - cos u(t - s)]du2龙力 21 —,t = s =<2 0,心s故{X(t)}为宽平稳过程。
又sinU 与sin2U 的分布函数不同,故{X (t)}不是严平稳的 题目:MaMov 链的状态空间S = {1,2,3,4},—步转移概率矩阵‘%0 o '1 0 0 0 0 % % 0%0 丿试对其状态进行分类,确定哪些是常返态,并确定其周期解:1.由转移概率矩阵知:10 2,并且有3 ^2,2^3; 4 T 2,2/4; 4宀3,3“4;故状态空间可以分为:S = {1,2}U ⑶U{4}.2.由转移概率矩阵知:几〉0(心1,2),所以状态1和2都是非周期的,又10 2故状态2也是非周期的.从状态4出发不可能返回到状态4,即集合{zz:z/>l,/^>0}为空集,故状态4的周期无穷大./11=z/H ,,=/H n +/r+/1<13,+-+/r+-n=l=i + 1 +0+---+0+•••2 2=1所以状态1为常返态,又1^-2,故2是常返态. ......... 4分+8f— f(")= f ⑴ + f ⑵f ⑶+ …丿33 厶丿33 丿33 丁丿33 丁丿33 丁n-12=—+ 0 + 0 +•••3 厶13所以状态3为非常返态.+00f— N' f(")—f ⑴ + f ⑵+ …J 44 丿44 J 44 ' J 44 ~n=l= 0 + 0 —=0<1故状态3也是非常返态.题目:将两个红球4个白球分别放入甲乙两个盒子中.每次从两个盒子中各取一球交换,以X(“)记第n次交换后甲盒中的红球数.1.说明{X(n),n> 0}是一Markov链并求转移矩阵P ;2.试证(X(n), n = 0,1,2, •••}是遍历的;3.求它的极限分布.解:1.设X(“)为"次交换后甲盒中的红球数,则易见{X(“)}是马尔可夫链,状态空间为S ={0,1,2};n 1 02 2转移矩阵为p = 3 4 18 8 80 1 0丿2.山于5 = {0,1,2}有限,且S中状态互通,即不可约的,故{X(")}是正常返的,又状态1为非周期的,故1是遍历的,所以{X®)}是遍历链.题目:> 0}为标准Brow”运动,验证{X(/) = (1 -^―)}, 0 V / V1}是Brow”桥.1-t解:因为E[X(t)] = (l-t)E B(—) -01 — t皿⑴]n咕)")吩所以{X(/)}是Gauss过程,均值为零,协方差为5(1-0 ,即为Brown。
随机过程习题答案及知识点

协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
随机过程例题和知识点总结

随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
(完整)随机过程复习试题及答案,推荐文档

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
证明:当12n 0t t t t <<<<<L 时,1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,X(t )-X(0)=x )≤L =n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n P(X(t)x X(t )=x )≤3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p pl l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
证明:{}(n)ij k IP P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫==⎨⎬⎩⎭U ={}k I P X(n)=j,X(l)=k X(0)=i ∈∑ ={}{}k IP X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑g =(l)(n-l)ik kjPP ∑,其意义为n 步转移概率可以用较低步数的转移概率来表示。
4.设{}N(t),t 0≥是强度为λ的泊松过程,{}k Y ,k=1,2,L 是一列独立同分布随机变量,且与{}N(t),t 0≥独立,令N(t)k k=1X(t)=Y ,t 0≥∑,证明:若21E(Y <)∞,则[]{}1E X(t)tE Y λ=。
应用随机过程期末复习题

1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
最新-期末随机过程试题及答案资料

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程复习题二及其答案

随机过程复习题二及其答案一、选择题1. 随机过程的定义是什么?A. 一系列随机变量的集合B. 一系列确定变量的集合C. 一个随机变量D. 一个确定变量2. 什么是马尔可夫链?A. 一个具有时间序列的随机过程B. 一个具有空间序列的随机过程C. 一个具有独立同分布的随机过程D. 一个具有时间依赖性的随机过程3. 随机过程的期望值定义为:A. \( E[X(t)] \)B. \( E[X] \)C. \( \int_{-\infty}^{\infty} x f(x,t) \, dx \)D. \( \sum_{i=1}^{\infty} x_i p_i \)4. 以下哪个不是随机过程的属性?A. 期望B. 方差C. 协方差D. 导数5. 什么是平稳随机过程?A. 随机过程的期望随时间变化B. 随机过程的方差随时间变化C. 随机过程的统计特性不随时间变化D. 随机过程的协方差随时间变化答案:1. A2. A3. A4. D5. C二、简答题1. 解释什么是遍历定理,并给出其在随机过程分析中的应用。
2. 描述什么是泊松过程,并解释其主要特点。
3. 简述什么是布朗运动,并解释其在金融领域中的应用。
三、计算题1. 给定一个随机过程 \( X(t) \),其期望 \( E[X(t)] = t \),方差 \( Var[X(t)] = t^2 \),计算 \( E[X^2(t)] \)。
2. 假设一个马尔可夫链 \( \{X_n\} \) 有状态空间 \( S = \{1, 2, 3\} \),转移概率矩阵 \( P \) 为:\[P = \begin{bmatrix}0.1 & 0.8 & 0.1 \\0.5 & 0.3 & 0.2 \\0.2 & 0.6 & 0.2\end{bmatrix}\]计算状态 1 在第 3 步的概率。
四、论述题1. 论述随机过程在信号处理中的应用,并举例说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。
解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。
1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。
1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==----12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。
令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。
则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。
212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。
故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。
将乘客乘坐公共汽车1代表试验成功,那么有:121111111211212(1=()()N N N N k N k k N P C λλλλλλ+----=++∑路汽车比2路汽车先出发)(2)当1N =2N 、1λ=2λ时2121111111111(1=()()2222N N N k N k k k k N k N P CC -------====∑∑路汽车比2路汽车先出发)3.3设{(),0}i N t t ≥,(1,2,,)i n =是n 个相互独立的Poisson 过程,参数分别为i λ(1,2,,)i n =。
记T 为全部n 个过程中,第一个事件发生的时刻。
(1)求T 的分布; (2)证明1{()(),0}n i i N t N t t ==≥∑是Poisson 过程,参数为1ni i λλ==∑;(3)求当n 个过程中,只有一个事件发生时,它是属于1{(),0}N t t ≥的概率。
解:(1)记第i 个过程中第一次事件发生的时刻为1i t ,1,2,...,i n =。
则1min{,1,2,...,}i T t i n ==。
由1i t 服从指数分布,有111111{}1{}1{min{,1,2,...,}}1{,1,2,...,}1{}1{1(1)}1exp{}i i ni i i nnti i i P T t P T t P t i n t P t t i n P t t et λλ=-==≤=->=-=>=->==->=---=--∏∑∏(2)方法一:由{(),1,2,...,}i N t i n =为相互独立的poisson 过程,对于,0s t ∀≥。
11111{()()}{[()()]}{()(),,1,2...,}(exp(()))!()exp(())!n ni in ni ni i i iiiinnn ni i i i i n ni ni i i P N t s N t n P N t s N t n P N t s N t n nn i n ss n s s n λλλλ=∑=∑=====+-==+-==+-====-=-∑∑∑∑∑∏∑∑这里利用了公式11(...)!!in ni nnni n i i n n λλλ=∑=++=∑∏所以1{()(),0}n i i N t N t t ==≥∑是参数为1ni i λλ==∑的poisson 过程。
方法二: ○1当0h →时,11111{()()1}{[()()]1}{(())(1())}[()]()ni i i nn i j i j j inni i i i P N t h N t P N t s N t h o h h o h h o h h o h λλλλ===≠==+-==+-==+-+=+=+∑∑∏∑∑○2当0h →时, 111111{()()2}{[()()]2}1{[()()]2}1(1())()1(1())()()ni i i ni i i n nj i i j n ni i i i P N t h N t P N t s N t P N t s N t h o h h o h h o h h o h o h λλλλ======+-≥=+-≥=-+-<=--+-+=--+-+=∑∑∑∏∑∑得证。
(3)11{()1|()1}{()1,()0,2,...,}/{()1}i P N t N t P N t N t i n P N t ======= 1111121/...ni i i nnttti i i nteeet λλλλλλλλ=---==∑==++∑∏3.4 证明poisson 过程分解定理:对于参数为λ的poisson 过程{(),0}N t t ≥,01i p <<,11ri i p ==∑,1,2,,i r =,可分解为r 个相互独立的poisson 过程,参数分别为i p λ,1,2,,i r =。
解:对过程{(),0}N t t ≥,设每次事件发生时,有r 个人对此以概率12,,...,r p p p 进行记录,且11ri i p ==∑,同时事件的发生与被记录之间相互独立,r 个人的行为也相互独立,以()i N t 表示为到t 时刻第i 个人所记录的数目。
现在来证明{(),0}i N t t ≥是参数为i p λ的poisson 过程。
00{()}{()|()}{()}()(1)()!()!i i i n m n m mntm ni i n mp ti P N t m P N t m N t m n P N t m n t Cp p em n p t em λλλλ∞=+∞-+=-====+=+=-+=∑∑独立性证明:考虑两种情况的情形,即只存在两个人记录, 一个以概率p ,一个以概率1p -记录,则1{(),0}N t t ≥是参数为p λ的poisson 过程,2{(),0}N t t ≥是参数为(1)p λ-的poisson过程。
121121212121212112211121211121212121212{(),()}{(),()}{()}{()|()}()(1)()!()!()(1)()!!!()(1)!!(k k k k k t k k k k k k t k k k k t P N t k N t k P N t k N t k k P N t k k P N t k N t k k t e C p p k k k k t e p p k k k k t e p p k k pt λλλλλλλ+-++-+-=====+==+==+=-++=-+=-=12(1)121122)((1))!!{()}{()}k k t p t p t e ek k P N t k P N t k λλλ----===得证。
3.5 设{(),0}N t t ≥是参数为3的poisson 过程,试求 (1){(1)3}P N ≤; (2){(1)1,(3)2}P N N ==; (3){(1)2|(1)1}P N N ≥≥解:(1)33303{(1)3}13!kk P N e e k --=≤==∑ (2){(1)1,(3)2}{(1)1,(3)(1)1}P N N P N N N ====-=369{(1)1}{(3)(1)1}3618P N P N N e e e ---==-===(3)33{(1)2}14{(1)2|(1)1}{(1)1}1P N e P N N P N e--≥-≥≥==≥- 3.6 对于poisson 过程{(),0}N t t ≥,证明s t <时,{()|()}P N s k N t n ===(1)()n k k n s sk t t -⎛⎫- ⎪⎝⎭解:(){(),()}{()|()}{()}{(),()()}{()}{()()}{()}{()}(())()()!!()!()!()!!()n k kt s s nt n k k nn k k P N s k N t n P N s k N t n P N t n P N s k N t N s n k P N t n P N t N s n k P N s k P N t n t s s e en k k t en t s s n n k k t n t s s k λλλλλλ-------=======-=-==-=-===--=-=-⎛⎫-= ⎪⎝⎭(1)()n k k n k kt t n s s k t t --⎛⎫=- ⎪⎝⎭3.7 设1{(),0}N t t ≥和2{(),0}N t t ≥分别是参数为1λ,2λ的Poisson 过程,另12()()()X t N t N t =-,问{()}X t 是否为Poisson 过程,为什么?解:不是12()()()X t N t N t =-,()X t 的一维特征函数为:121212121122(()())()()()()120012001212()()()()()()!!()()!!exp{(iuiu iu N t N t iuN t iuN t iuX t X t k k t tiukiuk k k iu k iu ktt k k t et t e tiu iu f u E e E e E e e t t ee e e k k e t e t ee k k e e e ee t e t λλλλλλλλλλλλλλλλ--∞∞--==∞∞--==---=====⋅==+-+∑∑∑∑)}t参数为λ的Poisson 过程的特征函数的形式为exp{1}iu e t λ-,所以()X t 不是poisson 过程。