圆线圈与亥姆霍兹线圈轴线上磁场的测量

合集下载

简述圆线圈与亥姆霍兹线圈轴线上磁场的测量

简述圆线圈与亥姆霍兹线圈轴线上磁场的测量

简述圆线圈与亥姆霍兹线圈轴线上磁场的测量一、前言圆线圈和亥姆霍兹线圈是常用的实验室磁场测量装置,它们能够产生均匀的磁场,并且在轴线上的磁场分布也比较稳定。

测量轴线上磁场是这两种线圈最常见的应用之一。

本文将详细介绍如何测量圆线圈和亥姆霍兹线圈轴线上的磁场。

二、测量原理测量轴线上的磁场需要使用霍尔元件来进行测量。

霍尔元件是一种基于霍尔效应工作的元件,它能够感受到垂直于其表面的磁场,并且产生电压信号输出。

通过将霍尔元件放置在轴线上,可以得到该位置处的磁场大小。

三、圆线圈轴向磁场测量方法1. 实验装置实验中需要使用一个直径为D的圆形导体制成的线圈,通过通电使其产生一个轴向均匀磁场。

同时,在轴向位置放置一个霍尔元件来进行测量。

2. 实验步骤(1)将电源接入导体制成的线圈,并调整电流大小使得在轴向位置产生一个均匀的磁场。

(2)将霍尔元件放置在轴向位置,并连接到万用表上。

(3)读取万用表显示的电压值,即为该位置处的磁场大小。

四、亥姆霍兹线圈轴向磁场测量方法1. 实验装置实验中需要使用两个相同的半径为R、匝数为N的亥姆霍兹线圈,通过通电使其产生一个轴向均匀磁场。

同时,在轴向位置放置一个霍尔元件来进行测量。

2. 实验步骤(1)将两个亥姆霍兹线圈并排放置,并通过交流电源进行串联。

(2)将电流调整到合适大小,使得在轴向位置产生一个均匀的磁场。

(3)将霍尔元件放置在轴向位置,并连接到万用表上。

(4)读取万用表显示的电压值,即为该位置处的磁场大小。

五、误差分析由于实际情况中难以保证线圈和霍尔元件等设备完全精确,因此测量结果可能存在一定误差。

其中主要误差来源包括以下几个方面:1. 霍尔元件的灵敏度和非线性误差;2. 线圈的制作精度和电流稳定性;3. 测量位置的精度和环境磁场干扰。

六、总结通过对圆线圈和亥姆霍兹线圈轴向磁场测量方法的介绍,我们可以了解到在实验中如何准确地测量轴向磁场大小。

同时,在实际应用中需要注意以上误差来源,并尽可能采取措施减小误差,以保证测量结果的准确性。

3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场剖析

3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场剖析

3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场剖析霍尔法是一种测量电器中磁场强度的方法,又称为霍尔效应。

它是利用霍尔元件来测量电流通过电器时引起的磁场强度的一种技术方法。

霍尔元件是一种半导体器件,它能够将磁场与电场相互作用所产生的电势差转换为电流信号输出。

霍尔元件的基本原理是磁场垂直于载流子运动方向,将导致载流子沿着霍尔元件的边缘方向偏移,从而形成电势差。

因此,当电流通过电器时,我们可以用霍尔元件来测量电器中的磁场强度。

本文将介绍在实验室中如何应用霍尔法来测量圆线圈和亥姆霍兹线圈的磁场强度。

在这两种线圈中,磁场的分布和大小是非常重要的参数。

圆线圈是由半径为R的导线匝数为N的同轴圆柱,通过其形成的一种线圈。

圆线圈的磁场分布是关于线圈轴对称的,具有最大值Br=μ0NI/2R和最小值Bθ=μ0NI/2。

其中μ0是真空磁导率,I是电流。

亥姆霍兹线圈是由两个同轴圆柱组成的线圈,它们具有相同的半径R、匝数N和电流方向,但是方向相反。

这两个线圈之间的距离为R,这种线圈的特点是有一均匀磁场分布。

这种线圈的磁场大小和磁场分布可以用B=μ0NI/2R来描述。

在测量圆线圈和亥姆霍兹线圈的磁场时,我们首先需要将线圈从电源中分离出来,然后将线圈的两端连接到一个恒流源。

在保持电流不变的情况下,我们需要确定测量霍尔元件的位置。

霍尔元件应该位于线圈轴线附近,并且应该垂直于轴线方向。

在每个位置上,我们可以测量霍尔元件输出的电势差并计算出磁场强度。

如果我们希望测量圆线圈的磁场分布,我们需要沿着圆线圈的半径方向调整霍尔元件的位置。

在实验中,我们可以使用霍尔元件和数字万用表来测量电势差和电流。

我们还需要一个可调电源来提供恒定的电流。

在实验中,我们需要注意以下几点:1.在测量时需要保持电流稳定,避免产生噪声影响测量结果。

2.在测量磁场分布时,需要多次测量并取平均值,以提高测量精度。

3.在测量位置选择上需要谨慎选择,以保证测量精度。

实验八212《亥姆霍兹线圈磁场》实验报告

实验八212《亥姆霍兹线圈磁场》实验报告

本试验使用霍尔效应法测磁场,并且本试验使用的仪器有集成霍尔元件,已 经与显示模块联调,直接显示磁场强度。
三、 实验仪器
4501A 型亥姆霍兹线圈磁场实验仪
四、
实验步骤
1、测量载流圆线圈轴线上磁场的分布 (1)仪器使用前,请先开机预热 10min 接好电路,调零。 (2)调节磁场实验仪的输出功率,使励磁电流有效值为 I=200mA,以圆电
七、 思考题
①单线圈轴线上磁场的分布规律如何?亥姆霍兹线圈是怎样组成的?其基 本条件有哪些?它的磁场分布特点又是怎样的? 答:单线圈轴线上磁场分布规律和亥姆霍兹线圈磁场分布见上文图例。亥 姆霍兹线圈由励磁线圈架部分和磁场测量仪部分组成, 基本条件是两个相同线圈 彼此平行且共轴,使线圈上通以同方向电流 I。可得到理论计算证明:线圈间距 a 等于线圈半径 R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内 是均匀的。
流线圈中心为坐标原点,每隔 10.00mm 测一个 Bmax 值,测量过程中注意保持励 磁电流值不变,记录数据并作出磁场分布曲线图。 2、测量亥姆霍兹线圈轴上磁场分布 (1)关掉电源,把磁场实验仪的两组线圈串联起来(注意极性不要接反), 接到磁场测试仪的输出端钮,调零。 (2)调节磁场实验仪的输出功率,使励磁电流有效值为 I=200A,以圆电流 线圈中心为坐标原点,每隔 10.00mm 测一个 Bmax 值,测量过程中注意保持励磁 电流值不变,记录数据并作出磁场分布曲线图。

3
2
式中:N=500 匝,线圈有效半径为 105mm,I=200mA,两线圈中心间距为 105mm。圆电流线圈轴上磁场分布如下表所示。 坐标值/mm -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 实验 B 值/mT 0.381 0.428 0.471 0.507 0.538 0.557 0.563 0.553 0.530 0.494 0.456 0.414 0.367 可画出交叠图如图所示。 理论 B 值/mT 0.3917 0.4404 0.4883 0.5320 0.5672 0.5903 0.5984 0.5903 0.5672 0.5320 0.4883 0.4404 0.3917 偏差/mT 0.0107 0.0124 0.0173 0.0250 0.0292 0.0333 0.0253 0.0373 0.0372 0.0380 0.0323 0.0264 0.0247

实验四圆线圈与亥姆霍兹线圈的磁场报告范例

实验四圆线圈与亥姆霍兹线圈的磁场报告范例

实验四圆线圈与亥姆霍兹线圈的磁场报告范例本实验旨在研究圆线圈和亥姆霍兹线圈的磁场分布,通过实验测量得到磁场强度与位置之间的关系,探究两种线圈的特点和应用。

1.实验原理磁场是物理学的重要分支之一,其产生方式有很多种,其中电流是较常见的一种方式。

利用电流通过导线时会产生磁场,形成磁通量,为了观测和量化磁场的特性,可以通过磁场强度和磁通量密度来描述和表示。

圆线圈:当通过圆线圈时,其磁场强度在中心处最大,随着距离的增加,其值会逐渐减小,符合以下公式:$$B(r)={\mu_0 \over 2} {N I \over R} ({R^2 \over R^2+z^2})^{3/2}$$其中,B为磁场强度,$\mu_0$为磁导率,N为线圈匝数,I为通电电流,R为线圈半径,z为测量点至线圈中心距离。

亥姆霍兹线圈:亥姆霍兹线圈由两个相同半径的环形线圈组成,且距离相等,其磁场强度分布与圆线圈类似,但是其形状更为均匀,符合以下公式:2.实验装置和步骤装置:直流稳压电源,圆线圈,亥姆霍兹线圈,磁场强度计,电流表,多用万用表。

步骤:1)用万用表测量圆线圈和亥姆霍兹线圈的导线电阻,记录数据。

2)将直流稳压电源接入圆线圈,调节电源电压,使电流表读数为测量电流,记录数据。

3)将磁场强度计放置于不同位置,记录测量值,并计算磁场强度。

4)重复步骤2~3,改变亥姆霍兹线圈距离、线圈电流强度,记录测量值,计算磁场强度。

3.数据处理1)电线电阻$a.圆线圈电阻:0.512 \Omega$;$b.亥姆霍兹线圈电阻:0.205\Omega$。

2)圆线圈磁场测量数据:电流I/A 0.5 1 1.5 2 2.5位置r/cm 磁场B/mT 地磁场B0/mT 磁场B=mT-B0 求数值0 28.54 14.43 14.11 0.4912 20.22 14.43 5.79 0.2003 16.55 14.43 2.12 0.0734 11.73 14.43 -2.70 -0.0935 9.02 14.43 -5.41 -0.1866 5.35 14.43 -9.08 -0.3137 3.72 14.43 -10.71 -0.3708 2.54 14.43 -11.89 -0.410$d = 20$cm,I=1A4.数据分析4.1圆线圈根据公式,将测量数据计算得到图1.图1圆线圈磁场强度分布从图1中可以看出,随着距离的增加,圆线圈的磁场强度值逐渐降低,符合理论预测的规律,且磁场强度与距离的平方成反比关系。

大学物理实验用霍尔法测直流线圆圈与亥姆霍兹线圈磁场[总结]

大学物理实验用霍尔法测直流线圆圈与亥姆霍兹线圈磁场[总结]

用霍尔法测直流线圆圈与亥姆霍兹线圈磁场1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为“霍尔效应”。

半个多世纪以后,人们发现半导体也有霍尔效应,而且比导体强得多。

随着半导体物理学的迅猛发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量。

近些年霍尔效应实验不断有新发现。

1980德国的冯·克利青、多尔达和派波尔发现了量子霍尔效应,它不仅可作为一种新型的二维电阻标准,还可改进一些基本常量的测量精度,是当代凝集态物理学和磁学中最惊异的进展之一。

克利青教授也应此项发现荣获1985年的诺贝尔物理学奖金。

目前霍尔传感器典型的应用有:磁感应强度测量仪(又称“特斯拉计”),霍尔位置检测器,无触点开关;霍尔转速测定仪,电功率测量仪等。

在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感法等等,本实验介绍“霍尔效应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

【实验目的】1. 了解用霍尔效应法测量磁场的原理,掌握FB5 11型磁场实验仪的使刚方法。

2. 了解载流圆线圈的径向磁场分布情况。

3. 测量载流圆线圈和亥姆霍兹线圈的轴线上的磁场分布。

4. 两平行线圈的间距改变为d=R /2和d=2R 时,测定其轴线上的磁场分布。

【实验原理】1.载流圆线圈与亥姆霍兹线圈的磁场(1)载流圆线圈磁场一半径通以直流电流I 的圆线圈,其轴线上磁场强度的表达式为:2/322200)(2X R R I N B +⋅⋅⋅⋅=μ (1)式中0N 为圆线圈的匝数,x 为轴上某一点到圆心'O 的距离,70104-⨯=πμH /m ,磁场分布图如图1所示。

图 1 图 2本实验取0N =400匝,I =0.400A ,R =0.100m,圆心'O 处X =0,可算得磁感应强度为:B=1.0053×310-T 。

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场实验报告班级:姓名:学号:一、实验名称集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场二、实验目的1、掌握霍尔效应原理测量磁场;2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。

三、实验仪器亥姆霍兹线圈磁场测定仪、包括圆线圈和亥姆霍兹线圈平台(包括两个圆线圈、固定夹、不锈钢直尺等)、高灵敏度毫特计和数字式直流稳压电源。

四、实验原理1、圆线圈的磁场根据毕奥—萨伐尔定律,载流线圈在轴线上某点的磁感应强度为:NI x R RB 232220)(2+=μ式中I 为通过线圈的电流强度,R 为线圈平均半径,x 为圆心到该点的距离,N 为线圈的匝数,A m T /10470??=-πμ,为真空磁导率。

因此,圆心处的磁感应强度为NIRB 20μ=2、亥姆霍兹线圈的磁场亥姆霍兹线圈:两个半径和匝数完全相同的线圈,其轴向距离等于线圈的半径。

这种线圈的特点是当线圈串联连接并通以稳定的直流电后,就可在线圈中心区域内产生较为均匀性较好的磁场,因而成为磁测量等物理实验的重要组成部件,与永久磁铁相比,亥姆霍兹线圈所产生的磁场在一定范围内具有一定的均匀性,且产生的磁场具有一定的可调性,可以产生极微弱的磁场直至数百高斯的磁场,同时在不通电的情况下不会产生环境磁场。

亥姆霍兹线圈如图所示,是一对彼此平行且连通的共轴圆形线圈,两线圈内电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的半径R 。

设z 为亥姆霍兹线圈中轴线上某点离中心点O处的距离,根据毕奥—萨伐尔定律及磁场叠加原理可以从理论上计算出亥姆霍兹线圈轴上任意一点的磁感应强度为-++++='--2322232220]z 2([]z 2([21))R R R R R I N B μ而在亥姆霍兹线圈上中心O 处的磁感应强度'B 为R IN B ??=023'058μ 当线圈通有某一电流时,两线圈磁场合成如图可看出,两线圈之间轴线上磁感应强度在相当大的范围内是均匀的。

霍尔法测量圆线圈和亥姆霍兹线圈的磁场

霍尔法测量圆线圈和亥姆霍兹线圈的磁场
在霍尔效应中导体的电子在洛仑兹力f L 作用下,向图中虚线箭头所 指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧 形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷 形成的反向电场力 f E的作用。随着电荷积累的增加,f E增大,当两力大 小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡 。
3、励磁电流大小对磁场强度的影响
此时可以选择单线圈或者亥姆霍兹线圈磁场分布 测量的连线方法之一进行连线,仍然在励磁电流 为零的情况下将磁感应强度清零。 调节磁场测量仪的励磁电流调节电位器,使表头 显示值为100mA,将霍尔传感器的位置调节到以 圆电流线圈中心位置或者亥姆霍兹线圈中心位置。 调节励磁电流调节电位器,每增加100mA记下一 磁感应强度B的值,直到励磁电流显示为500mA 记下一磁感应强度B值为止。
4.励磁电流大小与磁场强度的关系
表4 励磁电流大小与磁场强度 测量的数据
励磁电流(mA) B(mT) 100 200 300 400 500
实验内容
1、测量圆电流线圈轴线上磁场的分布
连接好线路,调节励磁电流为零,将磁感应强 度清零。
调节磁场测量仪的励磁电流调节电位器, 使表头显示值为500mA,此时毫特计表头 应显示一对应的磁感应强度B值。 以圆电流线圈中心为坐标原点,每隔10.0 mm测一磁感应强度B的值,测量过程中注 意保持励磁电流值不变。
2、测量亥姆霍兹线圈轴线上磁场的分布
按图接线,然后在励磁电流为零的情况下将磁 感应强度清零。 调节磁场测量仪的励磁电流调节电位器,使表头 显示值为500mA,此时毫特计表头应显示一对应 的磁感应强度B值。 以亥姆霍兹线圈中心为坐标原点,每隔10.0 mm 测一磁感应强度B的值,测量过程中注意保持励 磁电流值不变。

集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场实验报告

集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场实验报告

集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场实验报告实验报告一、实验目的本实验旨在通过使用集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场,加深对磁场基本概念及测量方法的理解,掌握霍尔效应原理及应用。

二、实验原理1.霍尔效应原理霍尔效应是指当电流垂直于外磁场方向通过半导体时,在垂直于电流和磁场的方向上会产生电动势的现象。

霍尔效应的原理可由下式表示:V_H = K_H * I * B其中,V_H为霍尔电压,K_H为霍尔系数,I为工作电流,B为磁感应强度。

2.圆线圈磁场分布通电线圈的磁场分布可用毕奥-萨伐尔定律描述。

对于圆线圈,其轴线上的磁感应强度可由下式计算:B = (μ₀I) / (2R) * [cos(θ₁) - cos(θ₂)]其中,μ₀为真空磁导率,I为线圈电流,R为线圈半径,θ₁和θ₂为线圈两端与轴线上某点的连线与线圈平面法线的夹角。

3.亥姆霍兹线圈磁场分布亥姆霍兹线圈是由两个相同线圈平行放置,通以同向电流构成。

在两线圈中心连线上的中点附近,磁场可近似看作均匀。

其磁感应强度可由下式计算:B = (8μ₀NI) / (5√5a)其中,N为线圈匝数,a为两线圈间距。

三、实验步骤与记录1.准备工作(1)将集成霍尔传感器、电流表、电压表、圆线圈、亥姆霍兹线圈、直流电源等连接成实验电路。

(2)检查实验装置连接是否正确,确保电源接地良好。

(3)预热集成霍尔传感器5分钟。

2.测量圆线圈磁场分布(1)将集成霍尔传感器放置在圆线圈轴线上,调整传感器位置,记录传感器与线圈中心的距离。

(2)通入不同大小的电流,记录电流值及对应的霍尔电压值。

(3)改变传感器与线圈中心的距离,重复步骤(2)。

(4)根据实验数据绘制圆线圈轴线上的磁感应强度分布曲线。

3.测量亥姆霍兹线圈磁场分布(1)将集成霍尔传感器放置在亥姆霍兹线圈中心连线上,调整传感器位置,使其位于两线圈中心连线的中点附近。

(2)通入不同大小的电流,记录电流值及对应的霍尔电压值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆线圈与亥姆霍兹线圈轴线上磁场的测量
加灰色底纹部分是预习报告必写部分
圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。

通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。

本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。

该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。

【实验目的】
1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理;
2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理;
【实验仪器】
1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件):
2.仪器技术参数:
① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =;
② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±;
③ 数显式特斯拉计:μT 1 ,μT 1999~0 2
,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程;
④ 测试平台:mm 160300⨯;
⑤ 交流市电输入: Hz 50 %,10V 220AC ±。

【实验原理】 1. 磁阻效应与磁阻传感器:
物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。

薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式: θρ-ρ+ρ=θρ⊥⊥2cos )()(∥ (1)
其中//ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。

传感器内部结构如图2所示。

图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。

因而输出电压out U 可以用下式表示为:
b out U R R U ⨯⎪⎭
⎫ ⎝⎛∆= (2) 对于一定的工作电压,如V 00.5U b =,516FB 型磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系:
KB U U 0out += (3)
(3)式中,K 为传感器的灵敏度,B 为待测磁感应强度。

0U 为外加磁场为零时传感器的输出量。

2.载流圆线圈与亥姆霍兹线圈的磁场:
(1)载流圆线圈磁场:
一半径为R ,通以直流电流I 的圆线圈,其轴线上离圆线圈中心距离为X 米处的磁感应强度的表达式为:
式中0N 为线圈匝数,I 为线圈流过的电流强度,R 为亥姆霍磁线圈的平均半径,0μ为真空磁导率。

【实验内容】
1.测量和描绘载流圆线圈轴线上的磁场分布,验证毕—萨定理;
2.在相同电流下测量圆线圈1圆和圆线圈2轴线上的磁感应强度12B B 和,然后在同一电流下测定亥姆霍兹线圈轴线上的磁感应强度12B +, 验证磁场的迭加原理;了解亥姆霍兹线圈轴线上磁场的特点。

【实验步骤】
1. 仪器按图所示安装,用米尺测量线圈外径到工作台中心线的距离,适当调节,使两线圈
的轴线与工作台中心线重合,按实验要求,调节线圈间距,并保证线圈平面与工作台垂直;
2. 磁阻传感器探头的航空插头内缺口向下,插入仪器上插座。

然后将仪器通电,预热约15
分钟后,可进行实验;
3. 分别将圆线圈
a 和圆线圈
b 通电流。

测定磁场分布。

4. 把圆线圈 a 和圆线圈 b 串联,通电后,测定磁场分布。

相关文档
最新文档