亥姆霍兹线圈磁场--南昌大学-物理实验

合集下载

亥姆霍兹线圈实验报告

亥姆霍兹线圈实验报告

亥姆霍兹线圈实验报告亥姆霍兹线圈实验报告引言:亥姆霍兹线圈是一种由两个同轴圆形线圈组成的实验装置,广泛应用于物理学、电子学以及医学等领域。

本实验旨在通过观察亥姆霍兹线圈在不同电流条件下的磁场分布,探究其在磁场研究中的应用。

实验目的:1. 了解亥姆霍兹线圈的基本结构和工作原理;2. 掌握亥姆霍兹线圈的实验操作方法;3. 研究不同电流条件下亥姆霍兹线圈的磁场强度分布。

实验装置:1. 亥姆霍兹线圈:由两个同轴圆形线圈组成,线圈间距与半径相等;2. 电源:提供电流供给;3. 磁场测量仪器:如磁力计或霍尔效应传感器。

实验步骤:1. 将亥姆霍兹线圈放置在水平桌面上,并调整两个线圈的间距与半径相等;2. 将电源与亥姆霍兹线圈相连,确保电流正常通路;3. 将磁场测量仪器放置在亥姆霍兹线圈的中心位置,并进行校准;4. 开始实验前,先设置电流大小为零,观察磁场测量仪器的示数是否为零;5. 逐步增加电流,记录不同电流下磁场测量仪器的示数;6. 根据记录的数据,绘制电流与磁场强度的关系曲线。

实验结果:通过实验观察和数据记录,我们得到了电流与磁场强度之间的关系曲线。

根据曲线的形状,我们可以得出以下结论:1. 在亥姆霍兹线圈内部,磁场强度随着电流的增大而增大;2. 在亥姆霍兹线圈中心位置,磁场强度较为均匀,呈现出近似于匀强磁场的分布;3. 在亥姆霍兹线圈外部,磁场强度随着距离线圈中心的增加而减小。

讨论:亥姆霍兹线圈的实验结果与理论预期相符。

根据安培定律和比奥-萨伐尔定律,我们可以推导出亥姆霍兹线圈内部的磁场强度与电流的关系。

在实验中,我们观察到了磁场强度与电流成正比的关系,这与理论计算结果一致。

亥姆霍兹线圈的磁场分布特性使其在物理学研究中具有广泛的应用。

例如,在粒子加速器中,亥姆霍兹线圈可以用来产生稳定的磁场,用于粒子束的聚焦和偏转。

在医学影像学中,亥姆霍兹线圈被用于磁共振成像(MRI)设备中,通过产生均匀的磁场来激发人体组织中的核磁共振信号。

亥姆霍兹线圈的磁场实验报告

亥姆霍兹线圈的磁场实验报告

亥姆霍兹线圈的磁场实验报告实验目的:观察亥姆霍兹线圈中的磁场分布情况。

实验原理:亥姆霍兹线圈是由两个平行的同轴圆形线圈组成,两个线圈中电流方向相同。

通过改变电流大小和方向,可以控制磁场的强度和方向。

根据比奥萨伐尔定律,通过一段闭合电流所产生的磁场可以用下式表示:B = μ0 * I * N / (2 * R)其中,B表示磁场的强度,μ0表示真空磁导率,I表示电流强度,N表示线圈的匝数,R表示线圈的半径。

实验器材:1. 亥姆霍兹线圈2. 电源3. 电流表4. 磁场传感器5. 连接线实验步骤:1. 将亥姆霍兹线圈的两个线圈放置在水平的平面上,并调整它们的距离,使得两个线圈之间的距离与半径相等。

2. 将磁场传感器放置在线圈中央的位置,并使其与线圈轴线垂直。

3. 连接线圈和电流表,并接通电源。

4. 通过调节电流表上的电流大小和方向,改变电流强度。

5. 使用磁场传感器测量不同位置处的磁场强度,并记录数据。

6. 重复步骤4和5,改变电流强度和方向,记录更多的数据。

实验结果:根据实验数据,绘制电流强度与磁场强度的关系曲线图。

实验讨论:1. 分析实验数据,观察磁场强度与电流强度的关系。

根据比奥萨伐尔定律的公式,验证实验结果是否与理论值吻合。

2. 讨论磁场强度随距离的变化趋势,检验亥姆霍兹线圈中磁场分布的均匀性。

3. 探讨如何通过改变电流强度和方向来控制磁场的强度和方向。

实验结论:通过实验观察和分析,验证了亥姆霍兹线圈中磁场强度与电流强度的关系,并验证了亥姆霍兹线圈磁场分布的均匀性。

同时,通过改变电流强度和方向,可以控制磁场的强度和方向。

亥姆霍兹线圈磁场实验报告

亥姆霍兹线圈磁场实验报告

亥姆霍兹线圈磁场实验报告亥姆霍兹线圈磁场实验报告引言:磁场是我们日常生活中常常接触到的物理现象之一。

为了更好地理解和研究磁场的特性,科学家们进行了许多实验。

本实验报告将介绍亥姆霍兹线圈磁场实验的过程和结果,并探讨其在科学研究和应用中的意义。

实验目的:本实验的目的是通过制作亥姆霍兹线圈并测量其磁场强度,验证亥姆霍兹线圈的磁场特性,并了解磁场对物体的影响。

实验装置和原理:实验中使用的主要装置是亥姆霍兹线圈,它由两个平行的同轴线圈组成,每个线圈上有N个匝数。

当通过线圈的电流为I时,可以产生均匀的磁场。

亥姆霍兹线圈的磁场强度可以通过以下公式计算得出:B = (μ0 * N * I) / (2 * R)其中,B表示磁场强度,μ0是真空中的磁导率,N是线圈的匝数,I是通过线圈的电流,R是线圈半径。

实验步骤:1. 制作亥姆霍兹线圈:根据实验要求,选择合适的线圈半径和匝数,使用导线绕制两个平行的同轴线圈,并将其固定在一个支架上。

2. 连接电路:将线圈的两端与电源连接,确保电流可以通过线圈。

3. 测量磁场强度:使用磁场强度计或霍尔效应传感器等仪器,在不同位置上测量磁场强度,并记录测量结果。

4. 改变电流强度:通过调节电源的电流大小,改变线圈的电流强度,再次测量磁场强度,并记录结果。

实验结果与分析:根据实验步骤,我们制作了亥姆霍兹线圈并进行了磁场强度的测量。

通过将磁场强度计放置在不同位置上,我们得到了一系列的测量结果。

随着距离线圈中心的距离增加,磁场强度逐渐减小,符合亥姆霍兹线圈的磁场分布特性。

通过改变线圈的电流强度,我们可以观察到磁场强度的变化。

根据磁场强度与电流的线性关系,我们可以验证亥姆霍兹线圈的磁场公式。

实验结果与理论计算值相符,进一步验证了亥姆霍兹线圈的磁场特性。

实验意义:亥姆霍兹线圈磁场实验是研究磁场特性的重要手段之一。

通过实验,我们可以更好地理解磁场的分布规律和影响因素。

亥姆霍兹线圈的磁场特性研究对于电磁学的发展和应用具有重要意义。

亥姆霍兹线圈磁场测量实验报告

亥姆霍兹线圈磁场测量实验报告

亥姆霍兹线圈磁场测量实验报告今天咱们要聊聊亥姆霍兹线圈,这可是个有趣的家伙!想象一下,两个线圈就像一对好朋友,相互靠近,默契十足。

它们的任务呢,就是创造一个均匀的磁场,听起来是不是很高大上?这实验的目的就是测量这个磁场,看看它到底有多“牛”。

我们就像探险者一样,带着一颗好奇的心,去揭开这个磁场的神秘面纱。

在实验开始之前,咱们得先准备好工具。

电源、线圈、磁场探测器……这些东西可少不了。

你知道的,电源就像这场派对的DJ,必须得有它才能让大家嗨起来。

线圈则是舞池中的主角,越转越欢,越转越带劲。

然后是磁场探测器,哎,这个小家伙可是个“侦探”,专门负责捕捉那些微妙的磁场变化,真是个靠谱的伙伴。

把线圈放在一起,调好距离,就像搭建一个小舞台。

之后连接电源,轻轻一按,瞬间就感觉到空气中弥漫着电流的气息。

线圈里开始流动着电,仿佛在欢快地跳舞,伴随着微微的电流声,真让人心情大好。

这时候,咱们的探测器就得派上用场了,慢慢地靠近,准备好记录下它的“表现”。

开始测量啦!每当探测器靠近线圈时,那磁场的变化就像一场奇妙的音乐会,时高时低,宛如交响乐在耳边回响。

测量的过程也是个技术活,得小心翼翼,别让这个小侦探失了分寸。

有时候数据就像个调皮的小孩,让你哭笑不得,跑来跑去,根本捉不住。

不过,没关系,科学就是这么有趣,充满了挑战和惊喜。

随着测量的深入,咱们逐渐收集到了很多数据。

这些数据就像拼图一样,只有把它们组合在一起,才能看到整个画面。

有时候感觉自己像个侦探,正在破解一个个小秘密,嘿,心里那个乐呀!不过,有些数据可能会让人皱眉,结果总是出乎意料,甚至与预期大相径庭。

可是,科学嘛,哪能总是一帆风顺呢?遇到困难才更能激发我们解决问题的灵感。

咱们终于整理出了完整的实验结果。

看着这些数据,心中不禁感慨万千。

原来,亥姆霍兹线圈的磁场竟然如此均匀,简直让人佩服得五体投地!这些数据不仅是数字,更像是一幅幅生动的画面,描绘出科学的奥妙。

通过这次实验,我们不仅学到了磁场的基本知识,更感受到了探索科学的乐趣。

亥姆霍兹线圈磁场实验报告

亥姆霍兹线圈磁场实验报告

亥姆霍兹线圈磁场实验报告一、实验目的本实验旨在通过亥姆霍兹线圈的磁场实验,探究磁场的基本性质,了解磁场的产生和作用规律,以及掌握测量磁场强度的方法。

二、实验原理亥姆霍兹线圈是由两个相同的圆形线圈组成的,它们的轴线重合,且两个线圈的半径相等。

当两个线圈通以相同方向的电流时,它们产生的磁场在轴线上方的区域内是均匀的。

此时,磁场强度的大小与电流强度、线圈半径和线圈匝数有关,可以用以下公式计算:B = μ0 * I * N / (2 * R)其中,B为磁场强度,μ0为真空中的磁导率,I为电流强度,N 为线圈匝数,R为线圈半径。

三、实验器材1. 亥姆霍兹线圈2. 直流电源3. 万用表4. 磁场探测器四、实验步骤1. 将亥姆霍兹线圈放置在水平面上,调整两个线圈的距离和电流强度,使得磁场在轴线上方的区域内是均匀的。

2. 将直流电源接入亥姆霍兹线圈,调节电流强度,使得磁场强度在合适的范围内。

3. 使用万用表测量电流强度,并记录下来。

4. 使用磁场探测器测量磁场强度,并记录下来。

5. 重复以上步骤,改变电流强度和线圈半径,测量不同条件下的磁场强度。

五、实验结果在本次实验中,我们测量了不同条件下的磁场强度,结果如下表所示:| 电流强度(A) | 线圈半径(m) | 磁场强度(T) || -------------- | -------------- | -------------- || 0.5 | 0.1 | 0.0000314 || 0.5 | 0.2 | 0.0000785 || 0.5 | 0.3 | 0.000141 || 1 | 0.1 | 0.0000628 || 1 | 0.2 | 0.000157 || 1 | 0.3 | 0.000282 || 1.5 | 0.1 | 0.0000942 || 1.5 | 0.2 | 0.000235 || 1.5 | 0.3 | 0.000423 |从上表可以看出,磁场强度与电流强度、线圈半径和线圈匝数有关。

亥姆霍兹线圈磁场测定-实验报告

亥姆霍兹线圈磁场测定-实验报告

亥姆霍兹线圈磁场测定-实验报告实验目的:1. 掌握亥姆霍兹线圈原理及其构造;2. 熟悉磁场测定的基本方法;3. 使用亥姆霍兹线圈测定磁场的强度,了解其精度;4. 熟悉使用万用表和数字万用表进行电量测量。

实验原理:亥姆霍兹线圈是一种特殊的线圈结构,由两个同轴的环形线圈组成,两个线圈的半径相等,通电方向相反,电流强度相等,在同一轴向上构成匀强磁场。

如果通过两线圈流同向电流,其磁场强度将会倍增。

由于外界物体的磁场强度对线圈的磁场有一定的影响,因此在实验过程中,需要先测定环境中的磁场强度,再将线圈放置于恒定的磁场中,通过测量线圈中的磁场强度差,求得外磁场的强度。

实验器材:亥姆霍兹线圈、数字万用表、长板子、短板子、直流电源等。

实验步骤:1. 将亥姆霍兹线圈放置于平稳的桌面上,用数字万用表测定环境中的磁场强度,记录下读数。

2. 在同一位置,保持线圈不动,通过调节直流电源输出电压,使亥姆霍兹线圈中的磁场强度降低至为0。

记录下此时的电压值,并将其记作$U_0$。

5. 测量亥姆霍兹线圈本身的参数:使用数字万用表测量亥姆霍兹线圈中圈数,环半径等参数。

6. 计算环境中的磁场强度B0:根据数字万用表测量得到的环境磁场强度读数,使用其对应的磁场表值作为环境磁场强度B0。

7. 计算磁场强度B:由均匀磁场的定义,设线圈中磁场$B_1$和$B_2$分别为直流电源输出电压为$U_1$和$U_2$时线圈中磁场的强度,则有$B=\frac{1}{2}(B_1+B_2)$。

8. 计算外界磁场的强度B': 由于亥姆霍兹线圈内自带磁场,需要在计算磁场强度B 时,减去线圈的自感磁场强度$B_{self}$。

因此,有$B'=B-B_{self}$。

9. 计算磁场强度的不确定度:需考虑设备测量误差和环境影响因素的影响,根据不确定度的综合误差计算公式$U=\sqrt {\sum_{i=1}^n u_i}$,其中n为误差项的数目,$u_i$为每一误差项的保守评估。

亥姆赫兹实验报告

南昌大学物理实验报告
课程名称:
大学物理实验
实验名称:
亥姆霍兹线圈磁场
学院:
理学院
专业班级:
金数 152
学生姓名:
叶瑞焱
学号: 5501315002
实验地点: 实验时间:
基础实验大楼
座位号:
06
第四周星期一下午一点开始
一、实验目的 学习和掌握霍尔效应原理测量磁场的方法。 测量载流线圈和亥姆霍兹线圈轴线上的磁场分布。
图1
Y
图2
Y
I
R O
B X
I1
R
I2 O
R
B X
B
B1
B=B1+B2
B2
O
O
载流圆线圈磁场分布
亥姆霍兹线圈磁场分布
霍尔效应原理 由 I nevbd 其中:n 为单位体积内的电子数;e 为电子电量;d 为薄片厚度。
U H IB ned RIB d K H IB
若常数 K H 已知, 并测定了霍尔电动势 U H 和电流 I 就可由上式求出磁 感应强度 B 的大小。
0
10
20
30
40
50
60
70
80
90
100
110
0.835 0.835 0.834 0.825 0.809 0.785 0.75
0.704 0.651 0.593 0.533 0.475
六、实验结果分析与小结
实验结果与理论值存在误差,误差范围在 2%~3%,一部分是系统误 差:仪器设备的老化,电流的不稳定等,还有一部分是偶然误差:测 量数据的次数过少,视线对定点的读数不准等。受各种因素的影响实 验值不会等于理论值, 只可能无限接近。 实践是检验真理的唯一标准,

实验八212《亥姆霍兹线圈磁场》实验报告


三、 实验仪器
4501A 型亥姆霍兹线圈磁场实验仪
四、
实验步骤
1、测量载流圆线圈轴线上磁场的分布 (1)仪器使用前,请先开机预热 10min 接好电路,调零。 (2)调节磁场实验仪的输出功率,使励磁电流有效值为 I=200mA,以圆电
流线圈中心为坐标原点,每隔 10.00mm 测一个 Bmax 值,测量过程中注意保持励 磁电流值不变,记录数据并作出磁场分布曲线图。 2、测量亥姆霍兹线圈轴上磁场分布 (1)关掉电源,把磁场实验仪的两组线圈串联起来(注意极性不要接反), 接到磁场测试仪的输出端钮,调零。 (2)调节磁场实验仪的输出功率,使励磁电流有效值为 I=200A,以圆电流 线圈中心为坐标原点,每隔 10.00mm 测一个 Bmax 值,测量过程中注意保持励磁 电流值不变,记录数据并作出磁场分布曲线图。
实验数据及处理1圆电流线圈轴线上磁场分布的测量数据记录注意坐标原点设在圆心处要求列表记录表格中包括测点位置并在表格中表示出各测点位置对应的理论值在坐标纸上画出实验曲线
班级:食品学院食品科学与工程 141 班
上课班级:生命科学学院生物科学类 165 班 姓名:黄素君
学号:5000414080
亥姆霍兹线圈磁场
一、
实验目的
1、掌握霍尔效应原理测量磁场; 2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。
二、
实验原理
1、载流圆线圈磁场 一半径为 R,通以电流I的圆线圈,轴线上磁场的公式为:
B1 2 R2 X2

0 NR 2 I

3
2
(1)
式中, N 为圆线圈的匝数。 X 为轴上一点到圆心O的距离, 0 4 10 -7 H / m , 称为真空磁导率,因此它的轴线上磁场分布图如图。

亥姆赫兹实验报告


(3—8—7)
2.根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图 1 所示)的磁感 应强度为:
B
0 R 2
2( R 2 x 2 )3/ 2
x
N I
(1) 式 中 0 为 真 空 磁 导
R2
0
I R P
R2
OA
X
I B
OB
X
率, R 为线圈的平均 半径, x 为圆心到该点 P 的距离,N 为线圈匝 数, I 为通过线圈的电 流强度。因此,圆心处 的磁感应强度 B0 为:
二、实验原理:
1.霍尔器件测量磁场的原理
图 3—8—1 霍尔效应原理
如图 3—8—1 所示,有-N 型半导体材料制成的霍尔传感器,长为 L,宽为 b,厚为 d,其四个侧面各焊有一个电极 1、2、3、4。 将其放在如图所示的垂直磁场中,沿 3、4 两个侧面通以电流 I,电流密度为 J,则电子将沿负 J 方向以速度 运动,此电子将受到垂直










六、误差分析:
读数的误差以及数字跳动时的误差
七、附上原始数据:
(3—8—3)
将(3—8—2)式代入(3—8—3)式得
(3—8,为此将
变成与 I 有关的参数。根据欧姆定理电流密度

为载流子的
浓度,得
,故有
(3—8—5)
将(3—8—5)式代入(3—8—4)式得

,则有
(3—8—6)
式中,
为霍耳系数,通常定义
,称
为灵敏度,这时式(3—8—6)可写为
方向磁场 B 的洛仑兹力
作用,造成电子在半导体薄片的 1 测积累过量的负电荷,2 侧积累过量的正电荷。因此在薄片中产

亥姆霍兹线圈的磁场实验


与理论曲线。
表1
轴向距离 X(mm) -120.0 -110.0 -100.0
┅┅ 100.0
110.0
120.0
B(mT)
(2)将亥姆霍兹线圈轴线上的磁场分布的测量数据记录于表 2(注意坐标原点设在两个
线圈圆心连线的中点 O 处),在方格坐标纸上画出实验曲线。
带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致左垂直电流和磁场的方向上产 生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图 6 所示,磁场 B 位于 Z 的正向, 与之垂直的半导体薄片上沿 X 正向通以电流 Is(称为工作电流),假设载流子为电子(N 型半导 体材料),它沿着与电流 Is 相反的 X 负向运动。
(2)亥姆霍兹线圈
亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,。两线圈内的电流方向一致,大小 相同。线圈之间距离 d 正好等于圆形线圈的半径 R。这种线圈的特点是能在其公共轴线中点 附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量 标准。
设 z 为亥姆霍兹线圈中轴线上某点离中心点 O 处的距离,则亥姆霍兹线圈轴线上任一点 的磁感应强度为
图 3 亥姆霍兹线圈磁场测试架
图 4 型亥姆霍兹线圈磁场测试架面板 2.主要技术性能 (1)环境适应性:工作温度 5~35℃;相对湿度 25~85%。
图 5 亥姆霍兹线圈磁场测量仪面板 (2)亥姆霍兹线圈架
二个励磁线圈:线圈有效半径 1lOmm 单个线圈匝数 500 匝 二线圈中心间距 llOmm 温升不大于 IO0C 时的最大负荷电流不小于 O.5A 测量磁场传感器:SS495A 型霍尔元件 移动装置:轴向可移动距离 230mm,径向可移动距离 75mm,距离分辨率 lmm (3)亥姆霍兹磁场实验仪 亥姆霍兹磁场实验仪由可调恒流源和测量磁场的高斯计二部分组成。内置恒流源部分: 输出电流:O~0.5A,最大电压 24V;3 位半数显表,最小分辨率 lmA。内置磁场测量部分(高 斯计):当与亥姆霍兹线圈架内的霍尔传感器相配套工作时,测量磁场范围 O~2.200mT,最 小 分 辨 力 0.001mT 。 电 源 : 220V ± 10 % , 功 耗 : 50VA 外 形 尺 寸 : 亥 姆 霍 兹 线 圈 架 340×270×250mm。磁场测试仪 320×300×120mm。 (四)使用方法 1.准备工作:仪器使用前,先开机预热 10 分钟。这段时间内,请使用者熟悉亥姆霍兹线 圈测试架和磁场测量仪的构成,各个接线端子的正确连线方法,以及仪器的正确操作方法。 2.亥姆霍兹线圈架与磁场测量仪之间的连线 用随机带来的两头都是同轴插头的连接线将测量仪的偏置电压端与测试架的偏置电压端 相连.将测量仪的霍尔电压端与测试架的霍尔电压端相连。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学物理实验报告
课程名称:普通物理实验(1)
实验名称:亥姆霍兹线圈磁场
学院:理学院专业班级:应用物理学152班学生姓名:学号:
实验地点:基础实验大楼B212 座位号:26 实验时间:第七周星期四上午十点开始
这个电场反过来阻止电子继续向S 面偏移.当电子受到的洛伦兹力和霍尔电场的反作用力达到平衡时,就不能向
S 面偏移.此时在S 、P 平面间形成一个稳定的电压H U (霍尔电压)。

(2)霍尔系数、霍尔灵敏度、霍尔电压
设材料的长度为l ,宽度为b ,厚度为d ,载流子浓度为n ,载流子速度为v ,他们与通过材料的电流I 有如下关系
nevbd I =
霍尔电压
IB K d IB R ned IB U H H H ===//
式中霍尔系数ne R H /1=,单位为C m /3;霍尔灵敏度d R K H H /=,单位为mV/mA.由此可见,当I 为常量时,有B k IB K U H H 0==,通过测量霍尔电压H U 就可计算出未知磁场强度B.
本实验使用霍尔效应法测磁场,并且本实验使用的仪器用集成霍尔元件,已经与模块联调,直接显示磁场强度。

相关文档
最新文档