方程的意义

合集下载

方程的意义优秀3篇

方程的意义优秀3篇

方程的意义优秀3篇方程的意义篇一《方程的意义》这一课的教学。

难点是区分等式和方程,为突破这一难点我这样设计了这节课的教学过程。

新课前进行三分钟口算。

上课开始进行简单的小游戏:把粗细均匀的直尺横放在手指上,使直尺平衡。

通过这一简单的小游戏使学生明白什么是平衡和不平衡,以此使学生能明白在方程意义教学过程中什么是相等关系,天平中的平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个?天平仍是平衡状态。

得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。

整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出等式含有未知数的等式方程。

虽然整个教学任务是完成了。

但从学生的练习中我们发现还有一部分学生对等式和方程的关系还是没有真正弄清。

教学反思:本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。

教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。

如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

《方程的意义》教案

《方程的意义》教案

《方程的意义》教案1.通过教学,使学生理解与掌握方程的意义。

2.培养学生观察、归纳和概括的能力。

3.培养学生仔细观察的良好习惯。

理解方程的意义。

根据情景图正确列出方程。

一、自主预习师:同学们在游乐场玩过跷跷板吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。

二、合作探究1.认识天平。

介绍天平的用法。

2.认识等式。

出示教科书第62页图1(或做实验)。

问:这时天平保持平衡了,左右托盘放的分别是什么?你能用1个式子来表示吗?左边放的是2个50g的砝码,右边放的是1个100g的砝码。

板书:50+50=100。

这是一个等式。

3.实物演示,引出方程。

(1)出示教科书第62页图2(或做实验)问:天平平衡了吗?说明一只空杯子重多少克?板书:一只空杯子=100克(2)出示教科书第62页图3(或做实验)。

问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?板书:100+x>100(3)出示教科书第62页图4(或做实验)。

问:增加100克砝码,发现了什么?(杯子和水比200克重)如果将水设为x克,那么用一个式子该怎样表示杯子和水比200克重呢?板书:100+x>200问:如果再增加100克砝码,你又发现了什么?怎样用式子来表示?板书:100+x<300(4)出示教科书第62页图5(或做实验)。

问:现在天平怎样?你能用一个式子来表示天平是平衡的吗?板书:100+x=250(5)出示教科书第63页主题图,并引导学生列式。

3x=2.44.理解“等式”“不等式”“方程”的意义。

(1)教师引导学生观察以上板书的各式子,找出它们各有什么不同,有哪些是相同的,然后小组内交流、讨论。

(2)全班汇报,教师根据汇报情况作点评,并归纳小结:用等于符号连接的式子是等式;用大于或小于符号连接的式子是不等式,既用等于符号连接,还含有未知数的式子是方程。

所以方程一定是等式,但等式不一定是方程。

方程的意义等式的性质

方程的意义等式的性质

方程的意义等式的性质方程是数学中最基本的概念之一,它是一个等式,其中包含未知数。

方程的意义表达了数学中的平衡和关系,它可以帮助我们解决各种实际问题。

本文将介绍方程的意义以及一些重要的性质。

方程可以用来描述两个量之间的关系。

在方程中,左右两边是相等的,表示两个量是平衡的或相同的。

方程中通常包含一个或多个未知数,我们的目标是找到使方程成立的未知数的值。

这些未知数可以是实际问题中的长度、重量、速度等物理量,也可以是数学问题中的变量。

方程的性质:1.变性:方程的两边交换位置不会改变它的意义。

例如,方程a+b=c可以变形为c=a+b。

2.相等性:方程中的两边是相等的。

在解方程时,我们通过找到使两边相等的值来确定未知数的值。

3.传递性:如果a=b且b=c,则a=c。

方程的传递性可以帮助我们在解决问题时进行一系列代数运算。

4.加减性:在方程两边同时加减同一个数不会改变方程成立的性质。

例如,对于方程a=b,如果我们在两边同时加上c,则方程变为a+c=b+c。

5. 乘除性:在方程两边同时乘除同一个非零数不会改变方程成立的性质。

例如,对于方程a = b,如果我们在两边同时乘上c(c≠0),则方程变为ac = bc。

6.可逆性:对方程进行一系列代数运算,可以得到等价的方程。

我们可以使用这些运算来分解复杂的方程,以便更容易地解决问题。

方程的形式:方程可以有不同的形式,包括线性方程、二次方程、指数方程、对数方程等。

每种形式的方程都有其独特的性质和解法。

例如,线性方程的一般形式是ax + b = 0,其中a和b是已知数,x是未知数。

我们可以使用一元一次方程求解线性方程。

对于二次方程,一般形式是ax^2 + bx + c = 0,其中a、b和c是已知数,x是未知数。

我们可以使用求根公式或配方法求解二次方程。

方程的解:解是使方程成立的未知数的值。

方程可以有一个或多个解,也可以没有解。

对于线性方程ax + b = 0,如果a≠0,则方程有唯一解x = -b/a。

四年级方程的意义

四年级方程的意义

方程的意义:方程是数学中的一种基本概念,它是用来表示两个数量相等关系的等式。

在数学中,方程是解决问题的有力工具,它使我们能够通过代数方法来求解未知数,帮助我们理解和解决各种现实世界中的问题。

本文将从多个角度来探讨方程的意义。

一、方程在代数中的意义:1.1解决未知数的问题:方程使我们能够通过代数方式解决问题。

当我们遇到未知数的情况时,可以将问题转化为方程,通过求解方程来确定未知数的值。

方程可以帮助我们解答关于数量关系的问题,是数学推理和问题解决能力的基石。

1.2表示数学关系:方程可以表示数学关系。

通过方程,我们可以描述两个量之间的关系,如线性关系、比例关系、多项式关系等。

这些方程可以帮助我们理解和分析各种数学模型和问题。

1.3建立数学模型:方程可以用于建立数学模型。

数学模型是一种数学表达式,用于描述现实世界的问题。

我们可以把现实世界中的问题抽象为数学方程,并通过解方程来解决问题。

数学模型在科学研究和工程实践中应用广泛,方程是数学模型的基础。

1.4探索数学规律:方程可以帮助我们发现和探索数学规律。

通过观察和分析方程,我们可以发现一些数学规律和性质。

方程可以帮助我们深入理解数学的本质,从中提炼出一些普遍的数学规律,拓宽我们的数学思维和能力。

二、方程在解决实际问题中的意义:2.1算术问题:方程可以帮助我们解决各种算术问题。

例如,当我们需要求解一个未知数的值,可以将问题转化为方程,然后通过解方程来得到答案。

方程可以帮助我们解决关于比例、百分数、平均数等问题,提高我们的数学计算能力。

2.2几何问题:方程可以用于解决几何问题。

例如,当我们需要确定一个几何图形的特定属性时,可以将问题转化为几何方程,然后通过解方程来得到准确的答案。

方程可以帮助我们理解和证明几何定理,探究几何图形的性质和变换。

2.3物理问题:方程在物理学中有广泛的应用。

物理问题通常涉及到各种物理量之间的数学关系,可以通过方程来描述和解决。

方程可以帮助我们计算速度、加速度、力等物理量,研究物体的运动和相互作用。

方程的意义说课稿15篇

方程的意义说课稿15篇

方程的意义说课稿15篇方程的意义说课稿1尊敬的各位评委老师:上午好!我今天说课的题目是《方程的意义》,接下来我将从以下几个方面进行我的说课:【说教材】:首先我说说对教材的理解:《方程的意义》一课是人教版小学数学五年级上册第四单元《简易方程》中的内容。

方程这部分知识,在初等代数中占有重要的地位,方程这部分知识的学习,是学生从算术方法解决问题到代数方法解决问题的过渡,因此,在教学中起着承上启下的作用。

【说学情】:学生在学习《方程的意义》之前,在低年级的数学学习中均有填算式中的括号、数字谜等不同形式的思维训练,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,这些都为理解方程意义起着铺垫作用。

【说教学目标】根据上述的教材分析及当前新课标要求,我确定了以下教学目标:知识与技能:了解方程的意义,弄清方程与等式的联系与区别。

过程与方法:在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

情感与价值观:培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

【教学重难点】了解方程的意义是本节课的教学重点。

完成数量关系到等量关系的过渡,构建方程的概念是本节课的教学难点。

【说教法学法】为突破重难点,完成上述教学目标,根据教材的特点和小学生的认知特点和规律及教材特点,这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流自对数学的理解,并通过相互合作共同解决所面临的问题。

在课堂教学中,让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

【说教学过程】:课堂教学是教学的主渠道,根据教学要求,为了突破教学的重、难点,我将教学过程分为以下六部分。

一、谈话导入,认识天平:上课时,我问同学玩过跷跷板吗?并让学生交流这个游戏的玩法与经验,根据学生的回答后并接着出示实物天平,让学生说一说在怎样的情况下,天平才会平衡?跷跷板与天平有许多相似之处,但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,形象生动,学生容易找到旧经验与新事物的联系,形成表象二、新授:创设情景,抽象出等量关系情景1:演示天平左边放两个50克的砝码,右边放一个100克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。

方程的意义教学设计5篇

方程的意义教学设计5篇

方程的意义教学设计篇5教学内容:人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。

教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。

教学难点:理解方程的意义,即方程两边代数式所表达的两件事情是等价的。

教学过程呈现情境,建立方程1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。

3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)当学生说出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42(对不是方程的式子,一定要学生从本质上解释为什么不是方程)学完方程后。

方程的意义小学数学

方程的意义小学数学

方程的意义小学数学方程是数学中非常重要的概念之一,它可以帮助我们解决各种实际问题,并提供了一种表达关系和解决问题的有效方法。

方程的意义可以从多个方面来进行探讨,包括方程的产生背景、方程的本质、方程的解析方法以及方程在实际生活中的应用等。

首先,我们来看方程的产生背景。

方程最早的记录可以追溯到古希腊,当时人们遇到一些问题,如求解长度或面积等,开始尝试用字母和符号来记录问题和解决方法,这就是方程的雏形。

随着数学的发展,方程成为一门独立的学科,并逐渐形成自己的理论框架和研究方法。

其次,方程的本质是表达和描述数学关系。

方程是由等号连接的两个代数式构成的等式,它描述了一个或多个未知数与已知数之间的关系。

方程的本质是通过已知数和未知数之间的关系,来求解未知数的值或确定一些变量的取值范围。

方程中的未知数通常用字母表示,通过求解方程可以解决各种数学问题,如求解线段长度、解决几何问题、计算图形的面积和体积等。

然后,方程有多种解析方法。

解方程是数学分析的基本内容之一、对于一元一次方程,我们可以运用逆运算或者加减消元法来求解;对于二元一次方程,我们可以使用代入法或消元法来求解。

对于更高阶次的方程,我们可以运用因式分解、配方法等解析方法来求解。

解方程需要我们运用逆运算和数学计算方法,灵活运用代数运算和等式性质,从而得到方程的解。

最后,方程在实际生活中有广泛的应用。

方程在各个领域都能得到应用,如物理学、经济学、生物学、化学等。

举例来说,在物理学中,通过建立各种物理方程,我们可以研究和解决运动、力学、电磁场等问题。

在经济学中,方程可以帮助我们了解和解决供需关系、价格变动等问题。

在生物学中,方程可以帮助我们研究种群的增长和减少规律。

在化学中,方程可以帮助我们计算反应物的摩尔比、浓度等。

方程在实际生活中的应用不仅帮助我们解决问题,也方便我们进行数据计算、模拟预测、优化设计等。

综上所述,方程在数学中有着很重要的意义。

它不仅是表达和描述关系的工具,同时也是解决数学问题的方法。

关于“方程的意义”

关于“方程的意义”

“先数出十根小棒,捆成 一捆。接着怎么数?” “1个十和1个一合起来 是十一。” “读直尺上的数。”


教师不是要简单地将这些静态 的结果“教”给学生,而是要 将这一“结果”变化为可以使 学生参与的数学活动的过程, 而这一变化过程的实现就需要 我们去“研读教材”。

例2教学数的读法

教学建议:
(1)让学生充分观察和讨论,找出算式的 共同特点。 (2)给出倒数的定义后,讨论倒数的特点 ,特别要理解“互为倒数”的含义,即倒数是 表示两个数之间的关系,这两个数是相互依存 的,倒数不能单独存在。也可以结合判断题, 如“73是倒数”对不对?以加深学生认识。 (3)可以让学生根据对倒数意义的理解, 说出几组倒数,看学生是否真正理解和掌握。
•关于“方程的意义”
研读文本:
1.“含有未知数的等 式” 描述了方程的外部特 征,并不是本质特征。
2.方程的本质——为了求未 知数,在已知数和未知数之间 建立的一种等式关系,也就是 说,通过建立一种相等关系, 求未知数。
3.方程由已知数和未知数 共同组成,表达的相等关系 是现象、事件中最主要的数 量关系。

例2教学数的读法,教材注意通 过操作,并在数的组成的基础 上来教学。学生在用小棒摆数 时,突出10根小棒一捆,就是1 个十;还有几根小棒,与前面 的小捆小棒放在一起就是十几; 2捆小棒就是二十。

例3教学数序,要求学生把直尺上的 数读出来,有助于学生理解20以内 数的顺序和大小。在练习十四中, 还出现了用直线上的点表示数的习 题,要求学生按照数的顺序在( ) 中填上适当的数。用直线上的点表 示数,虽然图形本身是直观的,但 是对小学生来说还是比较困难的。
•接纳 •换位 •判断 •调整
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《方程的意义》教学反思洪湖市第五小学王红梅这一次学校开展了活动,在活动中我们集体备课选定了《方程的意义》一课作为研讨课。

这课的难点是区分“等式”和“方程”,为能突破这一难点我们精心设计了这节课的教学过程。

新课前先是出示了口算卡,接着在方程意义教学过程中为了使学生能明白什么是相等关系,我们先用了一把1米长粗细均匀的直尺横放在手指上,通过这一简单的小游戏使学生明白什么是平衡和不平衡,平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。

得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。

整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。

虽然整个教学任务好象是完成了。

但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。

”这句话对吗?(答案是对的)但是通过小组同学的合作学习和争论,答案不一。

虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。

其实我们是忽视了“等式”和“方程”的直接对比。

我们的口算题引入本来是为这节课的学习进行铺垫,但在第一次上课时,口算题我们做完后没有再回过头来再充分利用。

课后经过大家的评课和科培中心老帅的指点,看起来是很简单的几道口算题,其中隐藏着等式和方程的关系。

第二节课中我们通过改进,在讲完“等式”和“方程”后又回到口算卡,将口算卡的题通过变化——只是等式|,——既是等式又是方程,这样进行对比使学生对“等式”和“方程”的关系就弄得明明白白了。

《方程的意义》教学设计洪湖市第五小学王红梅教学内容:人教版《义务教育课程标准实验教科书·数学》五年级上册第四单元第53~54页“方程的意义”。

教学目标:1.借助生活情景理解方程的意义——用含有未知数的等式表示两件事情是等价的。

2.经历从生活情景到方程模型的建构过程,感受方程思想的核心之一,即建模。

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:准确从生活情景中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。

教学难点:理解方程的意义,即用数学符号表示两件事情是等价的。

教学准备:flash课件,天平,不同质量的食物若干。

教学过程:一、游戏引入,激发兴趣师:今天,我们先来玩个游戏!这儿有13张扑克牌,分别代表1—13,你们从中任抽一张,不让老师看到,老师也能猜到你抽到的这张扑克牌是什么,谁愿意试试?生:任抽一张(不让老师看见牌面)。

师:请将扑克牌代表的数先乘2,再加上3,再把所得的和乘5,最后减去25,看看结果是多少?生算后报出结果,教师利用列方程快速求出结果,报出牌面的数字。

待学生无限惊讶时,引导学生猜想:“老师怎么能这么快知道同学们手中的牌呢?”生:你一定是倒推的,将得数加上25,除以5,减去3,再除以2。

师:你知道其中的秘密了,真了不起!老师能这么快知道你们抽的是什么牌,是因为数学王国的一位新朋友帮了我的忙,今天我们就能认识它。

二、情景呈现,抽象模型1.师:老师这有一台简易天平。

关于天平.你们都了解些什么?生1:天平可以称物体的质量;师:(借助天平边演示边问)在天平的左盘放上两袋100克的2.师:将左盘的食物换成两袋30克的食物,天平还平衡了吗?师:谁能用个式子表示天平现在这种不平衡?3.师:是呀,因为两盘物体质量不相,所以天平就不平衡,那么,怎样才能使它平衡呢?师:你们这样做的目的都是为了什么?生:使左右两盘物体的质量相等。

师:这儿有一袋小豆,它的质量不知道,我们可以怎么表示?生:可以用字母表示、可以用x表示。

师将这袋x克的小豆加在轻的一端,让学生观察天平的状态并用式子表示。

生:60+x=200。

师:60+x表示的是什么?200表示的是什么?生:60+x表示的是左盘物体的质量,200表示仍然是砝码的质量。

4.师出示一盒牛奶,告诉学生它的质量是275克,让学生猜想如果将它放在天平的左盘里会怎样?提示学生用式子表示(275>200),然后请一位同学将盒内的牛奶喝掉一些。

师:如果将剩下的牛奶放回天平左盘,天平可能会出现什么情况,又可以用什么式子表示呢?生思维活跃,猜想出以下三种情况:可能平衡,用275-x=200表示;也可能是275-x>200,也就是说剩下的牛奶还是比砝码重。

还可能是剩下的牛奶轻些,可以用275-x<200来表示。

师:同学们都理解了这些式子两边的含义,并用正确的符号连接起来。

三、引导分类,构建概念1.师:刚才我们用了这么多的式子来描述天平的平衡情况。

你能按天平的平衡情况将这些式子分分类吗?(生讨论,师巡视)组1:我们是按是否含有未知数来分的,将60+x =200,275-x=200,275-x=200,275-x<200分为一组,其余的分为一组。

组2:我们组将平衡的分为一类,大于200的分为一类,小于200的分为一类。

组3:我们和组2分的差不多,只是将平衡的分为一类,将不平衡的分为一类。

师拖放课件上的式子,按学生的汇报将不平衡的归到一起。

师:(指着含有等于号的式子)像这样的含有等于号的式子,数学上称之为等式。

(板书:等式)其它的式子我们都称之为不等式。

师:观察这些等式,它们有什么不同的地方?生:后两个含有字母。

师:这些字母表示——未知数。

(板书:含有未知数)像这样的含有未知数的等式,我们称之为方程。

今天这节课我们就是研究方程的意义。

师:能说说什么叫方程?(生齐读概念)师:联系刚才的操作,说说你对方程的理解。

师:那么,方程和等式之间有什么关系呢?师:如果画这样一示等式,那方程应该画在哪里?四、形式判断,加深认识1.师:大家对方程有了一定的理解,在刚才的情景中,我们列出了两个方程。

(指着黑板上已有的两个方程),下面,大家根据自己对方程的理解任意写几个方程吧!(生在练习纸上写,叫部分学生在黑板上写。

)2.师:同桌间互相检查一下,看大家列的都是方程吗?再看黑板上这几位同学写的。

都是方程吗?学生写的方程没有错误的,还出现了用不同字母表示未知数的方程,师引导学生一一进行判断。

师:大头儿子也写了两个式子,可是不小心被墨水给弄脏了,猜猜他原来列的是不是方程?师:同意吗?为什么?3.师:看来,大家对方程已经有了非常深刻的认识。

方程的历史已经非常悠久了,我们一起去了解一下吧!(课件出示——方程“史话”)方程历史的第一页是由古代埃及人和巴比伦人揭开的。

据现存世界上最早的数学文献——埃及的林特草卷记载,早在三千六百多年前,埃及人就会用方程解决数学问题了。

师:随着数学的研究范围不断扩充,方程的作用也越来越重要。

方程的类型也由简单到复杂不断地发展。

但是,无论类型如何变化,各种各样的方程都是含有未知数的等式。

很多以前用算术方法解起来很难的问题,用方程解起来就轻而易举呢。

五、联系实际,巩固应用1.师:下面咱们来玩个小游戏!这是用电脑模拟的天平,请把天平下方的材料拖放到天平上,要求大家看到天平的状况就能列出一个方程来。

由于电脑操作的原因,学生尝试多次,天平未出现平衡。

师:你觉得要让大家能列出方程来,关键要解决什么问题。

师:能列出方程吗?师:你们列出的方程是?(2x+20=50,x+y+50=z)当学生列出方程后,师启发学生讲清等式的左边和右边分别表示什么?生:分别表示两边物体的质量。

师:大家看,这个方程两边都含有未知数,这么复杂的方程都能列出来,大家真了不起师:这个方程刚才出现过,(指黑板上已经列出的方程)同样一个方程.在这里表示的是长度相等,刚才表示的是什么?生:质量相等。

师:你们能不能再举个例子,让大家也能列出一个这样的方程来呢?师:60+x=200能表示这位同学所说问题中的数量关系吗?生:能!师:这个方程又是表示什么相等?师:看来,只要是涉及未知数的等量关系,都可以用方程表示。

3.师:大头儿子和小头爸爸在说些什么,我们一起去听听!(播放课件)师:你能从小头爸爸和大头儿子谈话中,选取一些信息列出方程吗?(师收集几张练习纸,投影展示。

)师:我们来看这位同学的,列出了37-a=28这样一个方程,请这位同学说说你选择了哪几条信息,为什么这样列?师:这里还有一位同学列的是a+28=37,37-28=a怎么想的?师:有道理!大家看看,这三个方程都是根据这一组信息列出的,像37—28=a这样的方程,和我们以前学的算术方法的思路是一样的,未知数没有参与运算,今后我们用方程解决实际问题时,一般不列这样的方程。

师:再看这位同学列出9-x=3这样一个方程。

能说说你的想吗?师:9-和3似分别表示的是儿子给了爸爸x张后两人扑克牌的张数,这时他们的张数才是一样多的。

师:还记得课开始的时候老师和你们玩的游戏吗?同学们第一次抽了一张牌。

按照规定的方法计算后得到60,老师就是根据你们的计算过程和结果列出了一个方程(2x+3)×5-25---60,然后解出这个方程,从而快速判断出你们抽的牌是什么。

至于怎么解方程,正是我们今后要研究的内容,相信大家有了今天的基础,大家一定会越来越喜欢“方程”这位朋友的!。

相关文档
最新文档