海上风力发电发展现状解读

合集下载

2023年海上风力发电行业市场分析现状

2023年海上风力发电行业市场分析现状

2023年海上风力发电行业市场分析现状近年来,全球海上风力发电行业迎来了快速发展的良好机遇。

海上风电是指利用海洋环境中的风力,通过建设风力发电机组、变流站和开发海上风电网等设施将风能转化为电能,并供应给沿海城市及岛屿等用电设施。

海上风电具有占地面积较小、无土地使用权等优点。

尤其是在风资源较佳的北欧地区,海上风电可满足国家能源减排目标,因此得到了广泛的关注和支持。

市场分析:目前,海上风力发电行业市场份额主要集中在欧洲,其次是北美、亚太等地区。

其中北欧以丹麦、荷兰、英国等国为代表,是欧洲海上风电领先地区。

据欧洲风能协会的数据,欧洲的海上风电装机容量在2019年达到了22.1GW,相较于2018年的20.4GW有所增长。

而在全球范围内,海上风电的装机容量也在迅速增加。

数据显示,到2024年,全球海上风电的累计装机容量将达到110GW以上。

海上风电市场的增长离不开政府的支持和投资。

欧盟、美国、中国等国家和地区均采取了一系列政策和措施来推动海上风电行业的发展,如提供税收优惠、制定能源政策、出台鼓励清洁能源的法律法规等。

此外,如果把自然灾害、战争等因素考虑在内,海上风电的投资风险相较于陆地风电要高出不少,因此政府的支持可以降低投资者的风险意愿,从而推动海上风电的发展。

未来发展:随着技术的不断成熟和降成本,海上风电行业的前景将会越来越广阔。

未来,海上风电将成为清洁能源发展的重要方向之一。

随着全球对环保和可持续发展的认识不断提高,海上风电将得到更多的投资和行业支持。

同时,技术创新也将促进海上风电的发展。

例如,单桩式浮式风力发电机组近年来受到了研究人员的广泛关注,这种发电机组结构简单、容易安装,能够满足深水区或波浪较大的海域使用。

总的来说,海上风电作为一种新兴的清洁能源形式,其发展前景非常广阔。

随着技术的不断成熟,政策的不断支持和投资的不断增加,海上风电将成为未来清洁能源发展的重要方向之一。

我国海上风力发电发展现状和趋势

我国海上风力发电发展现状和趋势

我国海上风力发电发展现状和趋势海上风力发电,作为可再生能源的重要组成部分,近年来在全球范围内经历了快速发展。

我国作为世界最大的能源消费国,对海上风力发电的发展非常重视。

下面将从现状和趋势两个方面进行分析。

一、现状目前,我国海上风力发电尚处于起步阶段,但取得了一定的进展。

截至2024年,我国已经建成并运行的海上风电装机容量达到10.9GW,位居世界第三、同时,还有一大批项目正在建设和规划之中,预计到2024年底,我国的海上风电装机容量将达到30GW左右。

我国海上风力发电主要集中在东海、南海和黄海等地区。

其中,浙江舟山群岛风电示范区、广东陈家、湛江、深圳等地和江苏南通、上海和辽宁的三沙项目等都具备一定的推广和示范作用。

同时,在福建、山东、天津、黑龙江和辽宁等地也有一些项目正在规划和建设之中。

二、趋势1.政策支持:国家对于海上风力发电的政策支持力度逐渐加大。

2024年,国家发改委发布了《关于加快推进风电发展的指导意见》,明确提出要大力发展海上风电。

此外,国家还加大了对海上风电技术研究和示范项目的支持力度。

2.技术进步:海上风力发电技术不断成熟和改进,风机容量逐渐增大,综合利用率也在提高。

同时,我国在自主研发和生产风机装备方面取得了巨大的成就,逐渐摆脱对进口设备的依赖。

4.国际合作:随着我国海上风力发电技术的不断成熟和发展,我国开始积极参与国际海洋能源合作,与德国、丹麦、英国等国家开展技术合作和项目合作,进一步推动我国海上风力发电的发展。

5.资金支持:近年来,我国海上风力发电项目的融资环境逐渐优化,各类融资渠道得到拓宽,海上风电项目的投资成本也在降低,吸引了更多的投资者的关注和参与。

总之,我国海上风力发电发展正处于快速发展期,未来仍然具有很大的潜力和空间。

然而,也需要注意到一些挑战和问题,比如技术成熟度、环境保护、海域规划等方面的挑战。

未来,随着技术的不断进步和政策的支持,我国的海上风力发电必将迎来更加广阔的发展前景。

深远海风力发电技术的现状和难题(上)

深远海风力发电技术的现状和难题(上)

深远海风力发电技术的现状和难题(上)导读海上风电由于具有风能稳定、密度大等优点,在世界范围内已逐渐发展成为风力发电的重要形式。

在深远海域,风能资源更丰富,风湍流强度与海面粗糙度较近海更小,因此深远海域海上风电技术的研究和开发成为了当今海上风电发展的新趋势,其作为风电技术的制高点,正在成为海上风电产业众多参与方追捧的热点。

英国、丹麦、德国等海上风电技术领先国家已纷纷将海上风电的研究方向投向深远海领域。

在我国,由于近海海域日益紧张,同时,深远海域风电场的建设和运行对于海洋、渔业、军事、海事通航以及城市居民等利益相关方的不利影响相对更小,长远来看,海上风力发电从潮间带和近海走向深海远岸将是必然趋势。

深远海风力发电发展现状[!国际发展现状____________________________________________________________近年来,随着全球海上风电逐步向深海、远海进发,浮式海上风电技术作为新一代海上风电技术,获得了业内的广泛关注。

在深远海风电开发方面欧洲仍处于领先地位,英国、德国等海上风电大国均积极发展和布局深远海项目。

根据相关预测,2025年欧洲远海风电(离岸距离大于70千米)装机将达到IOOo万千瓦。

从欧洲的开发经验来看,深远海风电发展呈现设备大型化、风场规模化的趋势,多种类型的漂浮式风场也逐步进入商业运行示范阶段。

2017年,全球首座商业化运行的苏格兰HyWind浮式海上风电场正式投用,装机30兆瓦,其平均容量系数甚至高于英国其他海上风电场,这也成为浮式海上风电技术大规模应用的开端。

图1Hywind海上浮式风电场据初步了解,英国计划到2030年安装40GW海上风电,大力发展浮式海上风电,2023年英国在建水深最深的风场正是浮式项目,水深达67米。

英国北海HornSeaProjeCtOne项目采用174台西门子歌美飒7兆瓦机组,装机121.8万千瓦,离岸120千米,水深23~37米,首台机组2019年2月并网,该项目为目前世界最大的在建海上风电项目;同一海域HOrnSeaPrOjeCtTWO项目处于前期阶段,采用165台西门子歌美飒8兆瓦机组,装机132万千瓦,平均离岸距离89千米。

风力发电的发展状况与发展趋势

风力发电的发展状况与发展趋势

风力发电的发展状况与发展趋势引言概述:风力发电作为一种清洁能源,近年来得到了越来越多的关注和发展。

本文将从风力发电的发展状况和发展趋势两个方面进行分析,以期为读者提供全面的了解。

一、发展状况1.1 全球风力发电装机容量不断增长全球风力发电装机容量自20世纪90年代初开始逐年增长,目前已经超过了600GW。

其中,中国、美国、德国、印度和西班牙是世界上风力发电装机容量最大的国家。

1.2 技术不断进步,风力发电成本逐渐降低随着技术的不断进步,风力发电的成本逐渐降低,已经接近甚至低于传统能源。

风力发电机组的效率不断提高,风力发电的发电效率和稳定性也在不断改善。

1.3 政策支持和市场需求促进风力发电的发展各国政府纷纷出台支持风力发电发展的政策,如补贴政策、排放限制等,这些政策的出台促进了风力发电的发展。

同时,随着环保意识的提高,市场对清洁能源的需求也在不断增加,这也为风力发电的发展提供了市场保障。

二、发展趋势2.1 大规模海上风电将成为发展趋势随着陆地资源的逐渐枯竭,海上风电将成为未来风力发电的发展方向。

海上风力资源丰富,风速稳定,可以提高风力发电的利用率和效率。

2.2 智能化技术将助力风力发电发展随着物联网、大数据等技术的发展,风力发电设备将更加智能化,可以实现远程监控、故障预警等功能,提高风力发电的运行效率和可靠性。

2.3 能源储存技术将推动风力发电的发展风力发电的不稳定性一直是其发展的瓶颈之一,而随着能源储存技术的不断进步,风力发电可以更好地与储能技术结合,提高风力发电的可靠性和稳定性。

三、结语综上所述,风力发电作为一种清洁能源,其发展状况良好,发展趋势也十分乐观。

随着技术的不断进步和政策的支持,风力发电将在未来发挥越来越重要的作用,为全球清洁能源转型做出贡献。

海上风电发展现状及趋势

海上风电发展现状及趋势

海上风电发展现状及趋势随着全球对可再生能源的需求不断增长,海上风电作为一种清洁、可再生的能源形式,正逐渐崭露头角。

海上风电发展迅猛,成为全球清洁能源市场的重要一环。

本文将介绍海上风电的发展现状以及未来的发展趋势。

一、海上风电的发展现状海上风电是指在海洋上的风能利用,并通过将风能转化为电能,供应给人们使用。

相比陆地风电,海上风电具有以下优势:1.更稳定的风力资源:海上风电可以利用到更稳定、更强劲的海上风力资源,相比陆地风电更为可靠。

2.更大的装机容量:海上风电场通常可以容纳更多的风力发电机组,具有更大的装机容量。

3.更低的视觉影响:海上风电场相对于陆上风电场,对人们的视觉影响较小,更易被接受。

目前,全球海上风电的发展已经取得了显著的进展。

欧洲是全球海上风电的主要发展地区,其中丹麦、英国、德国等国家在海上风电技术和装备方面处于领先地位。

同时,亚洲国家如中国、韩国、日本等也开始积极推动海上风电的发展。

根据2020年的数据,全球海上风电装机容量已超过25GW,其中欧洲占据了近80%的份额。

这一数字与2010年的不到4GW相比,增长了超过6倍。

可以看出,海上风电正以惊人的速度在发展壮大。

二、海上风电的发展趋势海上风电作为一种新兴的能源形式,未来的发展前景广阔。

以下是海上风电的发展趋势:1.技术进步与成本降低:随着技术不断进步,海上风电的设备和工艺将更加成熟。

与此同时,生产规模的扩大以及成本的降低也将使海上风电更加具有竞争力。

2.深海开发:随着浅海资源的逐渐开发利用,未来海上风电将进一步拓展至深海领域。

深海风资源更为丰富,海上风电的装机容量有望大幅提升。

3.综合利用与能量存储:海上风电场可以与其他能源形式进行综合利用,如与海洋能源、太阳能和储能技术结合,形成能源互补和优化供应系统。

4.国际合作与政策支持:各国政府将继续加大对海上风电的支持力度,加强国际合作,以推动海上风电的发展。

政策的支持和市场的规模也将成为海上风电发展的重要驱动力。

风力发电的发展现状及应用

风力发电的发展现状及应用

风力发电的发展现状及应用一、风力发电的发展现状风力发电是一种利用风能产生电力的技术,目前已经成为可再生能源领域中的主要代表之一。

随着全球对清洁能源的需求不断增加,风力发电技术取得了长足的发展,成为全球能源结构的重要组成部分。

1.全球风力发电装机容量的快速增长根据国际能源署(IEA)的数据显示,2000年至2019年,全球风力发电的装机容量从17.5GW增长到651GW,呈现出了快速增长的趋势。

特别是在欧洲、北美以及亚洲地区,风力发电已成为主要的清洁能源之一。

2.技术进步推动风力发电成本持续下降随着技术的不断创新和进步,风力发电的成本在持续下降。

据国际可再生能源机构(IRENA)的数据显示,全球范围内,风力发电的成本已经大大降低,特别是在欧洲一些发达国家,风力发电的成本已经竞争力十足,甚至低于传统化石能源。

3.政策和市场推动风力发电的发展许多国家和地区都出台了支持风力发电的政策和规划,鼓励企业和投资者加大对风力发电的投入。

而且,一些国家还采取了采购电力的方式,鼓励风力发电项目的建设和发展。

4.风力发电在能源转型中的重要作用当前,全球正在进行能源结构的转型,寻求更加清洁和可持续的能源供应。

而风力发电正是能够满足这一需求的重要能源形式,它能够代替传统的化石能源,减少温室气体的排放,保护环境和改善空气质量。

二、风力发电的应用风力发电作为一种清洁、可再生的能源形式,具有较广泛的应用领域。

它不仅可以用于大型商业发电项目,也可以在小型家庭和商业用途中得到应用。

1.大型商业风电项目大型商业风电项目是风力发电的主要应用形式,它通常是由大型风力发电场组成,通过集中式的发电和输送系统,为城市和工业区域供应电力。

这种风电项目通常会占据较大的土地面积,需要大规模的投资和建设。

2.分布式风能发电项目分布式风能发电项目是指在城市、农村或者工业区域附近设立小型风力发电设备,利用风能为小范围用户供电。

这种项目通常规模较小,可以分散建设,适合于电网不发达或者需求相对较小的地区。

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势全文共四篇示例,供读者参考第一篇示例:海上浮式风电基础是一种新型的风电基础形式,具有灵活性高、安装便捷等优势,近年来得到了越来越多的关注和投资。

本文将分析当前海上浮式风电基础的发展现状和未来趋势。

一、发展现状1. 技术成熟度提高随着技术的不断进步和研发投入的增加,海上浮式风电基础的技术成熟度逐渐提高。

目前,一些海上风电项目已经采用了浮式基础,并取得了不错的效果。

2. 项目规模逐渐扩大随着海上浮式风电基础技术的不断完善,项目规模也在逐渐扩大。

一些大型风电开发商纷纷投入海上浮式风电项目,推动了全球浮式风电的发展。

3. 政策支持力度加大为了推动清洁能源发展,各国政府纷纷加大对海上浮式风电项目的支持力度。

欧洲多国已经出台了针对海上风电的支持政策,促进了浮式风电的发展。

二、发展趋势1. 技术不断创新未来,海上浮式风电基础将会不断进行技术创新,提升风电机组的效率和稳定性。

随着新材料的应用和智能化技术的发展,浮式风电基础将会更加可靠和高效。

3. 区域多元化发展未来,海上浮式风电基础将面向更多的区域进行发展。

除了传统的海洋地区,陆上水域和淡水水域也将成为浮式风电的新兴市场,为风电产业带来新的发展机遇。

海上浮式风电基础是风电行业的未来发展趋势之一,具有巨大的市场潜力和发展空间。

随着技术的不断进步和政策的支持,相信浮式风电将在未来得到更好的发展。

第二篇示例:我们不得不承认,目前海上飘浮式风电基础技术相对于传统的固定式基础技术还处于发展的初级阶段。

随着技术的不断成熟和发展,人们对于海上飘浮式风电基础技术的潜力也有了更大的认识。

相比较于传统的固定式基础技术,海上飘浮式风电基础技术具有以下几个优势:海上飘浮式风电基础技术可以有效解决水深较大的海域无法使用固定式基础的困扰。

由于海上飘浮式风电基础不需要在海底上固定,而是通过浮力或者吸盘等方式保持稳定,因此可以适用于更深的海域,开辟了更多的海上风电开发潜力;海上飘浮式风电基础技术在安装和维护方面更加方便和灵活。

风力发电的发展状况与发展趋势

风力发电的发展状况与发展趋势

风力发电的发展状况与发展趋势引言概述:风力发电作为一种清洁、可再生的能源形式,在全球范围内得到了广泛的应用和发展。

本文将从风力发电的发展状况和发展趋势两个方面进行探讨,以期为读者提供一个全面了解风力发电的视角。

一、发展状况1.1 风力发电的历史风力发电起源于古代,最早的风车用于磨面粉和提水。

随着工业革命的到来,风力发电开始应用于发电领域。

20世纪80年代以来,风力发电逐渐成为一种主要的可再生能源形式,全球范围内建设了大量的风力发电场。

1.2 风力发电的技术进步随着科技的不断进步,风力发电技术也得到了长足的发展。

从最初的小型风力发电机到现在的大型风力发电机组,风力发电技术在发电效率、可靠性和安全性等方面取得了巨大的突破。

同时,风力发电场的规模也不断扩大,风力发电机组的装机容量不断增加。

1.3 风力发电的全球应用风力发电已经在全球范围内得到了广泛的应用。

欧洲国家是风力发电的主要推动者和应用者,其中丹麦是全球风力发电比例最高的国家。

此外,美国、中国、德国和印度等国家也在风力发电领域取得了显著的成就。

二、发展趋势2.1 技术创新与提升未来风力发电的发展将继续依赖技术的创新与提升。

例如,新型的风力发电机组将采用更高效的叶片设计和更先进的控制系统,以提高发电效率和响应速度。

此外,随着储能技术的发展,风力发电的可靠性和稳定性也将得到进一步提升。

2.2 增加可再生能源比例为了应对全球气候变化和能源安全等挑战,各国纷纷制定了可再生能源政策和目标。

未来,风力发电将在能源结构中扮演更为重要的角色,其装机容量和发电量将大幅增加。

同时,风力发电与其他可再生能源形式的协同发展也将成为未来的趋势。

2.3 海上风电的兴起海上风电具有风速更高、稳定性更好的特点,被认为是未来风力发电的重要发展方向。

海上风电场的建设将面临更大的挑战,但也具有更大的发展潜力。

一些国家已经开始在海上建设风力发电场,并取得了令人瞩目的成果。

结论:风力发电作为一种清洁、可再生的能源形式,已经在全球范围内得到了广泛的应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海上风电发展大纲:一、国外海上风电发展现状及各国远景规划二、海上风电的特点与面临的困难三、海上风电发展的关键技术四、国外海上风电发展现状及各国远景规划目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。

截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。

西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。

图1 西北欧海上风电场已投入运营的大规模海上风电场大多集中在丹麦和英国。

其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。

而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。

美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。

由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。

根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。

相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。

欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

各国海上风电规划海上风电起步早的国家为了抢夺市场战略致高点,各自制定了长期的发展目标,其中规划最详细,目标最宏大的要数英国和德国。

下面介绍各国的目标规划。

英国英国目前进入运营阶段的海上风电场有6个,总装机容量329MW,它们分别是:Blyth Harbour、 North Hoyle、 Scroby Sands、 North Hoyle、 Kentish Flats 和Barrow风电场。

英国皇冠地产(Crown Estate)公司选定了14处场址用于开发海上风电,原定建设期是2005-2008年,总装机容量超过800MW。

但是由于融资不足导致这些项目开发期推迟了几年。

2003年8月,英国经济事务部指定了另外三大片区域用于开发海上风电,计划到2010年装机容量超过7000MW,足于满足英国9%的电力需求。

皇冠地产公司获许的项目有15个,装机容量共计7169MW,这些项目分布在英国西北部、沃什湾地区以及泰晤士河口地带。

为了进一步明确发展目标,英国政府将海上风电发展规划分为两期,便于执行。

该两期规划纳入的风电场装机容量均在60MW以上,时间始于2003年。

英国第一期海上风电规划的具体详情如表1所示,其地理位置图示及项目状态见图2.图2 英国第一期海上风电规划英国第一期海上风电规划的具体详情如表2所示,其地理位置图示及项目状态见图3。

Location Maximum capacity (MW)DeveloperDocking Shoal 500 CentricaRace Bank 500 CentricaSheringham 315 Ecoventures/Hydro/SLPHumber 300 Humber WindTriton Knoll 1,200 npower renewablesLincs 250 CentricaWestermost Rough 240 TotalDudgeon East 300 Warwick EnergyGreater Gabbard 500 Airtricity/FluorGunfleet Sands II 64 GE EnergyLondon Array 1,000 Energi E2-Farm Energy/Shell/ E.ON UK RenewablesThanet 300 Warwick EnergyWalney 450 DONGGwynt y Mor 750 npower renewablesWest Duddon 500 ScottishPowerTOTAL7,169图3德国德国正在北海和波罗的海地区执行一个庞大的海上风电计划。

在离岸12英里以内的海域中正在规划的海上风电容量大约40000MW,其中在北海有37个场址,在波罗的海有5个场址。

在近海海域有8个项目正在规划中,总容量1400-2000MW。

德国环境署制定了到2020年海上风电装机容量达到20,000-25,000 MW的目标。

该目标分期执行,到2007年底海上风电装机容量达到500MW,到2010年海上风电装机容量达到2000-3000MW。

2001年Prokon Nord公司取得第一个海上风电许可,总容量60MW,共12台风机,场址位于Borkum岛北面45公里处。

截至2005年9月取得许可的项目已经有9个,其中包括了波罗的海的首个海上风电项目。

德国这个位于Borkum岛北面45公里处的试验性海上风电项目将于2007年完工,使用12台5MW风机,这些风机将来自Enercon, Repower和Multibrid公司。

德国在北海规划的海上风电场德国在波罗的海规划的海上风电场丹麦丹麦政府的风电发展目标是到2030年实现风电满足50%的电力需求,到时运行的海上风电容量将厔3000MW。

Horns Rev 和 Nysted风电场计划到2009年各自扩容200MW。

图丹麦的海上风电场Blue: Operating Projects1. Vindeby, 11 * 450 kW Bonus2. Tunø Knob, 10 * Vestas 37/5003. Middelgrunden, 20 * 2000 kW Bonus4. Horns Rev, 80 * Vestas 80/20005. Nysted, 72 * Bonus 82/2.3006. Samsø, 10 * Bonus 82/2.3007. Frederikshavn, 11 MW (Bonus, Vestas, Nordex)8. Ronland, 4 * 2 MW Vestas, 4 * 2.3 MW BonusGreen: Under construction: NoneRed: Other planned projects9. Horns Rev - II 200 MW, 200910. Nysted - II , 200 MW, 2009Yellow : Planned German Projects美国已经规划三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。

(差补齐细节)荷兰荷兰经济事务部制定的海上风电目标是到2010年达到总装机容量700MW。

目前有两个近海风电项目进入运营阶段,总装机容量16MW。

现有海上风电场总结:1.均处于近岸水域,水深一般不超过20米,大部分都在10米以内;离岸距离一般不超过20公里,大部分在10公里以内。

其中丹麦的Horns Rev风电场离岸14-20公里,水深6-14米,是现有离岸距离最大的海上风电场;英国的Barrow风电场离岸7公里,水深15-20公里,是现有水深最深的海上风电场。

2.海上风电场的容量相对现有的陆上风电场来说容量小,所占的比例也小,部分风机数量少的海上风电场具有很强的试验性质。

3.风机的单机容量大,特别是2000后开始运营的风电场,风机单机容量大多在1.5MW以上,德国在Emden树立了4.5MW的风机。

4.风机塔架的基础一般采用单桩基础,有敲入式单桩与钻入式单桩。

5.2001年后投入运营的海上风电场风机轮毂高度一般均在60米以上。

海上风电技术发展纲要1.permanent magnet excited gearless wind turbine generator混合励磁直驱式风力发电机技术:永磁电机、混合励磁、变速变频技术、直驱设计2.远程信息与自动控制系统3.电力传输系统4.塔架与基础5.叶片:材料、流体力学6.海上风资源评估技术7.环境影响永磁直驱风机的革新随着风机单机容量的增大,各个部分的规格也同步增大,传统的风机的传动系统的劣势日渐显露,这导致了齿轮箱故障的机率大增,而齿轮箱故障导致的损失是非常大的。

传统的齿轮箱通过提高转速来减少扭矩,但是随着风机规模的日益增大,必须使风机转子处于低转速状态,才能保证叶片的末端所受的离心力不会过大。

而齿轮箱的功能就是将转子叶片的低转速转化为发电机部分的低扭矩和高转速,随着这个比例的逐渐增大,齿轮出现故障的机率越来越大,这直接导致了齿轮箱末日的到来。

因此,不难想象,抛弃了齿轮箱的直驱式风机越来越受到各国政府、生产商和用户的青睐。

直驱式风机的优点有:提高兆瓦级风机的效率,为低风速风电场设计成本效率高的风机,降低建立风电场所需的风资源门槛。

直驱式风力发电机的解决方案有几种:包括高度集成系统、永磁电机、多电机配置等。

它们最主要的目的是要降低直驱系统的初装成本以及长期的替换成本。

其中永磁电机的策略是抛弃齿轮箱,以电气控制方法代替传统的机械控制方法来控制转轴转速及扭矩。

…更多待续欧洲海上风电发展沿革An important factor for the start of a future application of wind energy at sea is the question when the multi-megawatt wind turbines will be really ready for use. The answers to this question revealed that wind turbines with 2 to 3 MW installed capacity are already considered as fully developed. De facto, today's offshore wind farms are equipped with machines of this size category. The category of 3.1 to 4 MW is not considered to be really ready for use until after 2006. Wind turbines with 4.1 to 5 MW are regarded as fit for application after 2007 and those with 5.1 to 6 MW only after 2008. In these size categories there are already prototypes operating today, so that the estimation of the time when the plants will be ready for serial production harmonises with the current state of development. Turbines with more than 6.1 MW installed capacity are assessed by the vast majority of respondents to be fully developed only after the year 2010. Since for the far-offshore sites the use of the 5-MW category is considered to be necessary, the statement about the time this category will be ready for use corresponds with the statement that the development of offshore wind energy is not likely to start seriously before the year 2008 (Fig. 12).From German 2006 Report德国在2006海上风电报告中对规划目标作出了较大的调整。

相关文档
最新文档