一笔画问题是图论中一个著名的问题

合集下载

一笔画的由来和规律

一笔画的由来和规律

一笔画的由来可以追溯到1736年,当时大数学家欧拉研究解决了一笔画问题。

欧拉通过分析图中的偶数点和奇数点,以及线的连接方式,找出了能够一笔画出的图形规律。

一笔画的基本规律包括以下几点:
1. 欧拉回路:一个图形中,任意两个点之间都有且仅有一条路径,则该图形被称为欧拉回路。

一笔画问题就是要找到一个欧拉回路,使得该回路的起点和终点重合。

2. 奇偶性:对于任意一个图形,其顶点可以分为奇数顶点和偶数顶点两类。

如果一个图形有偶数个顶点,则该图形可以一笔画出;如果一个图形有奇数个顶点,则该图形需要两笔画出。

3. 欧拉函数:欧拉函数是指将一个图形分解为若干个不相交的子图,使得每个子图都是一笔画出的图形,且每个子图的顶点个数不超过4个。

欧拉函数可以帮助我们判断一个图形是否可以一笔画出。

在实际应用中,一笔画问题可以应用于很多领域,如地图着色、电路设计、物流规划等。

同时,一笔画问题也是图论中的一个重要研究方向,对于理解图的结构和性质具有重要的意义。

浅谈一笔画问题

浅谈一笔画问题

浅谈一笔画问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]浅谈一笔画问题摘要:一笔画问题是一个几何问题,传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。

一笔画问题是一个简单的数学游戏,即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。

关键词:一笔画规律原理早在18世纪,瑞士的着名数学家欧拉就找到了一笔画的规律。

欧拉认为,能一笔画的图形必须是连通图。

连通图就是指一个图形各部分总是有边相连的.但是,不是所有的连通图都可以一笔画的。

能否一笔画是由图的奇、偶点的数目来决定的。

一笔画问题是图论中一个着名的问题。

一笔画问题起源于柯尼斯堡七桥问题。

数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题。

一般认为,欧拉的研究是图论的开端。

与一笔画问题相对应的一个图论问题是哈密顿问题。

一、一笔画规律数学家欧拉找到一笔画的规律是:(一)凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

(二)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。

画时必须把一个奇点为起,,另一个奇点终点。

(三)其他情况的图都不能一笔画出。

(有偶数个奇点除以二便可算出此图需几笔画成)比如附图:(a)为(1)情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔画成。

补充:相关名词的含义◎顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出的该图形的弧的条数,称为这个顶点的指数。

◎奇顶点:指数为奇数的顶点。

◎偶顶点:指数为偶数的顶点。

一笔画问题是图论中一个著名的问题

一笔画问题是图论中一个著名的问题

一笔画问题是图论中一个著名的问题。

一笔画问题起源于柯尼斯堡七桥问题。

数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题[1]。

一般认为,欧拉的研究是图论的开端。

与一笔画问题相对应的一个图论问题是哈密顿问题。

目录[隐藏]1 问题的提出2 一笔画定理2.1 定理一2.2 定理二3 例子3.1 七桥问题3.2 一个可以一笔画的例子4 一笔画问题与哈密顿问题5 参见6 参考来源[编辑] 问题的提出一笔画问题是柯尼斯堡问题经抽象化后的推广,是图遍历问题的一种。

在柯尼斯堡问题中,如果将桥所连接的地区视为点,将每座桥视为一条边,那么问题将变成:对于一个有着四个顶点和七条边的连通图G(S,E),能否找到一个恰好包含了所有的边,并且没有重复的路径。

欧拉将这个问题推广为:对于一个给定的连通图,怎样判断是否存在着一个恰好包含了所有的边,并且没有重复的路径?这就是一笔画问题。

用图论的术语来说,就是判断这个图是否是一个能够遍历完所有的边而没有重复。

这样的图现称为欧拉图。

这时遍历的路径称作欧拉路径(一个圈或者一条链),如果路径闭合(一个圈),则称为欧拉回路[1]。

一笔画问题的推广是多笔画问题,即对于不能一笔画的图,探讨最少能用多少笔来画成。

[编辑] 一笔画定理对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1]。

[编辑] 定理一有限图G 是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2。

有限连通图G 是圈当且仅当它没有奇顶点[2]。

证明[2][3]:必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数。

要么两者相差一:这时这个点必然是起点或终点之一。

注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2。

充分性:如果图中没有奇顶点,那么随便选一个点出发,连一个圈C1。

浅谈一笔画问题

浅谈一笔画问题

浅谈一笔画问题摘要:一笔画问题是一个几何问题,传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。

一笔画问题是一个简单的数学游戏,即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复?例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。

关键词:一笔画规律原理早在18世纪,瑞士的著名数学家欧拉就找到了一笔画的规律。

欧拉认为,能一笔画的图形必须是连通图。

连通图就是指一个图形各部分总是有边相连的.但是,不是所有的连通图都可以一笔画的。

能否一笔画是由图的奇、偶点的数目来决定的。

一笔画问题是图论中一个著名的问题。

一笔画问题起源于柯尼斯堡七桥问题。

数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题。

一般认为,欧拉的研究是图论的开端。

与一笔画问题相对应的一个图论问题是哈密顿问题。

一、一笔画规律数学家欧拉找到一笔画的规律是:(一)凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

(二)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。

画时必须把一个奇点为起,,另一个奇点终点。

(三)其他情况的图都不能一笔画出。

(有偶数个奇点除以二便可算出此图需几笔画成)比如附图:(a)为(1)情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔画成。

补充:相关名词的含义◎顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出的该图形的弧的条数,称为这个顶点的指数。

◎奇顶点:指数为奇数的顶点。

◎偶顶点:指数为偶数的顶点。

二、一笔画原理(一)一笔画必须是连通的(图形的各部分之间连接在一起);(二)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(三)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(四)奇点个数超过两个的图形不是一笔画利用一笔画原理,七桥问题很容易解决。

不重复的路-一笔画问题

不重复的路-一笔画问题
欧拉路径和欧拉回路
在一笔画过程中,如果起点和终点是同一点,则称该路径为欧拉回路。如果一个 图存在一个遍历其所有边且每条边只遍历一次的路径,则称该路径为欧拉路径。
一笔画问题的数学描述
图论
一笔画问题属于图论的范畴,图论是研究图 的结构、性质和应用的数学分支。在一笔画 问题中,主要关注的是图的连通性和遍历性 。
在计算机图形学中的应用
图形渲染
一笔画问题在计算机图形学中常用于绘制复杂的图形,如地 图、电路图等。通过解决一笔画问题,可以确定从一个点到 另一个点的最短路径,从而高效地渲染图形。
游戏开发
在游戏开发中,一笔画问题也具有广泛应用。例如,在角色 移动、地图导航等方面,可以利用一笔画算法找到不重复的 路径,提高游戏的流畅性和用户体验。
人才培养
为了推动一笔画问题的研究和发展,需要加强人才培养。未来可以加强图论学科的建设, 提高教师的学术水平和教学能力,培养更多具有创新能力和实践精神的人才,为解决一笔 画问题提供人才保障。Leabharlann HANKS感谢观看05
结论
一笔画问题的研究意义
理论意义
一笔画问题作为图论中的经典问题,对于推动图论学科的发展具有重要意义。通过对一笔画问题的研 究,可以深入探讨图论中的连通性、遍历性和最优化等核心问题,为图论学科的理论研究提供支持。
应用价值
一笔画问题在现实生活中具有广泛的应用价值。例如,在地图导航中,如何规划一条不重复的路径; 在电路设计中,如何避免线路交叉;在物流配送中,如何规划最优的送货路线等。因此,一笔画问题 的研究成果可以为这些领域提供理论指导和技术支持。
问题背景
起源
一笔画问题起源于文艺复兴时期 的数学游戏,后来被欧拉等人系 统化并深入研究。

哥尼斯堡七桥问题与一笔画课件

哥尼斯堡七桥问题与一笔画课件
02
在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航

一笔画问题

一笔画问题

一笔画问题2014-7-15一笔画问题简单学习总结今天学的还是图论的内容——一笔画问题。

一笔画就是把一个无向图(或有向图)所有的边都遍历一遍且不重复走同样的边。

这个新知识的算法都是建立在几个数学性质上面的,分别如下:1、这个有向图(或无向图)必须是连通的。

这是最基本的条件。

2、每个点之间度的要求:无向图:满足①所有点的度数为偶数或者②有两个点度数为奇数,其他点度数为偶数,且这两个奇数点必须为一笔画中的开端和结尾。

有向图:满足①所有点出入度相等或者②有一个点出度比入度大1,另一个点入度比出度大1,其他点的出入度相等,且出度大的点为一笔画开端,入度大的点为一笔画结尾。

数学简单证明还是比较容易的,如果一个点度数为奇数,那么从该点出发,去到的无非就两种情况:偶点或奇点,偶点我们总可以绕一个圈回到该偶点重新出发。

奇点就到达终点了。

(圈套圈的思路)对于无向边,有一个特殊处理:无向边路过一条边后,要把它的反向边去掉。

这个过程可以用指针实现,用一个指针指向它的反向边。

或者,如果用数组来储存边时,因为反向边是同时申请的,所以它们的下标一定是相邻的,可以用异或操作得到。

下面介绍几种算法:1、圈套圈算法算法思想:每次在某个点随便找一条边,一直走,如果找到环,那么就相应地插入到一笔画的顺序中,环中若有嵌套环,那么同样地找下去。

算法实现:可以用链表实现插入之类的操作,但若用深搜回溯写的话,程序会非常简单。

就是从奇点(或任意点)出发,任意地深度遍历,如果当前点已经不能往下搜,那么就回溯看祖先节点是否有其他可以遍历的点,按回溯的顺序弹出的边,在无向图里面正反顺序都是一笔画正确解法,有向图里需要取反顺序。

算法优化:由于系统栈的空间局限性,在朴素的递归算法里面不能支持较大数据范围的题目,可以改成用stack栈模拟递归的操作,这样就不再会爆栈。

2、弗罗莱算法算法思想:首先在奇点出发,尽量先不走桥(若去掉该边图不连通,则该边为桥),先走环路。

一笔画问题

一笔画问题

一笔画问题知识要点:所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画.例1:我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?奇点:E J G D例2:一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?解析:8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4 +4×1=48分米.知识点巩固:1. 判断下面的图形能不能一笔画?为什么?A B C D2. 下面的图形都是不能一笔画成的,你能不能去掉一条线,使他们变成一笔画?3. 下面是一座公园的道路设计图,问能不能一次不重复的把所有小路都走遍?要从哪里开始?4、小明要把四个三角形和一个正方形一次性从纸上剪下来,他能做到吗?5、平安小镇上有两个邮递员,甲邮递员喜欢从A 点出发开始送信,乙邮递员喜欢从B点出发开始送信,他们俩都选择最优路线,谁能更快的跑遍多有的街道呢?6. 幸福乡有四个村庄,幸福河从村庄间流过,村民们在河上一共建了5座桥,问来到幸福乡的人能不能一次不重复地走遍所有的桥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一笔画问题是图论中一个著名的问题。

一笔画问题起源于柯尼斯堡七桥问题。

数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题[1]。

一般认为,欧拉的研究是图论的开端。

与一笔画问题相对应的一个图论问题是哈密顿问题。

目录[隐藏]
1 问题的提出
2 一笔画定理
2.1 定理一
2.2 定理二
3 例子
3.1 七桥问题
3.2 一个可以一笔画的例子
4 一笔画问题与哈密顿问题
5 参见
6 参考来源
[编辑] 问题的提出
一笔画问题是柯尼斯堡问题经抽象化后的推广,是图遍历问题的一种。

在柯尼斯堡问题中,如果将桥所连接的地区视为点,将每座桥视为一条边,那么问题将变成:对于一个有着四个顶点和七条边的连通图G(S,E),能否找到一个恰好包含了所有的边,并且没有重复的路径。

欧拉将这个问题推广为:对于一个给定的连通图,怎样判断是否存在着一个恰好包含了所有的边,并且没有重复的路径?这就是一笔画问题。

用图论的术语来说,就是判断这个图是否是一个能够遍历完所有的边而没有重复。

这样的图现称为欧拉图。

这时遍历的路径称作欧拉路径(一个圈或者一条链),如果路径闭合(一个圈),则称为欧拉回路[1]。

一笔画问题的推广是多笔画问题,即对于不能一笔画的图,探讨最少能用多少笔来画成。

[编辑] 一笔画定理
对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1]。

[编辑] 定理一
有限图G是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2。

有限连通图G是圈当且仅当它没有奇顶点[2]。

证明[2][3]:
必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数。

要么两者相差一:这时这个点必然是起点或终点之一。

注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2。

充分性:
如果图中没有奇顶点,那么随便选一个点出发,连一个圈C1。

如果这个圈就是原图,那么
结束。

如果不是,那么由于原图是连通的,C1 和原图的其它部分必然有公共顶点s1。

从这一点出发,在原图的剩余部分中重复上述步骤。

由于原图是有限图,经过若干步后,全图被分为一些圈。

由于两个相连的圈就是一个圈,原来的图也就是一个圈了。

如果图中有两个奇顶点u 和v,那么加多一条边将它们连上后得到一个无奇顶点的有限连通图。

由上知这个图是一个圈,因此去掉新加的边后成为一条链,起点和终点是u 和v。

[编辑] 定理二
如果有限连通图G有2k 个奇顶点,那么它可以用k 笔画成,并且至少要用k 笔画成[2]。

证明[2][3]:将这2k 个奇顶点分成k 对后分别连起,则得到一个无奇顶点的有限连通图。

由上知这个图是一个圈,因此去掉新加的边后至多成为k 条链,因此必然可以用k 笔画成。

但是假设全图可以分为q 条链,则由定理一知,每条链中只有两个奇顶点,于是。

因此必定要k 笔画成。

[编辑] 例子
图一:无法一笔画
图二:尽管按照中文书写习惯“串”字不止一笔,但它可以一笔写成。

[编辑] 七桥问题
右图一是七桥问题抽象化后得到的模型,由四个顶点和七条边组成。

注意到四个顶点全是奇顶点,由定理一可知无法一笔画成。

[编辑] 一个可以一笔画的例子
图二是中文“串”字抽象化后得到的模型。

由于只有最上方和最下方的顶点是奇顶点,由定理一知它可以一笔画成。

[编辑] 一笔画问题与哈密顿问题
一笔画问题讨论的是能否不重复地遍历一个图的所有边,至于其中有否顶点的遍历或重复经过则没有要求。

哈密顿问题讨论的则是顶点的遍历:能否不重复地遍历一个图的所有顶点?[4]哈密顿问题由哈密顿在1856年首次提出,至今尚未完全解决[2]。

[编辑] 参见
柯尼斯堡七桥问题
哈密尔顿问题
树(图论)
中国邮递员问题
[编辑] 参考来源
^ 1.0 1.1 1.2 Janet Heine Barnett, Early Writings on Graph Theory: Euler Circuits and The KÄonigsberg Bridge Problem
^ 2.0 2.1 2.2 2.3 2.4 熊斌,郑仲义,《图论》,第四章,38-46,华东师范大学出版社。

^ 3.0 3.1 详细的证明
^ 欧拉图和哈密顿图。

相关文档
最新文档