第二次数学危机与克服
历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050)在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展.在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话.第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0./悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论.今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的!第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机.第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的:(x+v x)n=x n+n#x n-1#v x+n(n-1)2#x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得v yv x=(x+v x)n-x nv x=n#x n-1+n(n-1)2#x n-2#v x+,+nx#(v x)n-2+(v x)n-1,最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1.哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0.现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱.十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机.第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了.一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波.十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的实际问题教学不能忽视可行性王满成(湖南城步教研室422500)文[1]通过课本习题演变,进而与生产实际密切相联,这是很可贵的,这正是当前中学数学教学所积极倡导的.但是,一个生产实际问题的解答方案应考虑其可行性.[1]中说:/开挖点E应离D 点33413米,就能使A、C、E三点在同一直线上0这几乎是不可能的事!因为过D作一满足N BDE =50b,DE=33413米的线段有无穷多条,当且仅当B、C、E、D四点共面时,方案才成立:但怎样保证共面,方案也未提及!笔者曾在邵阳市大圳灌区工程指挥部当过施工员(技术员),有过打遂洞两边同时施工的实践经验,现给出一个方案,供老师参考.旨在教师在这方面的教学中更贴近生产实际.第一步:过A、C两点拉线至B1(打一桩),再过C、B1拉线至B2(打一桩,因地形变化,在B1处需一人垂铅,使CB2上一点的射影落在B1上).如此下去,直至得到点G、F.第二步:采用[1]中的方案(或[1]中其它学生的设计方案).第三步:调整.当DE=33413米,且E点恰好落在GF上,问题解决;若E点落在GF的上侧或下侧,则需进行调整.显然,这种方案虽然在理论上讲得过去,但由于地形地貌的复杂性,在实际操作中可能会遇到困难,还需根据具体情况,再设法解决.参考文献1杨海燕.一堂开放型应用题教学实录.数学通报.2001年第7期/罗素悖论0影响最大.罗素构造了一个集合:B={X|X|X},也就是说:把一切不以自身为元素的集合X作为元素,这样的集合记为B.罗素问道:B是否属于B?回答试试看!若B I B,即B是B的元素,则B应满足集合B中的元素的条件,于是有B|B;若B|B,则已符合集合B的元素的条件,于是又有B I B.真奇怪:无论哪种情况,都使我们陷于自相矛盾、进退两难的尴尬境地!罗素悖论的出现,震撼了整个数学界.本应作为全部数学之基础的集合论,居然出现了内耗!怎么办?数学家们立即投入到消除悖论的工作中.庆幸的是:产生罗素悖论的根源很快被找到了!原来是,康托尔提出集合论时对/集合0的概念没有作必要的限制,以致于可以构成/一切集合的集体0这种过大的集合,让罗素这样的/好事者0/钻了空子0.怎么样从根本上消除集合论中出现的各种悖论(包括罗素悖论)呢?德国数学家策梅罗(Zermelo,1871-1953)认为:适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性.经策梅罗、费兰克尔(Frenkel)冯.诺伊曼等人的努力,形成了一个完整的集合论公理体系,称为ZFC系统.在ZFC系统中,/集合0和/属于0是两个不加定义的原始概念,另外还有十条公理.ZFC系统的建立,不仅消除了罗素悖论,而且消除了集合论中的其它悖论.第三次数学危机也随之销声匿迹了.纵观三次数学危机,每次都有一两个典型的悖论作为代表.克服了这些悖论,也就推动了数学的长足发展.经历过历史上三次数学危机的数学界,是否从此就与数学危机/绝缘0了呢?不!对此,我国当代著名数学家徐利治教授说了一段很有见地的话,他说:/由于人的认识在各个历史阶段中的局限性和相对性,在人类认识的各个历史阶段所形成的各个理论系统中,本来就具有产生悖论的可能性,但在人类认识世界的深化过程中同样具备排除悖论的可能性和现实性,人类认识世界的深化没有终结,悖论的产生和排除也没有终结.0参考文献1徐南昌.漫谈数学悖论的方法意义.中学数学,1991,82张祖贵.浅谈三次数学危机.湖南数学通讯,1984,6。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史三次危机简介

数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上的三次危机

数学史上的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
数学史上的三次危机

数学史上的三次危机第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期又毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为qp/的形式,也就是说不存在作为公共量度单位的线断。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如,,22,8,62等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1.数学已由经验科学变为演绎科学;2.把证明引入了数学;3.演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态已知保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里斯多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史上的三次危机及其解决

由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。动摇数学基础的第一次危机并没有很轻易地被解决。大约到了公元前370年,这个矛盾终于被毕达哥拉斯学派的欧多克斯通过给比例下新定义的方法巧妙的处理了。但这个问题直到19世纪的戴德金和康托尔等人建立了现代实数理论才算彻底解决了。
三、第三次数学危机
到19世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用到其他的数学分支。集合论是数学的基础,由于集合论的使用,数学似乎已经达到了无懈可击的地步。但是,正当数学家们熟练地应用集合论时,数学帝国又爆发了一次危机。
(一)、危机的起源
康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在1900年巴黎国际数学会议上,法国大数学家庞加莱宣称:“数学的严格性,看来直到今天才可以说实现了。”但事隔两年后,却传出一个惊人的消息:集合论的概念本身出现了矛盾。这就是英国数学家罗素提出的著名的悖论,罗素悖论的内容用一句话表述就是:所有不以自己为元素的集合组成一个集合,记为A;则有集合A包含A等价于集何A不包含A这样的悖理【5】。罗素悖论一提出就在当时的数学界和逻辑学界引起了极大的震动。这一悖论引起的巨大反响则导致了数学史上的第三次危机。
(二)、危机的解决
为了解决第二次数学危机,数学家们开始在严格化基础上重建微积分,其中贡献最大的是法国数学家柯西,他在《分析教程》和《无穷小计算讲义》中给出了数学分析一系列基本概念的精确定义。例如:他给出了精确的极限定义,然后用极限定义连续性、导数、微分,定积分和无穷级数的收敛性。后来,魏尔斯特拉斯及其追随者们实现了分析的算术化。至此,数学史上的第二次危机已经克服,数学的整个结构已被恢复【3】。
(三)、对数学发展的意义
集合论公理系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响,它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。为了消除第三次数学危机,数理逻辑也取得了很大发展,证明论、模型论和递归论相继诞生,出现了数学基础理论、类型论和多值逻辑等。可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性,而且也直接造成了数学哲学研究的“黄金时代”。
三次数学危机论文

三次数学危机论⽂ 数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下⾯店铺给你分享三次数学危机论⽂,欢迎阅读。
三次数学危机论⽂篇⼀ 摘要:本⽂主要通过数学史上的三次危机的产⽣与消除,针对它们的本质浅谈⾃⼰的认识,实际导致这三次危机原因在与⼈的认识。
第⼀次数学危机是⼈们对万物皆数的误解,随着⽆理数的发现,把第⼀次数学危机度过了。
第⼆次数学危机是⼈们对⽆穷⼩的误解,微积分的出现产⽣了⼀种新的⽅法,即分析⽅法,分析⽅法是算和证的结合。
是通过⽆穷趋近⽽确定某⼀结果。
罗素悖论的发现,给数学界以极⼤的震动,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,在数学界逻辑界进⾏了不懈的探讨,提出了⼀系列解决⽅案,并在不知不觉中⼤⼤推动了数学和逻辑学的发展。
关键词:危机;万物皆数;⽆穷⼩;分析⽅法;集合 ⼀、前 ⾔ 数学常常被⼈们认为是⾃然科学中发展得最完善的⼀门学科,但在数学的发展史中,却经历了三次危机,⼈们为了使数学向前发展,从⽽引⼊⼀些新的东西使问题化解,在第⼀次危机中导致⽆理数的产⽣;第⼆次危机发⽣在⼗七世纪微积分诞⽣后,⽆穷⼩量的刻画问题,最后是柯西解决了这个问题;第三次危机发⽣在19世纪末,罗素悖论的产⽣引起数学界的轩然⼤波,最后是将集合论建⽴在⼀组公理之上,以回避悖论来缓解数学危机。
本⽂回顾了数学上三次危机的产⽣与发展,并给出了⾃⼰对这三次危机的看法,最后得出确定性丧失的结论。
⼆、数学史上的第⼀次“危机” 第⼀次数学危机是发⽣在公元前580-568年之间的古希腊。
那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕⽒学派对数的认识进⾏了研究,他们认为“万物旨数”。
所谓数就是指整数,他们确定数的⽬的是企图通过揭⽰数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的⼀切现象都能归结为整数或整数之⽐,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。
在那个时期。
第二次数学危机

第二次数学危机
目录
第二次数学危机 微积分的产生 早期的微积分思想
• 芝诺悖论的提出可能有更深刻的背景,不一定是专 门针对数学的,但是它们在数学王国中却掀起了一场 轩然大被。它们说明了希腊人已经看到“无穷小”与 “很小很小”的矛盾,但他们无法解决这些矛盾。其 后果是,希腊几何证明中从此就排除了无穷小。
• 希腊人虽然没有明确的极限概念,但他们在处理面 积体积的问题时,却有严格的逼近步骤,这就是所谓 “穷竭法”。它依靠间接的证明方法,证明了许多重 要而难证的定理。
析学家;或一篇致一位不信神数学家的论文,其中审 牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);
第二类问题是求曲线的切线的问题;
查一下近代分析学的对象、原则及论断是不是比宗教 它们说明了希腊人已经看到“无穷小”与“很小很小”的矛盾,但他们无法解决这些矛盾。
牛顿对它曾作过三种不同解释:
1709年刊行《视觉新论》,1710年发表《人类知识 原理》,1713年出版《海拉斯和斐洛诺斯的对话三 篇》,均成为当时英国各大学热烈讨论的问题。
1734年被任命为爱尔兰基尔肯尼地区主教,任职18 年,仍致力于哲学的思辨。1752年移居牛津附近的新 学院。
问题 贝克莱悖论
达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
微芝分诺:悖速论度:阿、基切里线斯贝、追极龟克值说 莱认为这是“依靠双重错误得到了不科学却正 英 至国此主,观 建唯 立确心 分主 析的义 基哲 础结学 的家逻果、 辑主 顺”教 序。 是。: 因为无穷小量在牛顿的理论中一会儿说 是零,一会儿又说不是零。因此,贝克莱攻击流数( 当然,牛顿也曾在他的著作中说明,所谓“最终的比”,就是分子、分母要成为0还不是0时的比,它不是“最终的量的比”,而是“
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二次数学危机及其克服
摘要:十七、十八世纪关于微积分发生的激烈的争论,被称为第二次数学危机。
从历史或逻辑的观点来看,它的发生也带有必然性。
微积分产生初期,由于还没有建立起巩固的理论基础(主要是极限理论),出现了这样那样的问题,被一些别有用心的人钻了空子。
事实往后百多年亦没有人能清楚回答这些问题。
这就是历史上的第二次数学危机,而这危机的引发和牛顿有直接的关系。
关键词:第二次数学危机;数学危机;微积分;克服
一、第二次数学危机的来源
第二次数学危机的实际问题来源于牛顿的求导数方法。
牛顿在《求积术》一文中使用论证得出了y=x^n的导数是nx^(n-1),这个方法和结果在实际应用中非常成功,大大推进了科学技术的发展。
然而,牛顿的论证其实是有严重纰漏的。
在增量无穷小的情况下,牛顿直接令其等于零从而解决问题,但是,一个无穷小的量真的等于零吗?
显然,牛顿时代对于极限这一问题研究尚不够深入,使得增量时有时无的逻辑问题显得尤为严重。
牛顿在微积分问题上的不严谨,直接导致了第二次数学危机。
二、第二次数学危机的影响
毕达哥拉斯关于数的信条及以数为基础的宇宙模型的破产,导致了第一次数学危机.这一危机的影响是巨大的,它不仅推动了数学及其相关学科的发展,使古希腊数学的基础发生了根本性的变化,而且推动了整个科学的发展.在古希腊,数学和哲学是结盟的,哲学使古希腊的数学趋于抽象和真理.正是由于古希腊的哲学背景,使其有可能建立世界上第一个数学公理系统,并最终导致了近代科学的诞生.
三、第二次数学危机的解决
一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。
它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺不仅承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。
柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。
他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。
在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。
四、结束语
一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小
参考文献
[1] 张顺燕.数学的源与流[M].高等教育出版社,2003年,第二版
[2] 王林全.中学数学思想方法概论.暨南大学出版社,2000年,第一版
[3] 李翼忠.中学数学方法论.广东高等教育出版社,1986年。