比例阀液压工作原理图(1)
液压比例阀工作原理

液压比例阀工作原理1.电磁比例调节电磁比例阀采用电磁铁驱动的阀芯来控制阀口的开度,从而精确地调节流量、压力和方向。
其工作原理是:当电磁铁受到控制信号激励时,阀芯与阀座间的间隙变小,液压流体通过阀口流过;当电磁铁不受激励时,阀芯回到原位,阀口关闭,液压流体无法通过。
通过改变电磁铁的激励信号,可以实现对阀口开度的调节,从而达到对液压流量和压力的精确控制。
2.电液比例调节电液比例阀利用电液放大器来放大控制信号,并通过驱动柱塞或薄膜来控制阀芯的运动,从而实现对液压流量或压力的调节。
其工作原理是:控制信号经过电液放大器放大后驱动马达或电动薄膜,产生相应的位移。
位移传导给马达或电动薄膜上的传动杆,再传导给阀芯,使阀芯的位置发生变化。
当阀芯位置改变时,阀口的开度也随之改变,从而实现通过调节阀口开度来控制液压流量或压力的目的。
3.机械比例调节机械比例阀通过机械结构来调节阀口的开度,实现对液压流量或压力的调节。
其工作原理是:通过调节阀芯和阀座的间隙来控制阀口的开度,从而调节液压流量或压力。
一般采用螺纹调节或旋转调节的方式,通过旋转手柄或拉动手柄来改变阀口的开度。
机械比例阀调节精度相对较低,一般应用于对精度要求较低的液压系统。
液压比例阀的工作原理主要以下几个方面:1)控制信号:液压比例阀通过接收外部控制信号来调节阀口的开度。
通常采用电信号作为控制信号,控制信号可以是电压、电流、PWM或其他形式。
2)阀芯位置控制:阀芯位置的改变决定了阀口的开度,从而控制了液压流量或压力。
不同类型的液压比例阀采用不同的方式来实现阀芯位置的控制,比如电磁驱动、电液驱动或机械驱动等。
3)阀口开度调节:通过改变阀芯与阀座的间隙来调节阀口的开度。
阀芯和阀座的间隙通常由弹簧或其他力来维持,通过外部力的作用,阀芯相对于阀座的位置发生改变,从而改变阀口的开度。
4)液压流量和压力的调节:液压比例阀通过改变阀口的开度来调节液压系统中的流量和压力,实现对系统的控制。
比例阀基本原理图文

比例阀的响应时间
不过,比例阀阀芯的运动 速度可由输入给比例电磁 铁的电信号确定。通过渐 增或渐降(称之为斜坡) 电信号,可以获得几秒钟 的通电和断电响应时间。
HBIVT S
比例阀的响应时间
不过,比例阀阀芯的运动 速度可由输入给比例电磁 铁的电信号确定。通过渐 增或渐降(称之为斜坡) 电信号,可以获得几秒钟 的通电和断电响应时间。
力
时间
力控制
HBIVT
实际上,机器工作循环由 一系列斜坡和保持周期组 成,这些周期都可以通过 比例阀来实现。
力
时间
力控制
HBIVT
在机器工作循环末段,对 许多过程来说,压力下降 速率也是非常关键的。
力
时间
力控制
HBIVT
因此,采用比例阀可以实 现运动和力控制,且在有 些场合,同一种比例阀既 可用于运动控制,也可用 于力控制。这通常涉及到 “PQ”控制,如控制压力 (P)和流量(Q) 。
电梯举例 – 比例系统
HBIVT
如果采用比例阀来替代电磁换向阀和流量控制阀,那么,电梯速度不仅可由电信号调 节,而且还可以控制电梯的启停。
电梯举例 – 比例系统
比例阀可以非常缓慢地开启,以使电梯平滑加速至最大速度。
HBIVT
电梯举例 – 比例系统
同样,通过将阀芯缓慢移动至中位,也可以控制减加速度。
基本系统
所以,实际上,比例方向阀既可以作 为换向阀,也可以作为流量控制阀。
HBIVT
切换电磁换向阀
电磁换向阀可被认为是简单的开关阀。
其可以通过电气装置来控制,这些电气装 置能够接通或关断电流。
HBIVT
切换电磁换向阀
电磁换向阀可被认为是简单的开关阀。
比例阀动作原理分析

2350m³高炉下料闸角度滑动原因分析一、液压原理图二、动作分析1、动作开始,电磁换向阀与比例换向阀同时得到换向信号并同时换向电磁换向阀换到左位,两个液控单向阀液控油路X进油,将液控单向阀打开,两边油路各自形成通路比例换向阀换到右位,油缸左腔进油,右腔回油油缸的动作条件如下:油缸全速开启P1xA1>P2Xa2+R (式一)P1=P4=系统压力=PA1:油缸无杆腔面积A2:油缸有杆腔面积A1>A2P2=P3=P5=回油管道背压2、油缸到一定行程减速运行,油缸运行条件如下:P1’xA1>P2xA2+R (式二)P1’=P4’=减速后比例阀阀后压力=P’A1:油缸无杆腔面积A2:油缸有杆腔面积A1>A2P2=P3=P5=回油管道背压P1’xA1>P2xA2+R (式二)P1’xA1>P2x[A1-(A1-A2)]+RP1’xA1>P2XA1-P2x(A1-A2) +RP1’xA1>P2XA1+[R- P2x(A1-A2)]设:P2x(A1-A2)=M 则上式可变为P1’xA1>P2XA1+[R- M] (式三)此时,油缸速度很慢,油缸活塞两侧压力接近平衡当R>M时,即R-M>0, 则P1’>P2 (此条件转至步骤4)当R<M时,即R-M<0, 则P1’<P2 (现场实测P1’<P2)当P1’<P2时因P1’=P4’=减速后比例阀阀后压力=P’,P2=P3=P5=回油管道背压得:P4’<P33、编码器检测到阀门达到设定角度值时,同时发信号给电磁换向阀和比例换向阀,电磁换向阀换到右位,两个液控单向阀液控油路Y进油,将两个液控单向阀关闭(此时,液控单向阀只能单向过油,反向截止)同时比例换向阀回中位,两边的油路的液控单向阀与比例换向阀之间的回路相通(因为比例换向阀的中位机能为Y机能)此时,油缸活塞两侧压力P1’xA1=P2xA1+(R-M) ,但两个液控单向阀下方的压力P4’<P3,由于P4’管道与P3管道相通形成一条管道,该管道压力将融合为P4’’,P4’’= (P4’+ P3)/2,此时,P4’’>P4’,因P4’= P1’,得P4’’= (P4’+ P3)/2>P1’(式四)此时,当P4’’xA单下>P1’xA单上+F单弹(式五)时,P4’’管路将有及少量液压油进入P1’管路,压力作用在油缸无杆腔活塞造成油缸微小滑动;当P4’’xA单下<P1’xA单上+F单弹时,P4’’不能克服单向阀弹簧力及P1,不会造成油缸滑动。
比例阀原理图

比例阀原理图比例阀是一种常见的液压控制元件,它通过改变流体通道的截面积来实现对流体流量的调节,从而控制液压系统的工作压力、流量等参数。
比例阀原理图是对比例阀内部结构和工作原理进行图解和说明的文档,通过原理图可以清晰地了解比例阀的工作原理和结构特点,有助于工程师和技术人员进行比例阀的选型、安装和维护。
比例阀原理图一般包括比例阀的主要部件、工作原理、控制方式等内容。
比例阀的主要部件包括阀芯、阀座、电磁铁、反馈电阻、阀体等。
阀芯是比例阀的核心部件,它通过电磁铁的控制来改变阀口的开度,从而调节流体的流量。
阀座则起到密封和支撑阀芯的作用,保证阀芯的稳定工作。
电磁铁是比例阀的控制元件,它接收控制信号,通过电磁激磁产生磁力,驱动阀芯运动,实现对流量的调节。
反馈电阻则用于监测阀芯的位置,将实际位置信号反馈给控制系统,实现闭环控制。
阀体则是比例阀的外壳,起到支撑和固定其他部件的作用。
比例阀的工作原理是基于流体力学原理的,当控制信号作用于电磁铁时,电磁铁产生磁力,驱动阀芯运动,改变阀口的开度,从而改变流体通道的截面积,实现对流量的调节。
比例阀的控制方式一般包括电压控制、电流控制、PWM控制等,不同的控制方式适用于不同的工况和控制要求。
比例阀原理图对比例阀的内部结构和工作原理进行了图解和说明,通过原理图可以清晰地了解比例阀各部件之间的关系和工作原理,有助于工程师和技术人员进行比例阀的选型、安装和维护。
比例阀原理图还可以作为教学和培训的教材,帮助学习者更加直观地理解比例阀的工作原理和结构特点。
总之,比例阀原理图是对比例阀内部结构和工作原理进行图解和说明的文档,通过原理图可以清晰地了解比例阀的工作原理和结构特点,有助于工程师和技术人员进行比例阀的选型、安装和维护。
希望本文对比例阀的理解有所帮助。
比例阀原理

比例阀工作原理
图1
1.阀体
2.柱塞
3.密封皮碗
4.调压弹簧
5.弹簧座
6.“O”形密封圈
7.阀座
8.主“O”形密封圈
9.钢丝
如图1所示,当从制动液从输入口输入时,阀体内充满液体。
比例阀内的柱塞受到一个压差力F液,同时还受到向下的弹簧力T,所以当上下液压力的合力F液<T时,柱塞受弹簧力的作用紧靠在阀体的底部,当输入油压P入增加到一定的值P 拐时,使F液=T,,此时柱塞有向上运动的趋势。
随着输入油压的不断的增大,向上的力F液大于向下的弹簧力,柱塞在油压力的作用下向上移动,当差径柱塞移到与件3(密封皮碗)相接触密封。
图2
由图2可知,当柱塞与密封皮碗密封之后,输入腔和输出腔被隔绝,随着输入腔的油压不断增大,输出腔的油压得不到补充,柱塞在输入腔油压的作用下向下移动,与密封皮碗脱离,使输出油压P出也得升高,但是输出油压P出还没有与输出油压相等时,柱塞又向上移动,这时柱塞处于一个动态的平衡位置,
如下图中的特性曲线,在OA段输入油压和输出油压相等,A点处的油压就是通常所说的拐点油压。
O
输
出
图3
感载比例阀是通过调节外部调压弹簧力,感载弹簧力,内部液压力,回位弹簧
力等在空载和满载状况下的平衡来得到特性曲线的拐点及斜率。
感载比例阀可以通过调节调压弹簧上的六角螺母(如图4所示)来调整拐点,通过下旋六角螺母加大调压弹簧力,增大比例阀拐点值(空载,满载拐点均会增加)。
同理上旋六角螺母,减小调压弹簧的变形量可以减小拐点(空载,满载的拐点均会降低)。
六角螺母
图4。
简单易懂的比例阀基本原理课件

阀体是比例阀的主体,用 于容纳其他组件。
驱动装置用于驱动阀芯移 动。
比例阀的工作流程
控制系统根据输入信号发 出指令。
阀芯移动改变流体通道的 大小,进而控制流体的流 量和压力。
驱动装置接收指令并驱动 阀芯移动。
反馈装置将阀芯位置信号 反馈给控制系统,形成闭 环控制。
比例阀的工作原理图解
工作原理图解可以帮助理解比例阀的 工作过程,包括各部件的作用和工作 流程。
THANKS FOR WATCHING
感谢您的观看
比例阀对电源和输入信号的质量有一定的 要求,如果电源或信号受到干扰或不稳定 ,可能会影响其控制精度和稳定性。
06 比例阀的发展趋势和未来 展望
发展趋势
智能化
随着工业4.0和智能制造的推 进,比例阀将更加智能化, 能够实现远程控制、实时监 测和故障诊断等功能。
高精度化
集成化
为了满足高精度控制的需求, 比例阀将进一步提高其控制 精度和响应速度,实现更精 细的流量和压力调节。
双座比例阀
有两个阀芯和阀体,适用于大流量、 中等精度场合。
按驱动方式分类
电驱动比例阀
通过电机驱动阀的开度,如直流电机、步进电机等。
气动驱动比例阀
通过气压驱动阀的开度,如气瓶、气泵等。
04 比例阀的应用
在液压系统中的应用
控制液压系统的流量和压力
比例阀能够根据输入信号的大小,按比例调节液压油的流量和方向, 从而实现液压系统的流量和压力控制。
未来比例阀将更加集成化, 将多种功能集成于一体,减 少设备体积和安装成本,提 高系统的可靠性和稳定性。
环保化
随着环保意识的提高,比例 阀将更加注重环保设计,采 用低污染材料和节能技术, 降低能耗和排放。
液压机液压系统比例压力控制方法

在液压机液压系统的比例压力控制中,大多采用比例压力阀进行压力控制。
下面我们以某公司的一台RZU 800型8000 kN快速薄板冲压液压机为例介绍液压机比例压力控制的3种方法。
该液压机对系统压力的主要要求为:(1)压力调节范围为3~25 MPa;(2)在压力调节范围内系统设定值与检测值(压力传感器输出值)压力差小于最大值的2%(0.5MPa);(3)压力稳定时间不大于2s;(4)最大超调压力不大于1 MPa。
开环控制系统首先采用开环进行控制,控制原理图见图1。
采用直动式比例压力阀1作为先导阀控制插装阀2。
由PLC直接给比例阀1设定信号,由于系统本身是非线性的,在从3~25 MPa进行加压试验时,比例阀的设定值与实际压力值并不能成比例地对应起来(见图2),与理想的线性直线最大差值达到1.8MPa。
另外当油温上升时,液压系统的压力增加值也非常大,在油温18和39 C进行测定,压力最大增加了1.2MPa。
试验表明,虽然系统基本无超调,系统稳定时间也符合要求,但设定值与显示值受系统的非线性和油温的影响,出现很大偏差,无法满足要求。
基于PID的闭环控制系统图3为采用PID控制的闭环控制原理图,在开五控制基础上增加了PID 控制器,同时在PLC软件中把压力传感器的反馈值与设定值K进行求差值运算然后输入PID控制器,PID控制器的输出控制比例阀。
首先设置积分系数K1=0、微分系数KD=0,依次从小到大增加比例系数KP进行试验,用示波器对压力进行检测,结果显示在KP为30时,系统基本无震荡和无超调,但系统设定压力与实际压力最大差值达到8%。
继续增加KP值,系统开始发生震荡。
KP=80,设定压力为10 MPa 时,系统发生4次震荡才趋于稳定,震荡时间达到2.8 s,而且设定值与实际值最大差距仍然达到1.1MPa。
把KP设为20,然后把K,设为4,把KP设为1,设定压力为10 MPa进行试验,结果显示系统震荡加剧,系统经过大约3.2 s后才基本趋于稳定。
液压阀工作原理动画(1)

流量控制阀简称流量阀,它通过改变节流 口通流面积或通流通道的长短来改变局部阻力 的大小,从而实现对流量的控制,进而改变执 行机构的运动速度。流量控制阀包括节流阀、 调速阀、分流集流阀等。本章除讨论普通的流 量阀之外,还要简要介绍插装阀、电液比例阀 和电液伺服阀。
3
对流量控制阀的主要性能要求是: l〕阀的压力差变化时,通过阀的流量变化小。 2〕油温变化时,流量变化小。 3〕流量调节范围大,在小流量时不易堵塞,能得到 很小的稳定流量。 4〕当阀全开时,通过阀的压力损失要小。 5〕阀的泄漏量要小。对于高压阀来说,还希望其调 节力矩要小。
16
(3)偏心式节流口 节流口由偏心的三角沟槽组成。阀芯有转角时,节流口
过流断面面积即产生变化。本结构的特点是,小流量调节容 易。但制造略显得麻烦、阀芯所受的径向力不平衡,只宜用 在低压场合。
17
(4)轴向三角槽式节流口 沿阀芯的轴向开假设干个三角槽。阀芯做轴向运动,
即可改变开口量h,从而改变过流断面面积。
此时阀口Rx称为溢 流阀口。当流量QL变化 时,流量传感器RQ上的 压力差PQ也会发生变化, 以此作为控制信号,调节 溢流阀口Rx的开口度, 使流量朝着误差减小的方 向变化,从而维持负载负 载流量QL根本恒定。据 此原理设计而成的流量阀 称为“溢流节流阀〞。
〔4〕串联与并联式比照
图7.3
7.2.1 流量的“位移法〞测量 与“压差法〞相反,本方法是在主油路中串联一个压差
图7.2(d) 周向缝隙式节流口
20
(6)轴向缝隙式节流口
本结构为薄壁节流口,壁厚约0.07~0.09mm,流量受温 度的影响小、不易堵塞、最低稳定流量约20ml/min 。阀芯 的轴向位移可改变节流口过流断面的面积。节流口易变形, 工艺复杂是本结构的缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负荷传感式比例多路阀液压工作原理图
说明:
液压油从P点进入,沿实线上行。
竖线上的阀是一个减压阀,给后面的换向联提供控制油。
减压阀后面横着的是减压阀的溢流阀,起保护作用。
减压阀下面那个是卸荷阀,这个阀两端受P口压力和负荷传感压力的联合控制,当后面的换向联的阀芯全部处于中位时,负荷传感的压力是零,这个阀就会在P口压力作用下打开,油泵来的液压油直接返回油箱。
这个阀的开口大小是随着负载压力变化的,可以调节返回油箱的流量,反过来,就可以控制负载的动作速度。
卸荷阀的下面是负荷传感压力的溢流阀,也是整个阀组的保护。
最下面的是两位两通的电磁卸荷阀,通电后可以把负荷传感的信号油(虚线)放回油箱,阀组立刻失去压力,可以起到应急保护作用。
就像二楼说的一样。
右面的点划线框内是换向联。
进油口没有细画,应该有一个压力补偿
阀芯上面是两个比例电磁铁,下面是手柄,表示双操作。
阀芯的两侧有两条长竖线,表示阀芯有中间状态,是比例阀。
AB口是工作油口,每个油口都可以反馈回来负载压力(虚线),这个功能就叫负荷传感。
右下部是一个梭阀,把各个换向联的负荷传感信号中的最高压力选择出来,送到进油联,控制卸荷阀动作。