igbt工作原理及应用
IGBT工作原理

IGBT工作原理引言概述:IGBT是一种广泛应用于电力电子领域的功率半导体器件,具有高效率、高速度和高可靠性等优点。
了解IGBT的工作原理对于电力电子工程师和研究人员来说至关重要。
本文将详细介绍IGBT的工作原理,包括结构、工作方式和应用等方面。
一、IGBT的结构1.1 发射极结构:IGBT的发射极是由N+型硅衬底、N型漏极和P型基极组成的结构。
1.2 栅极结构:IGBT的栅极是由金属层和绝缘层组成的结构,用于控制电流流动。
1.3 集电极结构:IGBT的集电极是由N+型硅衬底和P型漏极组成的结构,用于集中电流输出。
二、IGBT的工作方式2.1 关态:当IGBT的栅极施加正向电压时,电流可以从集电极流向发射极,器件处于导通状态。
2.2 开态:当IGBT的栅极施加负向电压时,电流无法从集电极流向发射极,器件处于关断状态。
2.3 开关速度:IGBT的开关速度取决于栅极电压的变化速度,快速开关速度可以提高器件的效率和性能。
三、IGBT的特点3.1 高效率:IGBT具有低导通压降和低开关损耗,能够提高系统的能效。
3.2 高速度:IGBT的开关速度快,能够实现快速的电流控制和开关操作。
3.3 高可靠性:IGBT具有较高的耐压和耐热性能,能够在恶劣环境下稳定工作。
四、IGBT的应用领域4.1 变频调速:IGBT广泛应用于变频调速系统中,实现机电的精确控制和能量调节。
4.2 逆变器:IGBT可以用于逆变器中,将直流电源转换为交流电源,满足不同电器设备的电源需求。
4.3 电力传输:IGBT可用于电力传输系统中,提高电网的稳定性和效率,实现电力的远距离传输。
五、总结IGBT作为一种重要的功率半导体器件,在电力电子领域具有广泛的应用前景。
了解IGBT的结构、工作方式和特点对于电力电子工程师和研究人员来说至关重要,可以匡助他们设计和优化电力电子系统,提高系统的效率和性能。
希翼本文能够匡助读者更好地理解IGBT的工作原理,为他们在实际应用中提供指导和匡助。
igbt元件的工作原理和应用

IGBT元件的工作原理和应用1. 引言在现代电力电子技术中,IGBT(绝缘栅双极型晶体管)是一种重要的元件,具有高电压、高电流和高开关速度等特点。
本文将介绍IGBT元件的工作原理和应用。
2. IGBT工作原理IGBT是一种由MOSFET(金属-氧化物半导体场效应晶体管)和BJT(双极型晶体管)组成的混合型元件。
其工作原理可以分为以下几个步骤:1.输入信号引发控制端电压:控制端的电压作用下,形成子结和耗尽区的条件。
2.条件形成轉移区:控制端电压作用下,在轉移区域存在大电容,电荷会在下一个周期传播到发射区,IGBT结束通导状态。
3.发射区的导通:一旦适当的控制电流和电压施加后,MOS管中的电子开始导通,激活BJT的发射层。
4.提供辅助电压以维持MOS的导通:一旦电子开始导通,就必须通过辅助电压维持MOS的导通,以防止MOS关闭。
综上所述,IGBT的工作原理是通过不断改变控制端电压,并在MOS和BJT之间建立通路来控制导通和截止。
3. IGBT的应用IGBT作为一种重要的电子元件,广泛应用于各个领域。
以下是几个常见的应用领域:3.1 电力传输和变换IGBT在电力传输和变换领域起着重要作用,主要应用于交流换流器、逆变器和直流调节器等设备中。
IGBT的高电压和高电流承受能力,使其能够在电力系统中进行高效的能量转换和传输。
3.2 光伏发电系统在光伏发电系统中,IGBT用于逆变器中,将光伏电池板产生的直流电转换为交流电,以供电网使用或直接驱动电动设备。
3.3 汽车电子系统IGBT在汽车电子系统中的应用越来越广泛,用于电动车的控制系统、混合动力汽车的驱动系统和燃油喷射系统等。
IGBT的高开关速度和高电压能力使其适用于汽车中的高频电子设备。
3.4 变频空调在变频空调中,IGBT用于控制压缩机的工作,以实现空调系统的制冷和加热功能。
IGBT的高效能转换和低能耗使其成为变频空调系统的关键组成部分。
3.5 高速列车在高速列车领域,IGBT被用作高压变流器,用于控制高速列车的起动、制动和稳定运行。
解析IGBT工作原理及作用

解析IGBT工作原理及作用一、IGBT是什幺 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
通俗来讲:IGBT是一种大功率的电力电子器件,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
三大特点就是高压、大电流、高速。
二、IGBT模块 IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。
IGBT的等效电路如图1所示。
由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,。
IGBT工作原理

IGBT工作原理1. 引言IGBT(Insulated Gate Bipolar Transistor)是一种高压、高电流功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,并解释其在电路中的应用。
2. IGBT的结构IGBT由NPN型晶体管和PNP型晶体管组成,中间由绝缘栅层隔开。
NPN型晶体管负责控制电流,PNP型晶体管负责控制电压。
这种结构使得IGBT既具备晶体管的低导通压降特性,又具备MOSFET的高输入阻抗特性。
3. IGBT的工作原理当正向电压施加在IGBT的集电极和发射极之间时,NPN型晶体管的集电结正向偏置,PNP型晶体管的集电结反向偏置。
此时,IGBT处于关断状态,几乎没有漏电流。
当绝缘栅极施加正向电压时,绝缘栅层下的P型区域形成N型沟道,使NPN型晶体管的集电结反向偏置,PNP型晶体管的集电结正向偏置。
这样,IGBT就进入导通状态,电流可以从集电极流向发射极。
4. IGBT的特性4.1 高电压能力:IGBT可以承受较高的电压,通常可达数百伏特至数千伏特。
4.2 高电流能力:IGBT能够承受较大的电流,通常可达几百安培至几千安培。
4.3 快速开关速度:IGBT的绝缘栅极可以控制其导通和关断速度,使其能够快速切换。
4.4 低导通压降:IGBT的导通压降较低,能够减少功率损耗。
4.5 高输入阻抗:IGBT的绝缘栅极具有高输入阻抗,能够降低驱动电路的功耗。
5. IGBT的应用5.1 变频器:IGBT广泛应用于交流电机的变频调速系统中,能够实现电机的高效率运行。
5.2 电力传输:IGBT可用于高压直流输电系统中,提供高效率的电力传输。
5.3 电力电子设备:IGBT可用于电力电子设备的开关电源、逆变器、电流控制器等部分,提高设备的效率和可靠性。
5.4 汽车电子:IGBT可用于电动汽车的电力控制系统中,提供高效率的电力传输和控制。
6. 总结IGBT是一种高压、高电流功率开关器件,具备低导通压降、高输入阻抗等特点。
IGBT工作原理

IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高压、高功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,包括结构、工作模式、特性和应用。
一、结构:IGBT由N沟道MOSFET和双极型晶体管(BJT)的耦合组成。
它的结构类似于MOSFET,但在N沟道MOSFET的基础上添加了PN结,形成了一个PNPN结构。
IGBT的主要部分包括N+型衬底、N-型沟道、P+型基区和N+型漏极。
二、工作模式:1. 关态(Off State):当控制极(Gate)施加负电压时,IGBT处于关态。
此时,PNPN结中的P+型基区被正向偏置,形成一个导通的PN结。
因此,IGBT处于关断状态,没有漏电流流过。
2. 开态(On State):当控制极施加正电压时,IGBT处于开态。
此时,控制极的正电压使得PNPN结中的P+型基区被反向偏置,阻断了PN结的导通。
然而,由于N沟道MOSFET的存在,控制极的正电压会形成一个电场,吸引N-型沟道中的电子,使其形成导电通道。
因此,IGBT处于导通状态,允许电流通过。
三、特性:1. 高压能力:IGBT具有较高的耐压能力,可以承受数百伏特的高电压。
这使得IGBT成为高压应用领域的理想选择,例如电力变换器和电动汽车驱动系统。
2. 高功率密度:IGBT具有较高的功率密度,能够在较小的体积内承受大功率。
这使得IGBT在需要高功率输出的应用中具有优势,例如工业驱动器和太阳能逆变器。
3. 快速开关速度:IGBT具有较快的开关速度,可以实现高频率的开关操作。
这使得IGBT在需要高频率开关的应用中表现出色,例如无线通信和医疗设备。
4. 低导通压降:IGBT的导通压降较低,可以减少功率损耗。
这使得IGBT在低能耗要求的应用中更加高效,例如节能照明和电动车充电器。
四、应用:1. 电力变换器:IGBT广泛应用于电力变换器中,用于将电能从一种形式转换为另一种形式。
IGBT的工作原理和作用以及IGBT管的检测方法

IGBT的工作原理和作用以及IGBT管的检测方法IGBT的工作原理和作用IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。
IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。
如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。
IGBT的工作原理和作用电路分析IGBT的等效电路如图1所示。
由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。
图1 IGBT的等效电路由此可知,IGBT的安全可靠与否主要由以下因素决定:--IGBT栅极与发射极之间的电压;--IGBT集电极与发射极之间的电压;--流过IGBT集电极-发射极的电流;--IGBT的结温。
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能。
IGBT模块驱动技术及应用

二、IGBT驱动与保护
驱动线
IGBT驱动线在设计过程中,尽量设计短,并双绞。
二、IGBT驱动与保护
结温
高结温将有助于减少在高杂散电感条件下的震荡
二、IGBT驱动与保护
二、IGBT驱动与保护
Vce尖峰
Vce尖峰电压由IGBT关断过程中杂散电感及二极管反向恢复产生。
L=85nH
L=185nH
衡IGBT的通态损耗和开关损耗。
一、IGBT基本原理
(2)非穿通(NPT)型IGBT
与PT型IGBT不同,NPT型IGBT以掺杂的N-
栅极
发射极
基区为衬底,P掺杂发射区设计的很薄,没有
PT型IGBT的N型缓冲区,这样在阻断状态,电
场只在N型衬底内存在。因为电场不再“穿
通”N型衬底,因此被称为“非穿通”型IGBT。
针对感性负载,为了防止过压,IGBT需要
并联一个续流二极管给电流提供续流回路。RC
N+
P
IGBT并不是简单的在外部并联一个半导体二极
管,而是在半导体内部实现了一个二极管,主
N-基区
(衬底)
要用于谐振电路、硬开关电路中。
N场终止层
P
N
集电极
P
一、IGBT基本原理
英飞凌IGBT
二、IGBT驱动与保护
IGBT模块驱动技术及应用
一、IGBT基本原理
目
录
二、IGBT驱动与保护
三、双脉冲测试
四、安全工作区
一、IGBT基本原理
1. IGBT基本介绍
IGBT(InsulatedGateBipolarTransistor)绝缘栅双极型晶体管
IGBT之父:Jayant Baliga(贾杨.巴利加)教授(20世纪80年代发明)
IGBT工作原理

IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种高性能功率半导体器件,常用于控制和调节高电压和高电流的电力电子应用中。
本文将详细介绍IGBT的工作原理及其相关特性。
一、IGBT结构IGBT由三个主要部分组成:N型电流扩散层、P型基区和N型绝缘栅区。
它的结构类似于MOSFET和双极晶体管的结合体,具有MOSFET的高输入阻抗和双极晶体管的低导通压降特性。
二、IGBT工作原理1. 关断状态:当IGBT的栅极电压为0V时,处于关断状态。
此时,N型电流扩散层和N型绝缘栅区之间形成了反向偏置的PN结,阻止了电流的流动。
2. 开通状态:当给IGBT的栅极施加正向电压时,即使很小的电压也能引起电流的流动。
在开通状态下,栅极电压控制导通电流的大小。
3. IGBT的导通过程:当栅极电压高于临界电压时,电流开始从N型电流扩散层注入到P型基区,形成NPN型双极晶体管。
由于双极晶体管的放大作用,电流迅速增加。
同时,由于N型绝缘栅区的存在,栅极电压控制了电流的大小。
因此,IGBT具有较低的导通压降。
4. IGBT的关断过程:当栅极电压降低到临界电压以下时,电流开始减小。
在关断过程中,IGBT的关断速度取决于去除电荷的速度。
通常,通过施加负向电压或短路栅极电压来加快关断速度。
三、IGBT的特性1. 高输入阻抗:由于IGBT的栅极绝缘层,其输入电流极小,因此具有高输入阻抗。
这使得IGBT可以被各种控制电路轻松驱动。
2. 低导通压降:IGBT的导通压降较低,这意味着在导通状态下能够减小功率损耗,提高效率。
3. 大功率承受能力:IGBT能够承受较高的电压和电流,适用于高功率应用,如变频器、电力传输、电动车等。
4. 快速开关速度:IGBT具有较快的开关速度,可以实现高频率的开关操作,适用于需要频繁开关的应用。
5. 温度依赖性:IGBT的导通压降和关断速度受温度影响较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
igbt工作原理及应用
绝缘栅双极型晶体管(IGBT)的保护
引言
绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。
它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。
在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。
但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。
因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。
1 IGBT的工作原理
IGBT的等效电路如图1所示。
由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止
由此可知,IGBT的安全可靠与否主要由以下因素决定:
——IGBT栅极与发射极之间的电压;
——IGBT集电极与发射极之间的电压;
——流过IGBT集电极-发射极的电流;
——IGBT的结温。
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。
2 保护措施
在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。
2.1 IGBT栅极的保护
IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。
另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。
这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。
如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上
电压,则IGBT就可能会损坏。
为防止此类情况发生,应在IGBT的栅极与发射极间并接一只几十kΩ的电阻,此电阻应尽量靠近栅极与发射极。
如图2所示。
由于IGBT是功率MOSFET和PNP双极晶体管的复合体,特别是其栅极为MOS结构,因此除了上述应有的保护之外,就像其他MOS结构器件一样,IGBT对于静电压也是十分敏感的,故而对IGBT进行装配焊接作业时也必须注意以下事项:
——在需要用手接触IGBT前,应先将人体上的静电放电后再进行操作,并尽量不要接触模块的驱动端子部分,必须接触时要保证此时人体上所带的静电已全部放掉;
——在焊接作业时,为了防止静电可能损坏IGBT,焊机一定要可靠地接地。
IGBT在不间断电源的应用.
2.2 集电极与发射极间的过压保护
过电压的产生主要有两种情况,一种是施加到IGBT集电极-发射极间的直流电压过高,另一种为集电极-发射极上的浪涌电压过高。
2.2.1 直流过电压
直流过压产生的原因是由于输入交流电源或IGBT的前一级输入发生异常所致。
解决的办法是在选取IGBT时,进行降额设计;另外,可在检测出这一过压时分断IGBT的输入,保证IGBT的安全。
2.2.2 浪涌电压的保护
因为电路中分布电感的存在,加之IGBT的开关速度较高,当IGBT关断时及与之并接的反向恢复二极管逆向恢复时,就会产生很大的浪涌
电压Ldi/dt,威胁IGBT的安全。
通常IGBT的浪涌电压波形如图3所示。
图中:vCE为IGBT?电极-发射极间的电压波形;
ic为IGBT的集电极电流;
Ud为输入IGBT的直流电压;
VCESP=Ud+Ldic/dt,为浪涌电压峰值。
如果VCESP超出IGBT的集电极-发射极间耐压值VCES,就可能损坏IGBT。
解决的办法主要有:
——在选取IGBT时考虑设计裕量;
——在电路设计时调整IGBT驱动电路的Rg,使di/dt尽可能小; ——尽量将电解电容靠近IGBT安装,以减小分布电感;
——根据情况加装缓冲保护电路,旁路高频浪涌电压。
由于缓冲保护电路对IGBT的安全工作起着很重要的作用,在此将缓冲保护电路的类型和特点作一介绍。
—C缓冲电路如图4(a)所示,采用薄膜电容,靠近IGBT安装,其特点是电路简单,其缺点是由分布电感及缓冲电容构成LC谐振电路,易产生电压振荡,而且IGBT开通时集电极电流较大。
——RC缓冲电路如图4(b)所示,其特点是适合于斩波电路,但在使用大容量IGBT时,必须使缓冲电阻值增大,否则,开通时集电极电流过大,使IGBT功能受到一定限制。
——RCD缓冲电路如图4(c)所示,与RC缓冲电路相比其特点是,增加了缓冲二极管从而使缓冲电阻增大,避开了开通时IGBT功能受阻
的问题。
该缓冲电路中缓冲电阻产生的损耗为
P=LI2f+CUd2f式中:L为主电路中的分布电感;
I为IGBT关断时的集电极电流;
f为IGBT的开关频率;
C为缓冲电容;
Ud为直流电压值。
——放电阻止型缓冲电路如图4(d)所示,与RCD缓冲电路相比其特点是,产生的损耗小,适合于高频开关。
在该缓冲电路中缓冲电阻上产生的损耗为
P=1/2LI2f+1/2CUf
根据实际情况选取适当的缓冲保护电路,抑制关断浪涌电压。
在进行装配时,要尽量降低主电路和缓冲电路的分布电感,接线越短越粗越好。