大学物理实验数据处理
大学物理实验数据处理

5.标出图线特征:
在图上空白位置标明实 验条件或从图上得出的某些 参数。如利用所绘直线可给 出被测电阻R即直线斜率的 大小:从所绘直线上读取两 点 A、B 的坐标就可求出 R 值。要注意的是,A,B两点 不能是实验测得的数据点。
I (mA)
20.00 18.00 16.00 14.00
电阻伏安特性曲线 作者:xx
• (1) 先用粗测旋钮使测头小砧接近被测物, 后用微调旋钮使测头小砧接触被测物。听 到“喀”、“喀”止动声后停止旋转。 • (2) 读数时要注意固定刻度尺上表示半 毫米的刻线是否已经露出。 • (3) 螺旋测微器读数时必须估读一位, 即估读到0.001mm这一位上。
物理天平 physical balance
0.4000
t(℃)
o
20.00 40.00
60.00
80.00 100.00
120.00 140.00
定容气体压强~温度曲线
1.2000
P(×105Pa)
改正为:
1.1500
1.1000
1.0500
t(℃)
1.0000 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
测量值=固定刻度读数+(可动刻度格子数x精度)-L0(零点偏差)
注意:用螺旋测微计测量长度时要估读
螺旋测微计的测量方法及读数
校零:
+0.015
-0.025
读数:
5+0.033-0.015
5+0.5+0.033-(-0.025)
=5.018mm
=5.558mm
练习1
练习2
练习3
练习4
大学物理实验数据处理和实验基本要求

i Ai A (i 1,2, , n)
4.有限次测量的标准偏差
可以证明,当测量次数为有限时,可以用标准偏差S作为标准误差的最佳估计值。S 的计算公式 为
S
1 n 1
n i1
( Ai
A)2
贝塞尔(Bessel)公式
5、有限次测量算术平均值的标准偏差
A 对A的有限次测量的算术平均值 也是一个随机变量。
A E A0 10000
表示方法:1000±1米; 100±1厘米
绝对误差与相对误差的大小反映了测量结果的精确程度
表示绝对误差在整 个物理量中所占的 比重,一般用百分 比表示
1000米—1米—0.1% 100厘米—1厘米—1%
按照误差产生的原因和基本性质可分为:
系统误差
随机误差 粗大误差
1、系统误差
S 也存在标准偏差,这个标准偏差用 表示。可以证明: A
S SA
A
n
S的统计意义: A
被测量的真值
落在
A 到
0 范围内的可能性为68.3%
落在 落在
A S A S 到
范围内的可能性为95.5%
到
A范围内的可能性为99.A7%
A 2S A
A 2S A
A 3S A 3S
A
A
第四节 减小系统误差的基本方法
S 指用统计的方法评定的不确定度分量,用 表示(脚标 i 代表 A 类不确定度的第 i 个分量)。
在物理实验课中,A 类不确定度主要体现在用统计的方法处理随机误差。
i
设对物理量进行多次测量得到的测量列为 由下式计算
,则物理量 A 的不确定度的A分量可
大学物理实验_数据处理和实验基 本要求
大学物理实验 数据处理和实验基本要求
大学物理实验数据处理基本方法

实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。
2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
( 1) xy c ( c 为常数 ) 。
令 z1,则y cz,即 y 与 z 为线性关系。
大学物理实验数据处理方法总结

有效数字1、有效数字不同的数相加减时,以参加运算各量中有效数字最末一位位数最高的为准,最后结果与它对其,余下的尾数按舍入规则处理。
2、乘除法以参与运算的数值中有效位数最少的那个数为准,但当结果的第1位数较小,比如1、2、3时可以多保留一位(较小:结果的第一位数小于 有效数字最少的结果第一位数)! 例如:n=tg56° θ=56° d θ=1° θθθθθ2cos d d d dtg dn == 为保留)(,带入848.156n 15605.018056cos 1cos 22=︒=∴︒=∆︒=≈︒=∆=∆tg n θθπθθ3、可以数字只出现在最末一位:对函数运算以不损失有效数字为准。
例如:20*lg63.4 可疑最小位变化0.1 Y=20lgx01.04.631.010ln 2010ln 20ln 10ln 20≈===x dx dx dx x d dy 04.364.63lg 20=∴4、原始数据记录、测量结果最后表示,严格按有效数字规定处理。
(中间过程、结果多算几次)5、4舍5入6凑偶6、不估计不确定度时,有效数字按相应运算法则取位;计算不确定度时以不确定度的处理结果为准。
真值和误差1、 误差=测量值-真值 ΔN=N-A2、 误差既有大小、方向与政府。
3、 通常真值和误差都是未知的。
4、 相对约定真值,误差可以求出。
5、 用相对误差比较测量结果的准确度。
6、 ΔN/A ≈ΔN/N7、 系统误差、随机误差、粗大误差8、 随机误差:统计意义下的分布规律。
粗大误差:测量错误9、 系统误差和随机误差在一定条件下相互转化。
不确定度1、P (x )是概率密度函数dx P dx x x P p )x (之间的概率是测量结果落在+当x 取遍所有可能的概率值为1.2、正态分布且消除了系统误差,概率最大的位置是真值A3、曲线“胖”精密度低“瘦”精密度高。
4、标准误差:无限次测量⎰∞∞-=-2)()(dx X P A X x )(σ 有限次测量且真值不知道标准偏差近似给出1)(2)(--=∑K X X S i X5、正态分布的测量结果落入X 左右σ范围内的概率是0.6836、真值落入测定值X i 左右σ区间内的概率为0.6837、不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性。
大学物理实验数据处理

解:测量最佳估计值
y 1 ( 0 .2 4 9 0 .2 5 0 0 .2 4 7 0 .2 5 1 0 .2 5 3 0 .2 5 0 ) 0 .2 5 0 m m
6
n
(yi y)2
A类标准不确定度 uA
u ( m ) U ( m ) /k 0 .2 4 /3 0 .0 8 0 m g
B类不确定度的计算
2. 在缺乏任何信息的情况下,一般使用均匀分 布, k 3 ,而a则取仪器的最大允许误差
(误差限)△(x) ,所以B类不确定度为
u(x) a (x) k3
例题 知道某游标卡尺的仪器最大允许误差为 Δ=0.05mm,使用矩形分布计算不确定度。
• B类不确定度:用其他方法确定的量
1. 根据经验确定。
2. 如果已知被测量的测量值xi分散区间的半宽为a, 且落在 [xa,x区a间] 的概率为100%,通过对 其分布规律的估计可得出B类不确定度为:
a uB(x) k
k是包含因子,取决于测量值 的分布规律.
B类不确定度的计算
包含因子k的确定
物理实验中没有特别说明时,使用矩形分布(平均
2.5级
△=5×2.5/100=0.125V
• 3. 数字显示仪表在缺乏说明的情况下,取其 最小分度值作为其仪器的示值误差限。
△=0.01mA
• 4.未加说明的仪器, 如果无法得知其误差 限,一般取仪器最小分度的一半作为其仪 器误差限。
△ =0.5mm
直接测量量的合成不确定度
• A类和B类不确定度的合成不确定度uc(x):
2.有效数字的位数与被测量的大小及仪器的精密度有关。 3.第一个非零数字前的零不是有效数字,第一个非零数字 开始的所有数字都是有效数字。如
大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大学物理实验数据处理基本方法

实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1 列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称(符号)和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2 图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸(即毫米方格纸)、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯。
2.曲线改直 由于直线最易描绘,且直线方程的两个参数(斜率和截距)也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
(1)c xy =(c 为常数)。
令xz 1=,则cz y =,即y 与z 为线性关系。
(2)y c x =(c 为常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.00
4.00
4. 连成图线:
2.00
用直尺、曲线板等把 点连成直线、光滑曲线。
0
U (V)
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
一般不强求直线或曲线通
过每个实验点,应使图线两边的实验点与图线最为接近且分布大体均匀。图
线正穿过实验点时可以在点处断开。
I K 5 I K (mA) 9.96 9.93 10.03 10.01 10.04
解:根据伏安公式 R V I ①.若按逐项相减,则有
1 n1
I
11 1
(I k1
k 1
Ik )
1 10
1 I2
I1
I3
I2
...
I10
I9
1 10
§2-3 作图法处理实验数 据
5.标出图线特征: I (mA)
在图上空白位置标明 20.00
实验条件或从图上得出的 18.00
某些参数。如利用所绘直 16.00 线可给出被测电阻R大小: 14.00 从所绘直线上读取两点 A、
12.00
B 的坐标就可求出 R 值。
10.00
6.标出图名:
8.00
6.00
L L L , L L L , ,L L L
1
1
0
2
2
1
9
9
8
当L1,L2、… L9基本相等时,就验证了外 力与弹簧的伸长量之间的函数关系是线性的.
即F=K L
用此法可检查测量结果是否正确,但注意的是 必须要逐项逐差。
(2)求物理量数值
现计算每加一克砝码时弹簧的平均伸长量,若用上式, 得:
2. 标明坐标轴:
用粗实线画坐标轴, 用箭头标轴方向,标坐标 轴的名称或符号、单位, 再按顺序标出坐标轴整分
格上的量值。
I (mA)
20.00 18.00 16.00 14.00
3.标实验点:
12.00
实验点可用“ ”、 10.00
“ ”、“ ”等符号标 8.00
出(同一坐标系下不同曲
线用不同的符号)。
700.0 λ(nm)
§2-3 作图法处理实验数 据
改正为:
n
1.7000 1.6900 1.6800 1.6700 1.6600 1.6500
400.0
500.0
600.0
玻璃材料色散曲线图
700.0 λ(nm)
§2-3 作图法处理实验数 据
图2
I (mA)
20.00
18.00
16.00
14.00
些组合,仍能达到多次测量来减小误差的目的。因此一般使 用逐差法的规则如下:
通常可将等间隔所测量的值分成前后两组的,前一组为L0、 L1、L2、L3、L4,后一组为L5、L6、L7、L8、L9,将前后两
组的对应项相减为
L L L , L L L , , L L L
12.00
10.00
8.00
6.00 4.00
2.00
0
1.00
2.00
3.00
电学元件伏安特性曲线
§2-3 作图法处理实验数 据
横轴坐标分度选取 不当。横轴以3 cm 代
表1 V,使作图和读图都 很困难。实际在选择坐标 分度值时,应既满足有效 数字的要求又便于作图和
读图,一般以1 mm 代 表的量值是10的整数 次幂或是其2倍或5倍。
温度 t (C) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
在图中任选两点 P1 (48.0,11.70)和 P2 (13.0,10.60) , 将两点代入式中可得:
a 11.70 10.60 0.0314 48.0 13.0
1.列表法 2.作图法 3.逐差法
4.最小二乘法
一、列表法
在记录和处理实验测量数据时,经常把 数据列成表格,它可以简单而明确地表示 出有关物理量之间的对应关系,便于随时 检查测量结果是否正确合理,及时发现问 题,利于计算和分析误差,并在必要时对 数据随时查对。通过列表法可有助于找出 有关物理量之间的规律性,得出定量的结 论或经验公式等。列表法是工程技术人员 经常使用的一种方法。
1
5
0
2
6
1
5
9
4
再取平均值
L 1[(L L ) (L L ) (L L )] 1 4 (L L )
55
0
6
1
9
4
5 i0
5i
i
由此可见,与上面一般求平均值方法不同,这时每个数据
都用上了。但应注意,这里的 平均伸长量。
L 是增加五克砝码时弹簧的
伏安法测电阻,试用逐差法求出电 流I的最佳值并算出电阻R
I K1 I K (mA ) 2.04 1.91 2.08 1.99 1.94 2.01 2.01 2.06 2.02
I K 5 I K (mA) 9.96 9.93 10.03 10.01 10.04
可以利用这种分组法计算因变量 (I ) 的平均值
I 10.04 10.01 10.03 9.93 9.96 9.99mA 5
电阻(Rt)~ 温度(t)关系 (样品:铜)
次数 1
2
3
4
5
6
7
8
9
10
t(C) 5.0 10.0 15.0 20.0 25.0 30.3 35.0 40.0 45.0 50.0 Rt () 10.3 10.51 10.64 10.79 10.94 11.08 11.22 11.36 11.53 11.66
次数(K)
1
2
3
4
5
6
7
8
9
10
电压 V(V) 0
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
电流 I(mI) 0
2.04 3.95 6.03 8.02 9.96 11.97 13.98 16.04 18.06
I K1 I K (mA ) 2.04 1.91 2.08 1.99 1.94 2.01 2.01 2.06 2.02
定容气体压强~温度曲线
§2-3 作图法处理实验数 据
3.作图举例
直角坐标举例。测得铜电阻与温度对应的 一组数据如表所示,试用直角坐标作图表 示出电阻与温度的函数关系。
测量次数
1
2
3
4
5
6
7
8
9 10
铜电阻 Rt () 10.20 10.35 10.51 10.64 10.76 10.94 11.08 11.22 11.36 11.53
L L1 L2 L3 L9 9
(L1 L0 ) (L2 L1) (L3 L2 ) (L9 L8 ) 9
L9 L0 9
从上式可看出,中间的测量值全部低消了,只有始 末二次测量值起作用,与一次加九克砝码的测量完全 等价。
• 为了保证多次测量的优点,只要在数据处理方法上作一
由于有x=0的坐标点,故
b 10.20
最后,得到电阻随温度的变化关系为:
Rc 0.0314t 10.20()
2.用电势差计校准量程为1mV的毫伏 表,测量数据如下(表中单位均为mV)。 在如图所示的坐标中画出毫伏表的校准曲线, 并对毫伏表定级别。
毫伏表读数 电势差计读数 修正值△U
0.100 0.1050 0.005
列表时,一般应遵循下列规则 (1)简单明了,便于看出有关物理量之 间的关系,便于处理数据。 (2)在表格中均应标明物理量的名称和 单位。 (3)表格中数据要正确反映出有效数字。 (4)必要时应对某些项目加以说明,并 计算出平均值、标准误差和相对误差。
列表法
通过测量温度t和在温度t下铜的电阻Rt来 测量铜的电阻温度系数,得到t与Rt的数 据列表如下:
1
I 10
I1
②.若按顺序分为两组(1~5为一组,6~10为一组) 实行对应项相减,其结果如表:
次数(K)
1
2
3
4
5
6
7
8
9
10
电压 V(V) 0
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
电流 I(mI) 0
2.04 3.95 6.03 8.02 9.96 11.97 13.98 16.04 18.06
在图线下方或空白位
4.00
置写出图线的名称及某些
必要的说明。
2.00
0
至此一张图才算完成
B(7.00,18.58)
由图上A、B两点可得被测电阻R为: R UB U A 7.00 1.00 0.379(k)
IB I A 18.58 2.76 A(1.00,2.76)
U (V)
1.作图规则
②标明坐标轴和图名
1.作图规则
③标点
2.作图规则
④连线
●不当图例展示:
n
1.7000
1.6900
1.6800
1.6700 1.6600 1.6500
400.0
图1
曲线太粗,不 均匀,不光滑。
应该用直尺、曲 线板等工具把实 验点连成光滑、 均匀的细实线。
500.0
600.0
玻璃材料色散曲线图
0.200 0.2150 0.015