四年级奥数加法原理

合集下载

四年级奥数 加法原理

四年级奥数 加法原理

四年级奥数加法原理思维聚焦加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn 种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

一、典型例题从甲地到乙地可以乘火车,可以坐汽车,也可以坐轮船。

已知每天火车有两班,轮船有一班,汽车有四班,那么从甲地到乙地一共有多少种不同的走法?思路点拨从甲地到乙地,坐火车有2种走法,坐轮船有1种走法,坐汽车有4种走法。

所以,要求有多少种不同的走法,只要把这几种走法加起来就可以了。

解答2+1+4=3+4=7(种)答:从甲地到乙地一共有7种不同的走法。

二、触类旁通10个人参加会议,每两人握一次手,一共要握几次手?思路点拨假设第一个人是A,那么他必须要和另外9个人每人握一次手,也就是9次;第二个人是B,由于他与A已经握过手,所以他只要与其他8个人每人握一次手,是8次;第三个人C只要再与其他7个人握手,是7次;以此类推,以后每个人需要再握6次、5次……这样一共要握9+8+7+6+5+4+3+2+1=45(次)。

解答 9+8+7+6+5+4+3+2+1=45(次)答:一共要握45次手。

三、熟能生巧1、从A地到B地有2条路可以走,从B地到C地有3条路可以走,从A地到C地有4条路可以走。

请问如果从A地到达C地一共有几种走法?2、学校食堂的早餐有4种包子,3种粥,5种面条。

如果玲玲每次只吃其中一种作为自己的早餐,那么她一共有几种吃法?3、一列火车从北京到上海,中途停靠10个站。

这列火车一共要准备多少种不同的车票?4、用1元、2元、5元的纸币各一张,一共可以组成多少种不同的纸币值?5、小刚、小强和小明三个好朋友在公园照相,共有多少种不同的照法?6、两次掷骰子,两次出现的数字之和为偶数的情况有多少种?7、从3名男生、2名女生中选出三好学生3人,其中至少有一名女生,共有多少种不同的选法?。

小学四年级奥数课件:加法原理

小学四年级奥数课件:加法原理

例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?
一天中乘坐火车有4种走法,乘坐汽车有3种走 法,乘坐轮船有2种走法,所以一天中从甲地到乙 地共有:4+3+2=9(种)不同走法。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可下,可左可右,但最后仍要回到AB上(不一定 回到O点)。如果小虫爬行
的总长是3,那么小虫有多
少条不同的爬行路线?
பைடு நூலகம்
第一步往上,再往左右有两种可能(因为必须 回到AB线上), 分别是:(上1,左1,下1), (上1,右1,下1); 第一步往上,再往下也有两 种可能:(上1,下1,左1),(上1,下1,右1); 同理第一步往下也有4种可能;
例4: 用五种颜色给右图的五个区域染色,每个区
域染一种颜色,相邻的区域染不同的颜色。问: 共有多少种不同的染色方法?
在本例中没有一个区域与其它所有区域都相邻, 那么就要分颜色相同与不同两种情况分析。
当区域A与区域E颜色相同时,A有5种颜色可选; B有4种颜色可选;C有3种颜色可选;D也有3种颜色 可选。根据乘法原理,此时不同的染色方法有
再就是左右, 第一步往左,第二步分别上下各 一种:(左1,上1,下1),(左1,下1,上1); 第一步往左,第二步还往左右,则第三步也只能左 右,共4种;同理第一步往右也有6种情况。共有:

四年级奥数加减乘除中的巧妙规律总结与应用

四年级奥数加减乘除中的巧妙规律总结与应用

四年级奥数加减乘除中的巧妙规律总结与应用近年来,奥数竞赛在小学生中越来越受欢迎。

对于四年级的学生而言,加减乘除是基础的数学运算,然而,要在奥数中取得好的成绩,仅仅掌握基本的运算是远远不够的。

在本文中,我将总结四年级奥数加减乘除中的巧妙规律,并且探讨如何应用这些规律来解决问题。

一、加法的巧妙规律在四年级奥数中,加法的巧妙规律是一个重要的技巧。

以下是一些常见的加法规律:1. 交换律:加法满足交换律,即a + b = b + a。

这意味着,无论数字的顺序如何,结果都是一样的。

通过利用交换律,我们可以改变计算的顺序,使得计算更简单。

2. 连加:在计算多个数的和时,可以通过数的重新排序,使得计算变得更简单。

例如,对于数字1、2、3、4的求和,我们可以先计算1+4=5,然后再计算2+3=5,最后将两个和相加得到最终结果,即5+5=10。

3. 加零律:任何数加上0等于它本身。

这个规律在解决加法问题时非常有用。

无论多复杂的加法题目,只要有0参与运算,都可以利用加零律简化计算。

二、减法的巧妙规律减法是四年级奥数中较为复杂的运算之一,但是通过运用以下巧妙规律,可以极大地简化减法的计算:1. 差的加减律:减法可以转化为加法来解决。

例如,对于算式9 - 3,我们可以转化为求差的加减律,即9 + (-3)。

通过将减法问题转化为加法问题,可以更方便地计算。

2. 迭代减法:迭代减法是指重复使用减法的过程,逐渐逼近最终的差值。

例如,对于22 - 7,我们可以先减去7,得到15。

然后再减去7,得到8。

最后再减去7,得到1。

通过多次迭代减法,我们可以得到准确的差值。

3. 减零律:任何数减去0等于它本身。

这个规律在解决减法问题时非常有用。

无论多复杂的减法题目,只要有0参与运算,都可以利用减零律简化计算。

三、乘法的巧妙规律乘法是四年级奥数中相对较为简单的运算,但是通过以下巧妙规律,可以更快速地解决乘法问题:1. 乘法交换律:乘法满足交换律,即a * b = b * a。

小学四年级奥数教程加法原理

小学四年级奥数教程加法原理

例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
1+6+33=40〔种〕。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可回下到,O点可〕左。可如右果,小但虫最爬后行仍要回到AB上〔不一定 的总长是3,那么小虫有多 少条不同的爬行路线?
第一步往上,再往左右有两种可能〔因为必须
小学四年级奥数教程-加回法原到理 AB线上〕, 分别是:〔上1,左1,下1〕,
可以重复,至少有连续三位是1的五位数有多少个?
将至少有连续三位数是1的五位数分成三类:连
问:一天中乘坐这些交续通工五具从位甲地是到乙1地、,共连有多续少种四不同位走法是? 1、连续三位是1。
连续五位是1,只有11111一种; 再就是左右, 第一步往左,第二步分别上下各一种:〔左1,上1,下1〕,〔左1,下1,上1〕;
A可以是2,3,4中任一个,所以有3+3=6〔种〕; 如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 ……在第n类方法中有
m如n果种小不虫同爬方行法的,总那长么是完3成,这那件么任小连务虫共有续有多少三条不位同的是爬行1路,线?有111AB,A111C,BA111三种情
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?

4年级奥数第六讲:加法原理

4年级奥数第六讲:加法原理

一、加法原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.完成一件事,有n 类方法可以用。

在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N 类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。

二、乘法原理解题三部曲1、完成一件事分N 类方法;2、每类方法中找数量;3、类类相加。

三、加法原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.(2)在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.第六讲加法原理知识要点加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.【例 1】 王老师从重庆到南京,他可以乘飞机、汽车直接到达,也可以先到武汉,再由武汉到南京.他从重庆到武汉可乘船,也可乘火车;又从武汉到南京可以乘船、火车或者飞机,如图.那么王老师从重庆到南京有多少种不同走法呢?(2级)【例 2】 从益智中心到王明家有3条路可走,从王明家到张老师家有2条路可走,从益智中心到张老师家有3条路可走,那么从益智中心到张老师家共有多少种走法?(2级)【巩固】 如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?(2级)丁丙乙甲【例 3】 小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品11种,那么如果选两类(每类一件)不同的东西作为生日礼物,小宝买生日礼物可以有多少种不同的选法?例题精讲【例 4】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?(2级)【例 5】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?(4级)【例6】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?(6级)【例 7】如图,将1,2,3,4,5分别填入图中15的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.【走进美妙数学花园少年数学邀请赛】(6级)【例 8】从1到100的所有自然数中,不含有数字4的自然数有多少个? (6级)【例 9】直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?(6级)【巩固】直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?(4级)【例10】如图,从A点到B点的最近路线有多少条?(4级)BA【例 11】如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的A处沿最短的路线走到东北角B出,由于修路,十字路口C不能通过,那么共有____种不同走法.(6级)A【例 12】如图所示,从A点到B点,如果要求经过C点或D点的最近路线有多少条?(6级)【例13】如图1为一幅街道图,从A出发经过十字路口B,但不经过C,走到D的不同的最短路线有条.(8级)ArrayA【例 14】在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种?(6级)AB 【例 15】在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少条?(6级)CB A【例 16】(第三届“希望杯”2试试题)右图中的“我爱希望杯”有______种不同的读法.(6级)杯杯杯杯杯望望望望希希希爱爱我【例 17】图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?(8级)。

四上奥数3加法原理乘法原理

四上奥数3加法原理乘法原理

1.基本概念①加法原理:为了完成一件事,有几类方法。

第一类方法中有m种不同的方法,第二类方法中有m2种不同的方法... 第n类方法中有m n种不同的方法。

那么,完成这件事共有N=m+m i+…+m种不同的方法。

②乘法原理:为了完成一件事,需要几个步骤。

做第一步有m种不同的方法,做第二步有mi种不同的方法做第n步有m种不同的方法。

那么,完成这件事共有N=m x mt X — x m种不同的方法。

2.理解要点:①加法原理和乘法原理的本质区别:能否一步做完,一步骤为加法,多步骤为乘法②乘法原理为什么要用乘法去计算,和我们之前的搭配问题一样,本质是和的形式,也可以用树状图理解③要深刻站在题目的角度,寻找每一步骤拥有的方法种数,题目画出限制条件,全面考虑基础篇:1.每天从武汉到北京去,有6班火车,3班飞机,1班汽车。

请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同走法?2.学校开展“诵读经典”读书竞赛活动,小明要从4大名著、2本外国名著和3本科普书里任意选取一本书,共有多少种不同的选法?3.如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。

小华要从甲村经乙村、丙村去丁村,共有多少种不同的走法?4.如图,A B C是三个村庄,从A村到B村有2条路可走,从B村到C村有3条路可走,从A村到C村有4条路可走,从A村到C村共有多少种不同的走法?5.有四张卡片,上面分别写有0、1、2、4四个数字,从中任意抽出三张卡片组成三位数,这些卡片共可组成多少个不同的三位数?6.有五张卡片,卡片上写有数字1、2、3、4、5,从中任取两张卡片,摆放在一起,就可以组成一个两位数;请问:一共可以组成多少个不同的奇数?7.在实践活动课上,张老师发给每个学生一张简易地图(如图),地图上有A、B、C、D四个相邻的城市。

现从红、黄、蓝、绿四种颜料中选出若干种给地图涂色,要求相邻城市的颜色不同,有________ 种不同的涂色方法。

四年级下奥数第九讲加法原理(教师用)

四年级下奥数第九讲加法原理(教师用)

四年级下奥数第九讲加法原理(教师用)work Information Technology Company.2020YEAR同样,A拿C或D做的贺年片也有3种方法.一共有3+3+3=9(种)不同的方法.【例 9】(第六届走美试题)一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.【解析】第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛,若三场全胜,则只有一种出场方法;若胜两场,则又分为三种情况:二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;二,四两场胜,此时有三种情况;三,四两场胜,此时有七种情况;所以一共有113712+++=种方法.【例 10】(难度等级※※)把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.【例 11】【解析】把一元钱换成角币,有三类分法:①第一类:有五角币2张,只有1种换法:②第二类:有五角币1张,则此时二角币可以有0,1,2张,相应的,一角币有5,3,1张,有3种换法;③第三类:有五角币0张,则此时二角币可以有0,1,2,3,4,5张,相应的,一角币有10,8,6,4,2,0张,有6种换法.所以,根据加法原理,总共的换法有13610++=种.【巩固】(难度等级※※)一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?【巩固】【解析】按5分硬币的个数对硬币情况进行分类:如果5分硬币有奇数个,那么无论2分硬币有多少个都不能凑成100分.如表当5分硬币的个数为0~20的偶数时,都有对应个数的2分硬币.所以一共有11种不同的情况.类别1 2 3 4 5 6 7 8 9 1115分0 2 4 6 8 10 1214161822分50 4543532521515 0【例 12】(难度等级※※※)用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?的迎春数一共有多少个?的:234~的:345~2、树形图法、标数法及简单的递推一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 25】 (难度等级 ※※※)A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种(【例 26】 2005年《小数报》数学邀请赛) 【解析】 如图,A 第一次传给B ,到第五次传回A 有5种不同方式. 同理,A 第一次传给C ,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.C B CC B AAB A B CCBA【巩固】 (难度等级 ※※※)一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?【巩固】 【解析】 6种,如图,第1步跳到B ,4步回到A 有3种方法;同样第1步到C 的也有3种方法.根据加法原理,共有336+=种方法.AA A BCAB C BA【例 27】 (难度等级 ※※※)甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况? 【例 28】 【解析】 如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一共有 7+7=14(种)可能的情况.11。

小学四年级数学奥数《加法原理》优秀练习题及答案

小学四年级数学奥数《加法原理》优秀练习题及答案

小学四年级数学奥数《加法原理》优秀练习题及答案
小学四年级数学奥数《加法原理》优秀练习题及
答案
1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
2.难度:★★★★
从1到100的所有自然数中,不含有数字4的自然数有多少个?
1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
【解答】6×4=24种
6×2=12种
4×2=8种
24+12+8=44种
【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。

当从国画、油画各选一幅有多少种选法时,利用的乘法原理。

由此可知这是一道利用两个原理的综合题。

关键是正确把握原理。

符合要求的选法可分三类:
设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。

由乘法原理有6×4=24种选法。

所以一共有8+8×9+1=81 个不含4的自然数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、加法原理概念引入
生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.
例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?
分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.
在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.
二、加法原理的定义
一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.
加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.
分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:
① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.
只有满足这两条基本原则,才可以保证分类计数原理计算正确.
运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.
三、加法原理解题三部曲
1、完成一件事分N 类;
2、每类找种数(每类的一种情况必须是能完成该件事);
加法原理 发现不同
知识框架
3、类类相加
加法原理
分类讨论中加法原理的应用
树形图法、标数法及简单的递推树形图法标数法简单递推
模块一、分类讨论中加法原理的应用(枚举法)
【例 1】柯南去给步美买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,柯南买一种礼物可以有多少种不同的选法?
【例 2】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?
【巩固】从1~50中每次取两个不同的数相加,和大于50的共有多少种取法?
【例 3】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少例题精讲
种不同的订法?
【巩固】光彦和元太共有《爆笑校园》不超过9本,他们各自有《爆笑校园》的数目有多少种可能的情况?【例 4】把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.
【巩固】一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?
【例 5】袋中有3个相同红球,4个相同黄球和5个相同白球,家明从中任意拿出6个球,他拿出球的情况共有________种可能.
【巩固】思思想将3个相同的小球放入A、B、C三个盒中,那么一共有________种不同的放法.
【例 6】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?
【巩固】甲、乙、丙、丁4名同学排成一行。

从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?
【例 7】1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积?
【巩固】苹果、梨子和香蕉三人去公园玩,想拍一张照片留念,他们只拍了一张照片(人相同,位置不同为一张,可拍单人照),请问他们共有多少种不同的照法?
【例 8】妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?
【巩固】明明带8元钱去商店买冰激凌。

有三种冰激凌,售价分别是5元一支、2元一支和1元一支。

如果这8元钱全部用于买这三种冰激凌,共有多少种不同的买法?
【例 9】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于26的数共有多少个?
【巩固】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于24的数共有多少个?
模块二、树形图法和标数法
一、树形图法
“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.
【例 10】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种?
【巩固】一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?
【巩固】 一个学生假期往A 、B 、C 三个城市游览.他今天在这个城市,明天就到另一个城市.假如他第
一天在A 市,第五天又回到A 市.问他的游览路线共有几种不同的方案?
二、标数法
适用于最短路线问题,需要一步一步标出所有相关点的线路数量,最终得到到达终点的方法总数.标数法是加法原理与递推思想的结合.
【例 11】 如图所示,沿线段从A 到B 有多少条最短路线?
G F
E
D
C B A
G F
E
D C B A
【巩固】 如图,从A 点到B 点的最近路线有多少条?
B A
B
A
【例 12】 如图为一幅街道图,从A 出发经过十字路口B ,但不经过C 走到D 的不同的最短路线有 条.
A
C
B
D
A
C
B D
【巩固】 小王在一年中去少年宫学习56次,如图所示,小王家在P 点,他去少年宫都是走最近的路,且
每次去时所走的路线正好互不相同,那么少年宫在________点处.
人工湖
超市P
E D
C
B A
人工湖
超市P
E D
C
B A 【例 13】 在下图的街道示意图中,
C 处因施工不能通行,从A 到B 的最短路线有多少条?
C
B
A
C
B
A
【巩固】 在下图的街道示意图中,C 处因施工不能通行,从A 到B 的最短路线有多少种?
C B A
C
B A
【例 14】 如图,沿着“北京欢迎你”的顺序走(要求只能沿着水平或竖直方向走),一共有多少种不同的
走法?
北北京北北京欢京北欢迎欢你 北
北京北
北京欢京北欢迎欢

【巩固】 右图中的“我爱希望杯”有______种不同的读法.

杯杯杯杯
望望望望希
希希爱爱我

杯杯杯杯
望望望望希
希希爱爱我
【随练1】 一个自然数各位上的数字之和是 5(例如:13 的数字和为 1+3=4,7 的数字之和为 7),而
且各位数字都不相同。

这样的自然数有( )个.
【随练2】 有30枚二分硬币和8枚五分硬币,用这些硬币不能构成1分到1元之间(含1分和1元)的币
值的种数是多少?
课堂检测
【随练3】把1、2、3、4、5、6、7、8这八个数分成两组(每组4个数),使得这两组数的和相等,这样不同的分法共有多少种?
【随练4】一本书从第一页直至最后一页的页码中共用了2010个数字,那么这本书有个三位数页码?
【随练5】一次数学课堂练习有3 道题,老师先写出一道,然后每隔5 分钟再写出一道,规定:
①每个学生在老师写出一道新题时如果原有题还没有完成,必须立即停下来转做新题;
②完成一道题时,如果老师没有写出新题,就转做前面相邻未做完的题
那么,做完这三道题的不同顺序共有_______种可能.
【随练6】有些数如33、232、5775、36763……从左到右读与从右往左读是一样的,我们把这些数叫做对称数,在三位数中共有个对称数?
【随练7】将长为17的木棒截成长度为整数的三段,使他们构成一个三角形的三边。

不同的截法对应了不同的三角形,(相同的截法,截成的三段不管怎样摆,所构成的三角形都算作同一种三角形),
那么所得到不同三角形的个数有()个?
A.8 B.7 C.6 D.5 E.4
【随练8】如图,在正六边形ABCDEF中,一只青蛙从A点开始跳,它每次可以跳到相邻两个顶点中的一个上,青蛙在5次之内(含5次)跳到C点不同跳法有()种.
A.5
B. 6
C.7
D.8
E.9
【随练9】把五个相同的球放到三个不同的盒子里(有的盒子可以不放),请问有多少方法?
家庭作业
【作业1】五顶不同的帽子,两件不同的上衣,三条不同的裤子.从中取出一顶帽子、一件上衣、一条裤子配成一套装束.问:有多少种不同的装束?
【作业2】有数字1、2、3可以组成多少个数?(每个数字最多只能用一次)
【作业3】在图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?
【作业4】在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列.问:共有多少种不同的放法?
【作业5】“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?
【作业6】12个人围成一圈,从中选出3个人,其中恰有两个人相邻,共有种不同的选法。

【作业7】在三位数中,各位数字之和是5的三位数有多少个?
【作业8】在所有的两位数中,十位数字比个位数字大的两位数有多少个?。

相关文档
最新文档