超级难72道数学奥数逻辑题
奥数逻辑思维训练题

奥数逻辑思维训练题在奥数竞赛中,逻辑思维是非常重要的一项能力。
通过培养逻辑思维能力,孩子们可以在解决问题时更加灵活和准确。
下面,我们将介绍一些奥数逻辑思维训练题,帮助孩子们提高他们的逻辑思维能力。
1. 求解方程问题:已知一个方程式:2(x+3) - 3(2x-5) = 4(3x+2) + 5(x-1),求解x的值。
解析:首先,我们将方程式展开并进行合并和整理,化简后得到:2x + 6 - 6x + 15 = 12x + 8 + 5x - 5。
继续合并和整理,得到:-4x + 21 = 17x + 3。
然后,我们移项得到:4x + 17x = 21 - 3,即21x = 18。
最后,解出x的值:x = 18/21 = 6/7。
2. 排列组合问题问题:有10个球,其中5个红色球,3个蓝色球和2个黄色球。
从中任意取出3个球,求取出的3个球中至少有一个红色球的概率。
解析:首先,计算取出3个球中没有红色球的情况。
这可以通过从5个红色球中取0个球,从3个蓝色球中取3个球和从2个黄色球中取0个球来实现,即C(5,0) * C(3,3) * C(2,0) = 1 * 1 * 1 = 1。
然后,计算取出3个球的总情况。
这可以通过从10个球中取3个球来实现,即C(10,3) = 120。
因此,取出3个球中至少有一个红色球的概率为1 - 1/120 = 119/120。
3. 数列问题问题:有一个等差数列,首项为2,公差为3,求前10项的和。
解析:等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
根据题目中的条件,我们可以得到an = 2 + (n-1)3。
首先,计算前10项的和。
根据等差数列的求和公式Sn = (a1 + an)n/2,我们可以得到S10 = (2 + (2 + (10-1)3)) * 10/2 = 55 * 10/2 = 275。
4. 几何问题问题:已知一个正方形的边长为a,求正方形的对角线长度。
奥数推理题及答案

奥数推理题及答案
奥数推理题是一种旨在培养学生逻辑思维和解决问题能力的数学题目。
这类题目通常需要学生运用数学知识,结合逻辑推理来解答。
下面是
一个奥数推理题及其答案的示例:
题目:
一个班级有40名学生,他们决定参加一个数学竞赛。
竞赛规定,每个
学生可以选择参加一个、两个或者不参加任何竞赛项目。
如果班级中
至少有一半的学生参加至少两个项目,那么班级中至少有多少名学生
参加了至少两个项目?
解答:
首先,我们假设班级中有一半的学生,也就是20名学生,参加了至少
两个项目。
这意味着这20名学生至少参加了40个项目(因为每个人
至少参加两个项目)。
现在,我们来看剩下的20名学生。
如果这20名学生中有任何一个学
生参加了两个项目,那么总的参与项目数就会超过40个,这与题目中“每个学生可以选择参加一个、两个或者不参加任何竞赛项目”的条
件相矛盾。
因此,这20名学生中没有人参加了两个项目。
既然这20名学生中没有人参加了两个项目,那么他们要么参加了一个
项目,要么没有参加任何项目。
这意味着,如果班级中有一半的学生
参加了至少两个项目,那么至少有20名学生参加了至少两个项目。
答案:
班级中至少有20名学生参加了至少两个项目。
请注意,这个题目和解答只是一个示例,实际的奥数推理题可能会更加复杂,需要更多的数学知识和逻辑推理能力来解答。
数学逻辑推理题目

20 道数学逻辑推理题目一、数字推理题1. 找规律填数字:2,4,6,8,()。
-答案:10。
规律是后一个数比前一个数大2。
2. 1,3,7,15,()。
-答案:31。
规律是后一个数比前一个数依次多2、4、8、16。
3. 2,5,11,23,()。
-答案:47。
规律是后一个数比前一个数依次多3、6、12、24。
4. 3,6,9,12,()。
-答案:15。
规律是后一个数比前一个数大3。
5. 4,8,16,32,()。
-答案:64。
规律是后一个数是前一个数的2 倍。
二、图形推理题1. 观察图形:○△□,△□○,□○△,下一个图形是什么?-答案:○△□。
规律是三个图形依次循环。
2. 有一组图形,第一个是正方形,第二个是圆形,第三个是三角形,第四个是正方形,第五个是圆形,那么第六个图形是什么?-答案:三角形。
规律是正方形、圆形、三角形依次循环。
3. 观察图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。
规律是△后面的△依次增加一个。
4. 一组图形为:△○□,□△○,○□△,下一组图形是什么?-答案:△○□。
规律是三个图形依次循环换位。
5. 图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。
规律是△后面的△依次增加一个。
三、逻辑推理题1. 小明、小红、小刚三人中,一人是医生,一人是教师,一人是警察。
已知小明不是医生,小红不是教师,小刚不是警察。
那么小明是(),小红是(),小刚是()。
-答案:教师、警察、医生。
通过排除法推理得出。
2. 桌子上有三个盒子,一个盒子里装着糖,一个盒子里装着饼干,一个盒子里装着糖和饼干。
三个盒子上分别贴着标签:A 盒“糖”,B 盒“饼干”,C 盒“糖和饼干”。
但标签都贴错了。
现在从一个盒子里取出一个物品,如果是糖,那么这个盒子里实际装着什么?-答案:糖和饼干。
因为标签都贴错了,如果从贴着“糖”标签的盒子里取出糖,那么这个盒子实际装着糖和饼干。
3. 甲、乙、丙三人参加跑步比赛,甲说:“我不是第一名。
小学二年级奥数-逻辑推理题

小学二年级奥数-逻辑推理题1、某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍。
照这样计算,每天的利润比原来增加几元?2、甲、乙两列火车的速度比是5:4。
乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A、B 两站距离的比是3:4,那么A、B两站之间的距离为多少千米?3、大、小猴子共35只,它们一起去采摘水蜜桃。
猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克。
猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克。
一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃。
在这个猴群中,共有小猴子几只?4、某次数学竞赛设一、二等奖。
已知,(1)甲、乙两校获奖的人数比为6:5,(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%,(3)甲、乙两校获二等奖的人数之比为5:6。
问甲校获二等奖的人数占该校获奖总人数的百分数是几?5、已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5。
已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?6、加工一批零件,原计划每天加工15个,若干天可以完成。
当完成加工任务的3/5时,采用新技术,效率提高20%。
结果完成任务的时间提前10天,这批零件共有几个?7、甲、乙二人在400米的圆形跑道上进行10000米比赛。
两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米。
这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点。
那么领先者到达终点时,另一人距离终点多少米?8、小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?9、加工一批零件,原计划每天加工30个。
高中奥数推理题及答案

高中奥数推理题及答案在高中奥数竞赛中,推理题是一类常见的题型,它要求参赛者运用逻辑推理能力来解决问题。
以下是一些典型的高中奥数推理题及其答案:题目1:有5个盒子,分别标记为A、B、C、D和E。
每个盒子里都装有不同数量的球,但盒子外的标签都贴错了。
现在需要找出每个盒子里实际装有多少个球。
解答:首先,假设A盒子的标签是正确的,那么A盒子里应该有1个球。
但因为标签都贴错了,所以A盒子里不可能有1个球。
同理,其他盒子也不能有1个球。
因此,我们可以推断出每个盒子里至少有2个球。
接下来,我们考虑B盒子。
如果B盒子里有2个球,那么B盒子的标签应该是C,因为C盒子的标签是B,而C盒子里不可能有1个球。
这样,C盒子里应该有3个球。
但是,如果C盒子里有3个球,那么D盒子的标签应该是E,而E盒子的标签是D,这意味着D盒子里应该有5个球。
然而,这与我们的假设冲突,因为D盒子的标签是B,而不是E。
因此,B盒子里应该有3个球,C盒子里应该有2个球。
现在,我们可以确定D盒子里有4个球,因为E盒子的标签是D,而D盒子的标签是E。
最后,A盒子里有5个球,E盒子里有1个球。
题目2:在一个班级中,有3个学生:Alice、Bob和Charlie。
老师问他们每个人是否带了作业。
Alice说:“我没有带作业。
”Bob说:“Charlie带了作业。
”Charlie说:“Bob没有带作业。
”老师知道他们中有一个人说了真话,另外两个人说了假话。
请问谁带了作业?解答:如果Alice说了真话,那么Bob和Charlie都在说谎。
但Bob说Charlie带了作业,Charlie说Bob没有带作业,这与Alice说真话的情况矛盾。
如果Bob说了真话,那么Alice和Charlie都在说谎。
这意味着Alice 带了作业,Charlie没有带作业,这与Bob说Charlie带了作业的真话相矛盾。
因此,只能是Charlie说了真话,Bob和Alice都在说谎。
小学奥数逻辑训练100题

小学奥数逻辑训练100题
以下是一份小学奥数逻辑训练的100道题目。
这些题目涵盖了不同的逻辑思维和问题解决技巧,旨在帮助学生培养数学思维和解决问题的能力。
请注意,为了保持题目的原汁原味,我们只提供题目,不附带答案。
这样可以帮助学生独立思考和寻找解决问题的方法。
题目一
某堆石头中有12块不同重量的石头,其中11块的重量相同,只有1块比其他的重。
请问最少需要称多少次,才能找出那块重量不同的石头?
题目二
有6个小动物洞,分别住着兔子、狗、猫、鸟、老鼠和乌龟。
每个洞口都写着正确的动物名称,但是所有的洞口标签都放错了。
请问最少需要几次试错,才能找出每个动物所在的洞?
题目三
李华手里有3个篮子,其中2个里面都是苹果,1个里面装着
橙子。
但是,这3个篮子标签都被撕掉了。
请问李华最少需要从篮
子里取出几个水果,才能准确知道每个篮子里都装了什么水果?
......
(继续写入题目,直到100道题目为止)
通过完成这些题目,学生可以锻炼数学思维和解决问题的能力。
同时,逻辑训练也能培养学生的观察力和推理能力,在日常生活中
也能受益匪浅。
希望这份逻辑训练题目对小学生的数学学习有所帮助!。
奥数逻辑思维训练500题

奥数逻辑思维训练500题1.小学生奥数逻辑推理练习题1.有五个人各说了一句话。
第一个人说:“我们中间每个人都说谎”。
第二个人说:“我们中间只有一个人说谎”。
第三个人说:“我们中间有两个人说谎”。
第四个人说:“我们中间有三个人说谎”。
第五个人说:“我们中间有四个人说谎”。
请问,他们谁说谎话,谁说真话?2.某地质学院的三名学生对一种矿石进行分析。
甲判断:不是铁,不是铜。
乙判断:不是铁,不是锡。
丙判断:不是锡,而是铁。
经化验证明,有一个人判断完全正确,有一个人只说对了一半,而另一个则完全说错了。
你知道三人中谁是对的,谁是错的,谁是只对了一半的吗?2.小学生奥数逻辑推理练习题1.五个旅游者在海滨交谈。
甲:“我从A城来,乙A城来,丙从B城来”。
乙:“我从C城来,戊从C城来,丙从B城来”。
丙:“我不从B城来,甲不从D城来,丁从E城来”。
丁:“我父亲从A城来,我母亲从D城来,我从F城来”。
戊:“甲从A城来,乙从A城来,我从F城来”。
如果他们每人都说了两句真话,一句假话,你能判断每一个人各来自哪个城市吗?2.在一次有3人参加的讲话中,小张指责小王和小李:“你们都在说谎。
”小李却说:“小张正在说谎。
”小王则说:“小李正在说谎。
”试判断他们谁讲的是真话,谁讲的是假话?前八名,老师让他们猜一下谁是第一名。
A:“或者F是第一名,或者H是第一名。
”B:“我是第一名。
”C:“G是第一名。
”D:“B不是第一名。
”E:“A说的不对。
”F:“我不是第一名,H也不是第一名”。
G:“C不是第一名。
”H:“我同意A的意见。
”老师指出,八人中有三人猜对了,那么谁是第一名?3.小学生奥数逻辑推理练习题1.A、B、C、D、E、F六年足球队进行比赛,每队都已赛过三场。
(1)A队三战得6分;(2)B队三战都负;(3)C队三战三平;(4)D、F两队进行过一场比赛,D队的三场比赛积分为1分。
比赛中凡是胜一场的。
都得了2分,平局的都得1分,负一场得0分。
125道烧脑的逻辑题

125道烧脑的逻辑题1. 如果一个小狗有三个尾巴,你会认为这只小狗是什么品种?2. 有两个人同时从同一地点出发,一个向北走,一个向南走,他们会在哪里相遇?3. 如果一个鸡蛋从10米高的楼上掉下来,砸到了水泥地面,为什么不会碎?4. 一辆汽车以每小时60公里的速度行驶,需要2小时才能到达目的地,请问这辆汽车需要多长时间才能以每小时80公里的速度到达同样的目的地?5. 有四个人要过一座桥,每个人只能一次过桥,桥上最多只能有两个人,他们只有一个手电筒,过桥的速度不同,其中两个人过桥需要1分钟,一个人过桥需要2分钟,最快需要多少时间才能全部过桥?6. 有三个开关,分别控制三个房间里的灯,但你不知道哪个开关控制哪个房间的灯,只能进入每个房间一次,你如何确定每个开关对应的房间?7. 有一只船,船上有五个人,但船上只有四个救生圈,如何确保每个人都能得到救生圈?8. 有一个罐子里装满了水,你只有两个空杯子,一个容量为3升,一个容量为5升,如何用这两个杯子准确地量出4升的水?9. 有三个袋子,一个只装红苹果,一个只装绿苹果,一个装有红绿苹果各一半,但标签都贴错了,你只能从一个袋子里摸一个苹果,如何才能正确标记出每个袋子的内容?10. 一个房间里有三个开关,分别控制三个不同的灯,但你在房间外无法看到灯的状态,只能进入房间一次,如何确定每个开关对应的灯?11. 有一辆卡车,车顶上有一个桥,桥的高度为3米,卡车的高度为2.8米,卡车能通过桥吗?12. 有四个不同颜色的手套(红、蓝、绿、黄),在黑暗中,你无法分辨颜色,只能摸出两只手套,如何确保你摸到一双颜色相同的手套?13. 有一条河,河上有一只小船,船上有一只狼、一只羊和一篮子菜,小船只能承载你和另一样东西,但你不能将狼和羊单独留在一起,也不能将羊和菜单独留在一起,你如何将它们全部安全地运送到对岸?14. 有一根长绳子,燃烧这根绳子需要60分钟,但绳子不均匀,不同位置的部分燃烧时间可能不同,如何用这根绳子计时45分钟?15. 有一个三角形的房间,房间的三个角分别是90度、90度和60度,这个房间的墙壁是什么形状?16. 有一个黑暗的房间,房间里有一台电视和一张椅子,没有窗户,没有光源,你如何打开电视?17. 有一个袋子里有一些红球和蓝球,你不能看到袋子里的球的颜色,只能摸出一个球,如何确保你摸到的是红球?18. 有一面墙上有三个开关,但你不知道每个开关控制的是哪个灯,你只有一次机会进入房间,如何确定每个开关对应的灯?19. 有一个数字锁,密码是四位数,每次只能尝试一次,如果你有足够的时间,最少需要尝试多少次才能打开锁?20. 有三个盒子,一个盒子里装有两个红球,一个盒子里装有两个蓝球,一个盒子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个盒子里摸一个球,如何才能正确标记出每个盒子的内容?21. 有一个房间里有三个袋子,一个袋子里装有三个红球,一个袋子里装有三个蓝球,一个袋子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个袋子里摸一个球,如何才能正确标记出每个袋子的内容?22. 有一个杯子里装有一些酒,你只能用一个空杯子和一个有酒的杯子来平分酒,如何确保每个杯子都平分到相同的酒量?23. 有一条河,河上有一只小船,船上有一只狼和一只羊,你只能将一样东西带到对岸,但你不能将狼和羊单独留在一起,你如何将它们全部安全地运送到对岸?24. 有一间房间里有三个开关,但你在房间外无法看到灯的状态,只能进入房间一次,如何确定每个开关对应的灯?25. 有一个杯子里装满了水,你只有一个空杯子,如何用这个空杯子将水平分成两份,每份水的量相等?26. 有一个三角形的房间,房间的三个角分别是60度、60度和60度,这个房间的墙壁是什么形状?27. 有一个黑暗的房间,房间里有一台电视和一张椅子,没有窗户,没有光源,你如何打开电视?28. 有一个袋子里有一些红球和蓝球,你不能看到袋子里的球的颜色,只能摸出一个球,如何确保你摸到的是红球?29. 有一面墙上有三个开关,但你不知道每个开关控制的是哪个灯,你只有一次机会进入房间,如何确定每个开关对应的灯?30. 有一个数字锁,密码是四位数,每次只能尝试一次,如果你有足够的时间,最少需要尝试多少次才能打开锁?31. 有三个盒子,一个盒子里装有两个红球,一个盒子里装有两个蓝球,一个盒子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个盒子里摸一个球,如何才能正确标记出每个盒子的内容?32. 有一个房间里有三个袋子,一个袋子里装有三个红球,一个袋子里装有三个蓝球,一个袋子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个袋子里摸一个球,如何才能正确标记出每个袋子的内容?33. 有一个杯子里装有一些酒,你只能用一个空杯子和一个有酒的杯子来平分酒,如何确保每个杯子都平分到相同的酒量?34. 有一条河,河上有一只小船,船上有一只狼和一只羊,你只能将一样东西带到对岸,但你不能将狼和羊单独留在一起,你如何将它们全部安全地运送到对岸?35. 有一间房间里有三个开关,但你在房间外无法看到灯的状态,只能进入房间一次,如何确定每个开关对应的灯?36. 有一个杯子里装满了水,你只有一个空杯子,如何用这个空杯子将水平分成两份,每份水的量相等?37. 有一个三角形的房间,房间的三个角分别是60度、60度和60度,这个房间的墙壁是什么形状?38. 有一个黑暗的房间,房间里有一台电视和一张椅子,没有窗户,没有光源,你如何打开电视?39. 有一个袋子里有一些红球和蓝球,你不能看到袋子里的球的颜色,只能摸出一个球,如何确保你摸到的是红球?40. 有一面墙上有三个开关,但你不知道每个开关控制的是哪个灯,你只有一次机会进入房间,如何确定每个开关对应的灯?41. 有一个数字锁,密码是四位数,每次只能尝试一次,如果你有足够的时间,最少需要尝试多少次才能打开锁?42. 有三个盒子,一个盒子里装有两个红球,一个盒子里装有两个蓝球,一个盒子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个盒子里摸一个球,如何才能正确标记出每个盒子的内容?43. 有一个房间里有三个袋子,一个袋子里装有三个红球,一个袋子里装有三个蓝球,一个袋子里装有一个红球和一个蓝球,但标签都贴错了,你只能从一个袋子里摸一个球,如何才能正确标记出每个袋子的内容?44. 有一个杯子里装有一些酒,你只能用一个空杯子和一个有酒的杯子来平分酒,如何确保每个杯子都平分到相同的酒量?45. 有一条河,河上有一只小船,船上有一只狼和一只羊,你只能将一样东西带到对岸,但你不能将狼和羊单独留在一起,你如何将它们全部安全地运送到对岸?46. 有一间房间里有三个开关,但你在房间外无法看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1】假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为5升和6升。
问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】周雯的妈妈是豫林水泥厂的化验员。
一天,周雯来到化验室做作业。
做完后想出去玩。
"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。
你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。
请你想想看,"小机灵"是怎样做的?设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。
小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。
由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。
然后这样循环,直到他们只剩下一个人。
那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林没死的情况下必打林,否则自己必死。
小李经过计算比较(过程略),会决定自己先打小林。
于是经计算,小李有873/2600≈33.6%的生机;小黄有109/260≈41.9%的生机;小林有24.5%的生机。
哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!最后李,黄,林存活率约38:27:35;菜鸟活下来抱得美人归的几率大。
李先放一空枪(如果合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己肯定先玩完了)林会选黄打一枪(毕竟它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性成功率0.73李和黄打林李黄对决0.3:0.40.7*0.4可能性李林对决0.3:0.7*0.6*0.70.7*0.6可能性成功率0.64【4】一间囚房里关押着两个犯人。
每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。
起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。
后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。
于是争端就这么解决了。
可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。
必须寻找一个新的方法来维持他们之间的和平。
该怎么办呢?按:心理问题,不是逻辑问题是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。
这样乙和丙两人的总和肯定是他们两人可拿到的最大。
然后将他们两人的汤混合之后再按两人的方法再次分汤。
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。
这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。
请证明整个桌面可以用4n个硬币完全覆盖。
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。
也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n 个半径为2的硬币覆盖。
把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。
那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙【7】五个大小相同的一元人民币硬币。
要求两两相接触,应该怎么摆?底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。
【8】猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。
约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。
这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。
Q 先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?方块5【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。
请问您能猜出另外两个人的数吗?经过第一轮,说明任何两个数都是不同的。
第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。
现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。
每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。
假设:是两个数之差,即x-y=144。
这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。
因此是两数之和,即x+y=144。
同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。
这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。
这样子这句话看不懂的举手):假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。
(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C 在第一回合就可以报出自己的72。
现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。
现在B在第二回合没报出自己的108,C 就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
【10】某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?15%*80%/(85%×20%+15%*80%)【11】有一人有240公斤水,他想运往干旱地区赚钱。
他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。
假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?f(x)=(60-2x)*x,当x=15时,有最大值450。
450×4【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。
其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。
问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)6种结果【13】1=5,2=15,3=215,4=2145那么5=?因为1=5,所以5=1.【14】有2n个人排队进电影院,票价是50美分。
在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。
愚蠢的电影院开始卖票时1分钱也没有。
问:有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱注:1美元=100美分拥有1美元的人,拥有的是纸币,没法破成2个50美分本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:排队的种数=(2n)!/[n!(n+1)!]。
如果不考虑电影院能否找钱,那么一共有(2n)!/[n!n!]种排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,如果他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!/[(n-1)!(n+1)!](从2n个人中取出n-1个人的组合数)种,所以合格的排队种数就是(2n)!/[n!n!]- (2n)!/[(n-1)!(n+1)!]=(2n)!/[n!(n+1)!]。
至于为什么不合格数是(2n)!/[(n-1)!(n+1)!],说起来太复杂,这里就不讲了。
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。
问他赚了多少?2元【16】有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第二,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。
最后A得22分,B与C均得9分,B在百米赛中取得第一。
求M的值,并问在跳高中谁得第二名。
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即M=5.A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得这个第二.B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.【17】前提:1有五栋五种颜色的房子2每一位房子的主人国籍都不同3这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物4没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料提示:1英国人住在红房子里2瑞典人养了一条狗3丹麦人喝茶4绿房子在白房子左边5绿房子主人喝咖啡6抽PALLMALL烟的人养了一只鸟7黄房子主人抽DUNHILL烟8住在中间那间房子的人喝牛奶9挪威人住第一间房子10抽混合烟的人住在养猫人的旁边11养马人住在抽DUNHILL烟的人旁边12抽BLUEMASTER烟的人喝啤酒13德国人抽PRINCE烟14挪威人住在蓝房子旁边15抽混合烟的人的邻居喝矿泉水问题是:谁养鱼第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫;! f/ [% a: \6 L! J. Q9 x第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马;+ o8 _0 S) L8 i' E' u第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟;/ N9 o/ n2 M# U" c第四间是绿房子,德国人住,喝咖啡,抽PRINCE 烟,养猫、马、鸟、狗以外的宠物;7 P5 l) G, G, |; C, {7 V第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。