2018届静安区高三二模数学Word版(附解析)

合集下载

2018年上海市静安区高考数学模拟试卷

2018年上海市静安区高考数学模拟试卷

2018年上海市静安区高考数学模拟试卷一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a=.2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=.3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是.4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.(5分)已知α为锐角,且,则sinα=.7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是.8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为.9.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g (x)≤0,则的最小值为.10.(5分)如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:①f()=;②任意x∈[0,],都有f(﹣x)+f(+x)=4;③任意x1,x2∈(,π),且x1≠x2,都有<0.其中所有正确结论的序号是.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(5分)已知等比数列{a n}前n项和为S n,则下列一定成立的是()A.若a3>0,则a2015<0 B.若a4>0,则a2014<0C.若a3>0,则S2015>0 D.若a4>0,则S2014>013.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.215.(5分)对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e ∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”: ①A=R ,运算“⊕”为普通减法;②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法; ③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集. 其中对运算“⊕”有单位元素的集合序号为( ) A .①② B .①③C .①②③D .②③三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,长为π,长为,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.17.(14分)设双曲线C :,F 1,F 2为其左右两个焦点.(1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求的取值范围;(2)若动点P 与双曲线C 的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为,求动点P 的轨迹方程.18.(20分)如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数y=Asin (ωx +φ)(A >0,ω>0,φ∈(0,π)),x ∈[﹣4,0]的图象,图象的最高点为B (﹣1,2).边界的中间部分为长1千米的直线段CD ,且CD ∥EF .游乐场的后一部分边界是以O 为圆心的一段圆弧.(1)求曲线段FGBC 的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF 上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.20.(20分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m.换句话说,b m是数列{a n}中满足不等式a n ≤m的所有项的项数的最大值.我们称数列{b n}为数列{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(2)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前100之和;(3)若数列{a n}的前n项和S n=n+c(其中c常数),试求数列{a n}的伴随数列{b n}前m项和T m.2018年上海市静安区高考数学模拟试卷参考答案与试题解析一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a=4.【解答】解:∵==为纯虚数,∴,解得a=4.故答案为:4.2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=﹣2.【解答】解:f(x)为R上的奇函数,则f(﹣x)=﹣f(x),即有f(0)=0,f(﹣2)=﹣f(2),当x<0时,f(x)=log2(2﹣x),f(﹣2)=log2(2+2)=2,则f(0)+f(2)=0﹣2=﹣2.故答案为:﹣2.3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是.【解答】解:正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,设球的半径为1,所以底面三角形的边长为a,,a=该正三棱锥的体积:故答案为:4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是1.【解答】解:在菱形ABCD中,AB=1,∠BAD=60°,=+,∴==1×1×cos60°+×12=1.故答案为:1.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.(5分)已知α为锐角,且,则sinα=.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是(﹣∞,﹣2)∪(2,+∞).【解答】解:根据题意:①对任意的x∈R,都有f(x)≤f(x0)成立由于:x0∈(﹣1,1)所以:对f(x)≤f(x0)成立,只需满足f(x)≤f(x0)min即可.由于f(x)=sin(πx),所以:由于②x02+[f(x0)]2<m所以当,且求出:m2>4进一步求出:m>2或m<﹣2故答案为:(﹣∞,﹣2)∪(2,+∞).8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为(﹣∞,5] .【解答】解:不等式x2<|x﹣1|+a等价于x2﹣|x﹣1|﹣a<0,设f(x)=x2﹣|x﹣1|﹣a,若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则,求得a≤5,故答案为:(﹣∞,5].9.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g (x)≤0,则的最小值为4.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当a=,b=2时取等号.故的最小值为4.故答案为:4.10.(5分)如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记∠AOP 为x (x ∈[0,π]),OP 所经过正方形ABCD 内的区域(阴影部分)的面积S=f (x ),那么对于函数f (x )有以下三个结论:①f ()=;②任意x ∈[0,],都有f (﹣x )+f (+x )=4;③任意x 1,x 2∈(,π),且x 1≠x 2,都有<0.其中所有正确结论的序号是 ①② .【解答】解:当0≤x ≤arctan2时,f (x )==;当arctan2<x <,在△OBE 中,f (x )=S 矩形OABM ﹣S △OME =2﹣=2﹣;当x=时,f (x )=2;当<x ≤π﹣arctan2时,同理可得f (x )=2﹣. 当π﹣arctan2<x ≤π时,f (x )=4﹣=4+.于是可得:①==,正确; ②对任意x ∈[0,],都有f (﹣x )+f (+x )=4用换元法,以x 代替﹣x ,可得:f (x )+f (π﹣x )=4, 因此,故②正确;③不妨设x1<x2,则<0⇔f(x1)>f(x2),显然不正确.综上只有:①②正确.故答案为:①②.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:①抛物线y=ax2的标准方程是x2=y,则其准线方程为y=﹣=2,所以a=﹣.②双曲线﹣x2=1的a=,b=1,c==2,则焦点为(0,±2),抛物线y=ax2即为x2=,y的焦点为(0,),由题意可得,=±2,解得,a=±.故选:A.12.(5分)已知等比数列{a n}前n项和为S n,则下列一定成立的是()A.若a3>0,则a2015<0 B.若a4>0,则a2014<0C.若a3>0,则S2015>0 D.若a4>0,则S2014>0【解答】解:若a3>0,则a1q2>0,即a1>0,a2015>0;若q=1,则S2015=2015a1>0;若q≠1,则S2015=,由1﹣q和1﹣q2015同号,可得S2015>0;由a4>0,可得a2014=a1q2013>0;a4>0,不能判断S2014的符号,故选C.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A.14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.2【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x ≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C 2上,代入求得2p=4,∴抛物线C 2的标准方程为y 2=4x .则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C 1:(a >b >0),把点(﹣2,0),(,)代入得,,解得:,∴C 1的标准方程为+y 2=1;由c==,左焦点(,0),C 1的左焦点到C 2的准线之间的距离﹣1,故选B .15.(5分)对于集合A ,定义了一种运算“⊕”,使得集合A 中的元素间满足条件:如果存在元素e ∈A ,使得对任意a ∈A ,都有e ⊕a=a ⊕e=a ,则称元素e 是集合A 对运算“⊕”的单位元素.例如:A=R ,运算“⊕”为普通乘法;存在1∈R ,使得对任意a ∈R ,都有1×a=a ×1=a ,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”: ①A=R ,运算“⊕”为普通减法;②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法; ③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集. 其中对运算“⊕”有单位元素的集合序号为( ) A .①②B .①③C .①②③D .②③【解答】解:①若A=R ,运算“⊕”为普通减法,而普通减法不满足交换律,故没有单位元素; ②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法, 其单位元素为全为0的矩阵;③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集, 其单位元素为集合M . 故选D .三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【解答】解:(1)设M(x,y),,左焦点,=…(4分)=()对称轴,…(3分)(2)由椭圆定义得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…(4分)由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…(3分)18.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF 上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.【解答】解:(1)由已知条件,得A=2,又∵,,∴.又∵当x=﹣1时,有y=2sin(﹣+φ)=2,∴φ=.∴曲线段FGBC的解析式为,x∈[﹣4,0].(2)由=1得x=6k+(﹣1)k﹣4 (k∈Z),又x∈[﹣4,0],∴k=0,x=﹣3.∴G(﹣3,1).∴OG=.∴景观路GO长为千米.(3)如图,OC=,CD=1,∴OD=2,,作PP1⊥x轴于P1点,在Rt△OPP1中,PP1=OPsinθ=2sinθ,在△OMP中,,∴=.S平行四边形OMPQ=OM•PP1====θ∈(0,).当时,即时,平行四边形面积最大值为.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(4分)(2)由…(2分)∴,…(3分)故a>1.…(1分)(3)由,…(1分)即:∴对任意x∈[1,+∞)都成立∴…(3分)当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…(1分)当0<k<1时,h(x)min=h(1)=log3(1+k);…(1分)当1≤k<3时,.…(1分)综上:…(1分)20.(20分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m.换句话说,b m是数列{a n}中满足不等式a n ≤m的所有项的项数的最大值.我们称数列{b n}为数列{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(2)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前100之和;(3)若数列{a n}的前n项和S n=n+c(其中c常数),试求数列{a n}的伴随数列{b n}前m项和T m.【解答】解:(1)1,4,7.(2)由,得∴当1≤m≤2,m∈N*时,b1=b2=1,当3≤m≤8,m∈N*时,b3=b4=…=b8=2,当9≤m≤26,m∈N*时,b9=b10=…=b26=3,当27≤m≤80,m∈N*时,b27=b28=…=b80=4,当81≤m≤100,m∈N*时,b81=b82=…=b100=5,∴b1+b2+…+b100=1×2+2×6+3×18+4×54+5×20=384.(3)∵a1=S1=1+c=1∴c=0,当n≥2时,a n=S n﹣S n﹣1=3n﹣2∴…(2分)由a n=3n﹣2≤m得:因为使得a n≤m成立的n的最大值为b m,所以,当m=3t﹣2(t∈N*)时:,当m=3t﹣1(t∈N*)时:,当m=3t(t∈N*)时:,所以(其中t∈N*).。

.4上海静安中考数学二模试卷及答案(word版)-word文档

.4上海静安中考数学二模试卷及答案(word版)-word文档

2018.4上海静安中考数学二模试卷及答案(word
版)
2018年4月上海静安初三数学二模考了哪些题目?数学网中考频道第一时间为大家整理2018.4上海静安中考数学二模试卷及答案,更多上海中考二模试卷及答案详见2018.4上海黄浦中考数学二模试卷及答案
2018.4上海浦东中考数学二模试卷及答案
2018.4上海徐汇中考数学二模试卷及答案
2018.4上海长宁中考数学二模试卷及答案
2018.4上海静安中考数学二模试卷及答案
2018.4上海普陀中考数学二模试卷及答案
2018.4上海闸北中考数学二模试卷及答案
2018.4上海虹口中考数学二模试卷及答案
2018.4上海杨浦中考数学二模试卷及答案
2018.4上海闵行中考数学二模试卷及答案
2018.4上海宝山中考数学二模试卷及答案
2018.4上海嘉定中考数学二模试卷及答案
2018.4上海金山中考数学二模试卷及答案
2018.4上海松江中考数学二模试卷及答案
2018.4上海奉贤中考数学二模试卷及答案
2018.4上海崇明中考数学二模试卷及答案。

2018届静安区高三一模数学Word版(附解析)(可编辑修改word版)

2018届静安区高三一模数学Word版(附解析)(可编辑修改word版)

上海市静安区 2018 届高三一模数学试卷2018.01一. 填空题(本大题共 12 题,1-6 每题 4 分,7-12 每题 5 分,共 54 分)1. 计算lim(1 -n →∞nn +11 - i ) 的结果是2 2. 计算行列式x 23i +1 1 + iy 2的值是 (其中i 为虚数单位)3. 与双曲线- = 1有公共的渐近线,且经过点 A (-3, 2 3) 的双曲线方程是9 164. 从 5 名志愿者中选出 3 名,分别从事布置、迎宾策划三项不同的工作,每人承担一项工作,则不同的选派方案有种(用数值作答)5. 已知函数 f (x ) = a ⋅ 2x + 3 - a ( a ∈ R )的反函数为 y = f -1(x ) ,则函数 y = f -1(x ) 的图像经过的定点的坐标为6. 在(x - a )10 的展开式中, x 7 的系数是 15,则实数 a =7. 已知点 A (2,3) 到直线 ax + (a -1) y + 3 = 0 的距离不小于 3,则实数 a 的取值范围是8. 类似平面直角坐标系,我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合于O 点且单位长度相同)称为斜坐标系,在斜坐标系 xOy 中,若OP = xe 1 + ye 2(其中e 1 、e 2 分别为斜坐标系的 x 轴、 y 轴正方向上的单位向量, x , y ∈ R ),则点 P 的坐标为(x , y ) ,若在斜坐标系 xOy 中, ∠xOy = 60︒ ,点 M 的坐标为(1, 2) ,则点 M 到原点O 的距离为9. 已知圆锥的轴截面是等腰直角三角形,该圆锥的体积为8,则该圆锥的侧面积等于3⎧(5 - a )x +1 x < 110. 已知函数 f (x ) = ⎨ x⎩ a取值范围为( a > 0 , a ≠ 1)是 R 上的增函数,则实数 a 的 x ≥ 111. 已知函数 f (x ) =| sin 2x - 3 cos x cos(3- x ) - 1| ,若将函数 y = f (x ) 的图像向左平移 2 2a 个单位( 0 < a < ),所得图像关于 y 轴对称,则实数 a 的取值集合为12. 已知函数 f (x ) = ax 2 + 4x +1,若对任意 x ∈ R ,都有 f ( f (x )) ≥ 0 恒成立,则实数 a 的取值范围为二. 选择题(本大题共 4 题,每题 5 分,共 20 分)13. 已知无穷等比数列{a } 的各项之和为 3,首项 a = 1 ,则该数列的公比为()n212A. 1B.2C. - 1D.1或 23 33 3 314. 设全集U = R , A = {x | y = log 3 (1 - x )}, B = {x || x -1 |< 1} ,则(C U A ) B = ()A. (0,1]B. (0,1)C. (1, 2)D. [1, 2)15. 两条相交直线l 、 m 都在平面内,且都不在平面内,若有甲: l 和 m 中至少有一条直线与相交,乙:平面与平面相交,则甲是乙的()16. 取值范围为()三. 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)17. 如图,在正三棱柱 ABC - A 1B 1C 1 中, AA 1 = 4 ,异面直线 BC 1 与 AA 1 所成角的大小为 3.(1) 求正三棱柱 ABC - A 1B 1C 1 的体积; (2) 求直线 BC 1 与平面 AA 1C 1C 所成角的大小.(结果用反三角函数值表示)A.C. 充分非必要条件充要条件B. 必要非充分条件 D. 既非充分也非必要条件若曲线| y |= x + 2 与C : x 2 + y 2= 1 恰有两个不同交点,则实数A. (-∞, -1] (1, +∞) 4 4B. (-∞, -1]C. (1, +∞)D. [-1,0) (1, +∞)18.在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,设向量m = (a,cos B) ,n = (b,cos A) ,且 m ∥ n , m ≠n .(1)求证:A +B =;2(2)若x ⋅ sin A sin B = sin A + sin B ,试确定实数x 的取值范围.19.如图,有一块边长为1(百米)的正方形区域ABCD ,在点A 处有一个可转动的探照灯,其照射角∠PAQ 始终为45°(其中点P、Q 分别在边BC 、CD 上),设∠PAB =,tan=t.(1)当三点C 、P 、Q 不共线时,求直角∆CPQ 的周长;(2)设探照灯照射在正方形ABCD 内部区域PAQC 的面积为S (平方百米),试求S 的最大值.3 = ⋅20. 如图,已知满足条件| z - 3i |=| - i | (其中i 为虚数单位)的复数 z 在复平面 xOy 对应 点的轨迹为圆C (圆心为C ),设复平面 xOy 上的复数 z = x + yi ( x ∈ R , y ∈ R )对应的点为(x , y ) ,定直线 m 的方程为 x + 3y + 6 = 0 ,过 A (-1,0) 的一条动直线l 与直线 m 相交于N 点,与圆C 相交于 P 、Q 两点, M 是弦 PQ 中点.(1)若直线l 经过圆心C ,求证: l 与 m 垂直; (2)当| PQ |= 2 时,求直线l 的方程;(3)设t AM AN ,试问t 是否为定值?若为定值,请求出t 的值,若t 不为定值,请说明理由.321.已知数列{a } 的通项公式为a =n(n, a∈N *).n n n +a(1)若a1 、a2 、a4 成等差数列,求a 的值;(2)是否存在k (k ≥ 10 且k ∈N *)与a ,使得a 、a 、a 成等比数列?若存在,求出k 的取值集合,若不存在,请说明理由;1 3 k(3)求证:数列{a n } 中的任意一项a n 总可以表示成数列{a n } 中的其它两项之积.7B 1AC7 [ , - =参考答案一. 填空题1. 02.-6i x 2 y 2 1 3. 4. 60 5. (3,0)6. - 129 16 4 7. (-∞,3] U 3+∞) 77 58. 9.4 210. [3,5)11. { , , , } 12 3 12 612. a ≥ 3二. 选择题 13. B14. D15. C16. A三. 解答题17.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分) A 1C 1B解:(1) ∠BBC 是异面直线 BC 与 AA 所成的角,所以∠BBC = ………2 分1 1 1 11 1 3因为 BB 1 = AA 1 = 4 ,所以B 1C 1 = 4 ,................4 分于是,三棱柱体积V = SH = S AA = 3 ⋅16 ⋅ 3⋅ 4 = 48………6 分∆ABC 1 4(2) 过 B 作 BD ⊥ AC ,D 为垂足,则 BD ⊥ 平面 AA 1C 1C ,∠B C 1D 是直线 BC 1 与平面 AA 1C 1C 所成的角, ............................................... 8 分BD = 6,B C 1 = 8 ,( DC 1 = 2 ),所以直线 BC 与平面 AAC C 所成的角为arcsin 3 ………………14 分1 1 1 4( arctan 3 7 , arccos 7)7 418.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)3 32 = = ) ∴ t 1 -∈= =解:(1) m = (a , cos B ), n = (b , cos A ), 且m // n , ∴ a cos A - b cos B = 0 ………2 分又 a sin A = b sin B= 2R ∴sin A cos A = sin B cos B , 即sin 2 A = sin 2B又∆ABC 中0 < 2 A , 2B < 2∴ 2 A = 2B 或2 A + 2B = 即 A = B 或 A + B = ……5 分2若 A B ,则 a = b 且cos A = cos B , m n ,m ≠ n∴ A + B = 2………………………………6 分 (2)由 x ⋅sin A sin B = sin A + sin B 可得 x = sin A + sin B =sin A + cos A………………8 分sin A sin B sin A c os A设sin A + cos A = t ,则t = 2 sin( A + ,34.................................................................. 10 分0 < A < 2 ∴ 4< A + 4 < 4∴1 < 2 sin( A + ) ≤4∴t 2 = 1+ 2 s in A c os A 2 - sin A ⋅ cos A =……………11 分22t21x , t在t (1, 2] 上单调增 ∴ x = t = 2 ≥2 = 2t 2-1 t - 1t tt 2 -12t - 1 -t∴实数 x 的取值范围为[2 2, +∞) ............................................ 14 分19.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)Q CDPAB解:(1)∠PAB =, tan = t ,所以 BP = t , CP = 1- t ; 因为点C 、P 、Q 不共线,所以0 < t < 1 , DQ = tan(45︒ -) = 1- t , CQ = 1- 1- t;PQ =1+ t 2 =;… ................... 5 分1+ t1+ t 1+ t直角△ CPQ 的周长= (1- t ) + (1- 1- t ) + 1+ t 1+ t 2 1+ t=2… ...................6 分 (2) S =1- t - 1 ⋅ 1- t2 2 1+ t ………………8 分=2 - 1 (t +1+ 2 ) ≤ 2 -………………12 分2 t +1212245CP 2 + CQ 2 2= ⋅ = - ⎩ ylCM Q P AOxNm当t +1 = 时,等号成立. ......................... 13 分探照灯照射在正方形 ABCD 内部区域的面积 S 最大为2 - 平方百米.……14 分 20.(本题满分 16 分,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 6 分)解: (1) 由已知,圆心C (0,3) , k m= - 3, ................................ 2 分则 k l =3 - 0 = 30 + 1.故 k m ⋅ k l = -1 ,所以直线l 与m 垂直 ........................................ 4 分 (直线l 经过点(-1,0)和(0,3),所以方程为3x - y + 3 = 0 ) (2) 当直线l 与 x 轴垂直时,易知 x = -1符合题意; ....................................... 5 分当直线与 x 轴不垂直时,设直线l 的方程为 y = k (x + 1) ....................... 6 分由于 PQ = 2 ,所以 CM = 1....................... 7 分由 CM == 1 ,解得 k =4 .................................................. 9 分3故直线l 的方程为 x = -1或4x - 3y + 4 = 0 ......................................10 分(3)当l 与 x 轴垂直时,易得 M (-1,3) , N (-1,- 5) ,又 A (-1,0) ,则 AM 3= (0,3),AN = (0,- 5) ,故t AM AN5 ....................................... 11 分 3当 l 的斜率存在时,设直线 l 的方程为 y = k (x + 1) ,代入圆的方程 x 2 + ( y - 3)2 = 4 得2222x + x - k 2 + 3k(1 + k )x + (2k - 6k )x + k - 6k + 5 = 0 .则 x M = 1 2 = 2 1 + k 2 ,y M = k (x M + 1) = 3k 2 + k 1 + k 2 ,即 M ( - k 2 + 3k 1 + k 23k 2+ k , 1 + k 2) ,………13 分 3k +1 3k 2 + k 3k +1⎧ y = k (x + 1), AM = (1+ k 2 , 1+ k 2 )= 1+ k 2(1, k ) .又由⎨x + 3y + 6 = 0, - 3k - 6 - 5k -5 -5k -5得 N (, ) ,则 AN = ( , )= (1, k ) . 1 + 3k 1 + 3k 1+ 3k 1+ 3k 1+ 3k2 23 - k + 3 k 2 + 1AM AN AM ⋅ AN = - AM l1 3 k 3 1 k -15k - 5 -5k (3k2 + k ) -5(1+ 3k )(1+ k 2 )故t = AM ⋅ AN =( (1+ k 2 )(1+ + 3k ) (1 =) + k 2 )(1+ 3k ) (1+ 3k )(1+ k 2 )= -5 . 综上, t 的值与直线l 的斜率无关,且t = ⋅= -5 . ……16 分(3) 另解:连结CA 并延长交直线m 于点 B ,连结CM , CN , 由(1)知 AC ⊥ m , 又CM ⊥ l ,所以四点 M , C , N , B 都在以CN 为直径的圆上,由相交弦定理得t =21.(本题满分 18 分,第 1 小题满分 4 分,第 2 小题满分 7 分,第 3 小题满分 7 分)124解:(1) a 1 =1 + a , a2 =2 + a , a 4 =4 + a ,∵ a 1 , a 2 , a 4 成等差数列,∴ a 1 + a 4 = 2a 2 , ............................... 2 分 化简得 a 2 = 2a ,∵ a ∈N *,∴ a = 2 .................................................. 4 分(2) 假设存在这样的k , a 满足条件, a 1 =1 1 + a , a 3 = 3 3 + a, a k = k , k + a∵ a , a , a 成等比数列,∴ (a )2 = a a , ................................... 6 分去分母,展开得9a 2 + 9ka + 9a = ka 2 + 6ka ,化简得(3k + 9)a = (k - 9)a 2 , ∵ a ∈N *,∴ (k - 9)a = 3k + 9,(a - 3)k = 9 + 9a ,当 k = 10 时, a = 39 ;当k = 11 时, a = 21;等等. .................................8 分 一般的,设t = k - 9 ∈ N *, l = a - 3∈ N * ,则 a = 3 +36 , k = 9 +36 . ……9 分tl∵ a ∈N *,∴ l , t 需为 36 的公约数, k 的取值集合为⎧k k = 9 + 36 , l = 1, 2, 3, 4, 6, 9,12,18, 36⎫⎨ ⎬⎩ ⎭(或者列举{10,11,12,13,15,18,21,27,45} ) ........................................... 11 分(3) 即证存在k , t ≠ n ,使得 a n = a k a t……………………12 分即证:⇔k - n = k + a ⇔ k - n =k + an (k + a ) , t = …………15 分 nk ktn t k - n令 k = n + 1,则t = n (k + a ) = n (n + 1 + a ) ∴对任意n , a n = a n +1a n (n +1+a ) , 即数列中的任意一项 a n 总可以表示成数列中的其它两项之积.………18 分 n 2n 2n 2n + a注:直接构造出 a k 与 a t 亦可,例如:n + a =2n + 2a = 2n + a ⋅(2n , + a ) + a⋅ AN = - AC ⋅ AB = -5............................ 16 分 n = k ⋅ t ⇔ 1 + a = (1 + a )(1 + a ) ⇔1 = 1 + 1 + an + a k + a t + a n k tn k t kt所以 a n =a2n ⋅a2n+a .。

静安区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

静安区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

静安区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .2. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( )A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <03. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β4. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)5. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④B .①⑤C .②⑤D .③⑤6. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k)的是()A .B .C .D .7. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >08. 若为等差数列,为其前项和,若,,,则成立的最大自{}n a n S 10a >0d <48S S =0n S >然数为()A .11B .12C .13D .149. 已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .1310.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( )A .﹣2B .±2C .0D .2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]12.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()二、填空题13.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .14.若的展开式中含有常数项,则n 的最小值等于 .15.不等式恒成立,则实数的值是__________.()2110ax a x +++≥16.i 是虚数单位,化简: = .17.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-18.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)三、解答题19.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程. 20.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是1C 2=ρ2C 是参数).θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x (Ⅰ)写出曲线的直角坐标方程和曲线的普通方程;1C 2C (Ⅱ)求的取值范围,使得,没有公共点.t 1C 2C 21.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程为,以极点为原点, 极轴为轴正半轴,建立直角坐标系.C 4sin()3πρθ=-x xOy (1)求曲线的直角坐标方程;C (2)若点在曲线上,点的直角坐标是(其中P C Q (cos ,sin )ϕϕ)ϕ∈R 22.已知函数f (x )=lnx ﹣a (1﹣),a ∈R .(Ⅰ)求f (x )的单调区间;(Ⅱ)若f (x )的最小值为0.(i )求实数a 的值;(ii )已知数列{a n }满足:a 1=1,a n+1=f (a n )+2,记[x]表示不大于x 的最大整数,求证:n >1时[a n ]=2.23.已知直线l:x﹣y+9=0,椭圆E:+=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.24.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.静安区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解. 2.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.3.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.4.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.5.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 6.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g (x )=log a (x+k )=log a (x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f (﹣x )+f (x )=0,若函数在其定义域为为偶函数,则f (﹣x )﹣f (x )=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键. 7. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础. 8. 【答案】A 【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键.10a >0d <9. 【答案】D【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4),解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题. 10.【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0,解得a=0.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.11.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.12.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.二、填空题13.【答案】 1 .【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(﹣1)=f(1)=1.故答案为:1.14.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.a15.【答案】1试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;()2110ax a x +++≥0a =10x +≥当时,应满足,即,解得.10a ≠2(1)40a a a >⎧⎨∆=+-≤⎩20(1)0a a >⎧⎨-≤⎩1a =考点:不等式的恒成立问题.16.【答案】 ﹣1+2i .【解析】解: =故答案为:﹣1+2i . 17.【答案】()0,1【解析】18.【答案】 ①②④ 【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误;对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1,∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,设点P 坐标为(x ,y ,0),由|PF|=|PG|,得,即x 2﹣y 2=1,∴P 点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.三、解答题19.【答案】【解析】解:(Ⅰ)设点P (x ,y )在矩阵M 对应的变换作用下所得的点为P ′(x ′,y ′),则即=,∴M=.又det (M )=﹣3,∴M ﹣1=;(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),则=M ﹣1=,即,∴代入4x+y ﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题. 20.【答案】【解析】 【解析】(Ⅰ)曲线的直角坐标方程是,1C 222=+y x 曲线的普通方程是…………5分2C )21221(1+≤≤+=t y t x(Ⅱ)对于曲线 ,令,则有.1:C 222=+y x 1x =1y =±故当且仅当时,,没有公共点,001112-122t t t t >>⎧⎧⎪⎪⎨⎨+>+<⎪⎪⎩⎩或1C 2C 解得.……10分12t >21.【答案】【解析】(1)∵,4sin()3πρθ=- ∴,4(sin cos cos sin )33ππρθθ=- ∴,22sincos ρρθθ=-∴曲线的直角坐标方程为.C 2220x yy ++-= (2)曲线可化为,C 22((1)4x y ++-=∴曲线是圆心,半径为的圆,C 2∵点的直角坐标是,Q (cos ,sin )ϕϕ ∴点在圆:,Q O 221x y +=∴,即的最大值为.125PQ OC ≤++=PQ 522.【答案】【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=.当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增;当a >0时,由f ′(x )>0,解得x >a ;由f ′(x )<0,解得0<x <a .所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上述:a ≤0时,f (x )的单调递增区间是(0,+∞);a >0时,f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a ≤0时,f (x )无最小值,不合题意;当a >0时,[f (x )]min =f (a )=1﹣a+lna=0,令g (x)=1﹣x+lnx (x >0),则g ′(x )=﹣1+=,由g ′(x )>0,解得0<x <1;由g ′(x )<0,解得x >1.所以g (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g (x )]max =g (1)=0,即当且仅当x=1时,g (x )=0.因此,a=1.(ⅱ)因为f (x )=lnx ﹣1+,所以a n+1=f (a n )+2=1++lna n .由a 1=1得a 2=2于是a 3=+ln2.因为<ln2<1,所以2<a 3<.猜想当n ≥3,n ∈N 时,2<a n <.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.23.【答案】【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),∴x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E:+=1,得,∴k AB==﹣=﹣,∴直线AB的方程为y﹣=﹣(x﹣),即2x+8y﹣5=0.(2)设|PF1|=r1,|PF2|=r1,则cos∠F1PF2==﹣1=﹣1=﹣1,又r1r2≤()2=a2(当且仅当r1=r2时取等号)∴当r1=r2=a,即P(0,)时,cos∠F1PF2最小,又∠F1PF2∈(0,π),∴当P为短轴端点时,∠F1PF2最大.(3)∵=12,=3,∴=9.则由题意,设所求的椭圆方程为+=1(a2>9),将y=x+9代入上述椭圆方程,消去y,得(2a2﹣9)x2+18a2x+90a2﹣a4=0,依题意△=(18a2)2﹣4(2a2﹣9)(90a2﹣a4)≥0,化简得(a2﹣45)(a2﹣9)≥0,∵a2﹣9>0,∴a2≥45,故所求的椭圆方程为=1.【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,∠F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用.24.【答案】【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=×2π×2×2=4π;S圆柱侧=2π×2×4=16π;S圆柱底=π×22=4π.∴几何体的表面积S=20π+4π;(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:则AB===2,∴以从A点到B点在侧面上的最短路径的长为2.。

2018第二学期静安区高考数学二模考试参考答案

2018第二学期静安区高考数学二模考试参考答案

静安区2017学年第二学期教学质量检测 高三数学解答及评分标准 2018.5一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 考生应在答题纸的相应位置直接填写结果. 1.{0,2,4}2.3. {}1x x ≥- 4.125. 46.(-4,-3,2) 7.5,12x x k k Z ππ⎧⎫=±∈⎨⎬⎩⎭8.24x y =- 9. 50 10.94 11.112.[二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13. D . 14.A 15.C 16.B三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分4分,第2小题满分10分)解(1)2(8)=1000(cos0+2)9908010m C =-=; 4分 (2)当cos((8))12t π⋅-=-时,C 达到最小值,得(8)(2+1),2t k k Z ππ⋅-=∈,8分又[8,16]t ∈,解得10t =或14.所以在10:00或者14:00时,昆虫密度达到最小值10. 14分 18.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)设椭圆方程为:22221(0)x y a b a b+=>>,1分由已知有212,2a a b ==, 2分 所以椭圆方程为:221369x y +=, 3分圆心(,2)k A k - 5分 所以,△12k A F F的面积121211222k K A F F A S F F y =⋅=⨯= 6分 (2)当0k ≥时,将椭圆椭圆顶点(6,0)代入圆方程得:22601202115120k k ++--=+>,可知椭圆顶点(6,0)在圆外;10分当0k <时,22(6)01202115120k k -+---=->,可知椭圆顶点(-6,0)在圆外; 所以,不论k 取何值,圆k A 都不可能包围椭圆Γ.14分 (用椭圆另外两个顶点(短轴端点))在圆上进行判断也可) 19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 1分则(1,0,0)A ,1(0,,0)2B ,(0,0,2)P ,(1,0,0)C -,1(,0,1)2M -. 所以(1,0,2)AP =-,11(,,1)22BM =--,52AP BM ⋅=||5AP =,6||BM =. 3分 则cos ,6||||5AP BM AP BM AP BM ⋅<>===. 故异面直线AP 与BM 所成角的余弦值为6. ………6分(2)1(1,,0)2AB =-,11(,,1)22BM =--.设平面ABM 的一个法向量为(,,)n x y z =,C第19题图则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得10211022x y x y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,令2x =,得4y =,3z =. 得平面ABM 的一个法向量为(2,4,3)n =. 9分又平面PAC 的一个法向量为1(0,,0)2OB =, ……………10分所以n 2OB ⋅=,||29n =,1||2OB =.则cos ,||||29n OB n OB n OB ⋅<>===故平面ABM 与平面PAC 所成锐二面角的余弦值为………………14分20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 解:(1)1111111111221(1)111n n n a a a n n n n n n n n n --+=+++=++-++++++ =112122()n n a a n n--+=+ 2分 即12nn b b -= 3分 又 111122b a a =+=+,由12a ≠-,则10b ≠ 所以{}n b 是以112b a =+为首项,2为公比的等比数列. 4分 (2)11()22n n b a -=+⋅,所以111221n n a a n -⎛⎫=+⋅- ⎪+⎝⎭ 6分 若{}n a 是单调递增数列,则对于*n N ∈,10n n a a +->恒成立 7分111111222221n n n n a a a a n n -+⎛⎫⎛⎫-=+⋅--+⋅+⎪ ⎪++⎝⎭⎝⎭=11112212n a n n -⎛⎫+⋅+- ⎪++⎝⎭=11122(1)(2)n a n n -⎛⎫+⋅+ ⎪++⎝⎭ 8分 由 111202(1)(2)n a n n -⎛⎫+⋅+> ⎪++⎝⎭,得 11122(1)(2)n a n n -+>-++对于*n N ∈恒成立 由于 112(1)(2)n n n --++单调递增,且1102(1)(2)n n n --<++,11lim[]02(1)(2)n n n n -→∞-=++, 所以102a +≥,又12a ≠-,则12a >-. 10分 (3)因为数列{}nb 的各项皆为正数,所以102a +>,则12a >-.112211log [()2]1log ()22n n c a n a -=+=-+-+, 13分若数列{}n T 是单调递减数列,则21T T <,即2221112log ()1log (),log ()1222a a a -+-<-++>-,即1122a +>,所以0a >.又a Z ∈,所以对所有正整数a ,都能使数列{}n T 是单调递减数列. 16分 21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解:(1)由()0f x ≥得271x x -≥-,………………………1分解不等式得8|63x x x ⎧⎫≤≥⎨⎬⎩⎭或 ………………………………4分 (利用图像求解也可)(2)由01xx>-解得01x <<. 由()1f x ≥得|27|0x ax -+≥,当01x <<时,该不等式即为(2)7a x -+≥; …………………………5分 当=2a 时,符合题设条件;……………………6分 下面讨论2a ≠的情形,当2a >时,符合题设要求;……………………7分当2a <时,72x a ≤-,由题意得712a≥-,解得25a >≥-; 综上讨论,得实数a 的取值范围为{}|5a a ≥- ………………………10分 (3)由21()=21(1)1x g x x a x a x +=-++--,…………………………12分代入()()f x g x ≤得|27|2|1|1x x a ---+≤,令()|27|2|1|1h x x x =---+,则6,17()410,1274,2x h x x x x ⎧⎪≤⎪⎪=-+<≤⎨⎪⎪->⎪⎩, 74()()(1)62h h x h -=≤≤=,∴min ()4h x =-…………………………15分若存在x 使不等式()()f x g x ≤成立,则min (),4h x a a ≤≥-即.…………18分。

2018静安区高三二模数学Word版(附解析)

2018静安区高三二模数学Word版(附解析)

上海市静安区2018届高三二模数学试卷2018.05填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)一.1.已知集合A={1,3,5,7,9},3={0,1,2,3,4,5},则图中阴影部分集合用列举法表示的结果是^77)「2.若复数Z满足z(l-Z)=2Z(,是虚数单位),则|z|=3.函数y=Jlg(x+2)的定义域为4.在从4个字母。

、b、c、d中任意选出2个不同字母的试验中,其中含有字母d事件的概率是________5.下图中的三个直角三角形是一个体积为20cn?的几何体的三视图,则/,=6.如上右图,以长方体ABCD—ABCQ的顶点Q为坐标原点,过。

的三条棱所在的直线UUL1UULL为坐标轴,建立空间直角坐标系,若DB]的坐标为(4,3,2),则四;的坐标为7.方程cos2x=-虫的解集为28.己知抛物线顶点在坐标原点,焦点在y轴上,抛物线上一点(a>0)到焦点F的距离为5,则该抛物线的标准方程为9.秦九韶是我国南宋时期数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,右边的流程图是秦九韶算法的一个实例.若输入几、X的值分别为4、2,则输出g的值为(在算法语言中用“*”表示乘法运算符号,例如5*2=10)10.已知等比数列{%}的前灯项和为(”eN*),且夺=,%—%=---'则。

3 的值为TT11.在直角三角形A3。

中,/A=-,AB=3,AC=4,E为三角形ABC内一点,2、/2ulul uuu uuiuS.AE=~,AE=AAB+piAC,则32+4/z的最大值等于12.已知集合梨={3,[)|3+、)2+"+)-2<0},={(-X,_y)|(x—2a)2+(_y——I)2<a2,若A B0,则实数a取值范围为二.选择题(本大题共4题,每题5分,共20分)13.能反映一组数据的离散程度的是()A,众数B,平均数 C.中位数 D.方差14.若实系数一元二次方程z2+z+m=0有两虚数根a,/?,且\a-/3\=3,那么实数m 的值是()5,5A.—B.1C.—1D.---2215.函数f(x)=Asin(cox+(p)(A>0,刃>0)的部分图像如图所示,则/•(;)的值为()A.—B.—C.—D.02 2 216.已知函数/'(X)=-『+x+10,实数也、.亏、土满足茶+x2<0,x2 +x3<0,.r3+x,<0, plij/(x1)+/(x2)+/(x3)的值()A,一定大于30B,一定小于30C,等于30 D.大于30、小于30都有可能三.解答题(本大题共5题,共14+14+14+16+18=76分)17,某峡谷中一种昆虫的密度是时间f的连续函数(即函数图像不间断).昆虫密度。

2018年上海市静安区高考数学模拟试卷

2018年上海市静安区高考数学模拟试卷

2018年上海市静安区高考数学模拟试卷一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a=.2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=.3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是.4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.(5分)已知α为锐角,且,则sinα=.7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是.8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为.9.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为.10.(5分)如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:①f()=;②任意x∈[0,],都有f(﹣x)+f(+x)=4;③任意x1,x2∈(,π),且x1≠x2,都有<0.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(5分)已知等比数列{a n}前n项和为S n,则下列一定成立的是()A.若a3>0,则a2015<0 B.若a4>0,则a2014<0C.若a3>0,则S2015>0 D.若a4>0,则S2014>013.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.215.(5分)对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A=R,运算“⊕”为普通减法;②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法; ③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集. 其中对运算“⊕”有单位元素的集合序号为( ) A .①② B .①③C .①②③D .②③三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,长为π,长为,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.17.(14分)设双曲线C :,F 1,F 2为其左右两个焦点.(1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求的取值范围;(2)若动点P 与双曲线C 的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为,求动点P 的轨迹方程.18.(20分)如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数y=Asin (ωx +φ)(A >0,ω>0,φ∈(0,π)),x ∈[﹣4,0]的图象,图象的最高点为B (﹣1,2).边界的中间部分为长1千米的直线段CD ,且CD ∥EF .游乐场的后一部分边界是以O 为圆心的一段圆弧.(1)求曲线段FGBC 的函数表达式;(2)曲线段FGBC 上的入口G 距海岸线EF 最近距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(3)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.20.(20分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m.换句话说,b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值.我们称数列{b n}为数列{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(2)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前100之和;(3)若数列{a n}的前n项和S n=n+c(其中c常数),试求数列{a n}的伴随数列{b n}前m项和T m.2018年上海市静安区高考数学模拟试卷参考答案与试题解析一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a=4.【解答】解:∵==为纯虚数,∴,解得a=4.故答案为:4.2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=﹣2.【解答】解:f(x)为R上的奇函数,则f(﹣x)=﹣f(x),即有f(0)=0,f(﹣2)=﹣f(2),当x<0时,f(x)=log2(2﹣x),f(﹣2)=log2(2+2)=2,则f(0)+f(2)=0﹣2=﹣2.故答案为:﹣2.3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是.【解答】解:正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,设球的半径为1,所以底面三角形的边长为a,,a=该正三棱锥的体积:故答案为:4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是1.【解答】解:在菱形ABCD中,AB=1,∠BAD=60°,=+,∴==1×1×cos60°+×12=1.故答案为:1.5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.(5分)已知α为锐角,且,则sinα=.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是(﹣∞,﹣2)∪(2,+∞).【解答】解:根据题意:①对任意的x∈R,都有f(x)≤f(x0)成立由于:x0∈(﹣1,1)所以:对f(x)≤f(x0)成立,只需满足f(x)≤f(x0)min即可.由于f(x)=sin(πx),所以:由于②x02+[f(x0)]2<m所以当,且求出:m2>4进一步求出:m>2或m<﹣2故答案为:(﹣∞,﹣2)∪(2,+∞).8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为(﹣∞,5] .【解答】解:不等式x2<|x﹣1|+a等价于x2﹣|x﹣1|﹣a<0,设f(x)=x2﹣|x﹣1|﹣a,若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则,求得a≤5,故答案为:(﹣∞,5].9.(5分)已知f(x)=a x﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为4.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当a=,b=2时取等号.故的最小值为4.故答案为:4.10.(5分)如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记∠AOP 为x (x ∈[0,π]),OP 所经过正方形ABCD 内的区域(阴影部分)的面积S=f (x ),那么对于函数f (x )有以下三个结论:①f ()=;②任意x ∈[0,],都有f (﹣x )+f (+x )=4;③任意x 1,x 2∈(,π),且x 1≠x 2,都有<0.其中所有正确结论的序号是 ①② .【解答】解:当0≤x ≤arctan2时,f (x )==;当arctan2<x <,在△OBE 中,f (x )=S 矩形OABM ﹣S △OME =2﹣=2﹣;当x=时,f (x )=2;当<x ≤π﹣arctan2时,同理可得f (x )=2﹣. 当π﹣arctan2<x ≤π时,f (x )=4﹣=4+.于是可得:①==,正确; ②对任意x ∈[0,],都有f (﹣x )+f (+x )=4用换元法,以x 代替﹣x ,可得:f (x )+f (π﹣x )=4, 因此,故②正确;③不妨设x1<x2,则<0⇔f(x1)>f(x2),显然不正确.综上只有:①②正确.故答案为:①②.二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:①抛物线y=ax2的标准方程是x2=y,则其准线方程为y=﹣=2,所以a=﹣.②双曲线﹣x2=1的a=,b=1,c==2,则焦点为(0,±2),抛物线y=ax2即为x2=,y的焦点为(0,),由题意可得,=±2,解得,a=±.故选:A.12.(5分)已知等比数列{a n}前n项和为S n,则下列一定成立的是()A.若a3>0,则a2015<0 B.若a4>0,则a2014<0C.若a3>0,则S2015>0 D.若a4>0,则S2014>0【解答】解:若a3>0,则a1q2>0,即a1>0,a2015>0;若q=1,则S2015=2015a1>0;若q≠1,则S2015=,由1﹣q和1﹣q2015同号,可得S2015>0;由a4>0,可得a2014=a1q2013>0;a4>0,不能判断S2014的符号,故选C.13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A.14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()A.B.C.1 D.2【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C 2上,代入求得2p=4,∴抛物线C 2的标准方程为y 2=4x .则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C 1:(a >b >0),把点(﹣2,0),(,)代入得,,解得:,∴C 1的标准方程为+y 2=1;由c==,左焦点(,0),C 1的左焦点到C 2的准线之间的距离﹣1,故选B .15.(5分)对于集合A ,定义了一种运算“⊕”,使得集合A 中的元素间满足条件:如果存在元素e ∈A ,使得对任意a ∈A ,都有e ⊕a=a ⊕e=a ,则称元素e 是集合A 对运算“⊕”的单位元素.例如:A=R ,运算“⊕”为普通乘法;存在1∈R ,使得对任意a ∈R ,都有1×a=a ×1=a ,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”: ①A=R ,运算“⊕”为普通减法;②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法; ③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集. 其中对运算“⊕”有单位元素的集合序号为( ) A .①②B .①③C .①②③D .②③【解答】解:①若A=R ,运算“⊕”为普通减法,而普通减法不满足交换律,故没有单位元素; ②A={A m ×n |A m ×n 表示m ×n 阶矩阵,m ∈N *,n ∈N *},运算“⊕”为矩阵加法, 其单位元素为全为0的矩阵;③A={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集, 其单位元素为集合M . 故选D .三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【解答】解:(1)设M(x,y),,左焦点,=…(4分)=()对称轴,…(3分)(2)由椭圆定义得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…(4分)由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…(3分)18.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.【解答】解:(1)由已知条件,得A=2,又∵,,∴.又∵当x=﹣1时,有y=2sin(﹣+φ)=2,∴φ=.∴曲线段FGBC的解析式为,x∈[﹣4,0].(2)由=1得x=6k+(﹣1)k﹣4 (k∈Z),又x∈[﹣4,0],∴k=0,x=﹣3.∴G(﹣3,1).∴OG=.∴景观路GO长为千米.(3)如图,OC=,CD=1,∴OD=2,,作PP1⊥x轴于P1点,在Rt△OPP1中,PP1=OPsinθ=2sinθ,在△OMP中,,∴=.水秀中华S平行四边形OMPQ=OM•PP1====θ∈(0,).当时,即时,平行四边形面积最大值为.19.(18分)设集合M a={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈M a,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(4分)(2)由…(2分)∴,…(3分)故a>1.…(1分)(3)由,…(1分)即:∴对任意x∈[1,+∞)都成立∴…(3分)当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…(1分)当0<k<1时,h(x)min=h(1)=log3(1+k);…(1分)当1≤k<3时,.…(1分)水秀中华综上:…(1分)20.(20分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m.换句话说,b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值.我们称数列{b n}为数列{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(2)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前100之和;(3)若数列{a n}的前n项和S n=n+c(其中c常数),试求数列{a n}的伴随数列{b n}前m项和T m.【解答】解:(1)1,4,7.(2)由,得∴当1≤m≤2,m∈N*时,b1=b2=1,当3≤m≤8,m∈N*时,b3=b4=…=b8=2,当9≤m≤26,m∈N*时,b9=b10=…=b26=3,当27≤m≤80,m∈N*时,b27=b28=…=b80=4,当81≤m≤100,m∈N*时,b81=b82=…=b100=5,∴b1+b2+…+b100=1×2+2×6+3×18+4×54+5×20=384.(3)∵a1=S1=1+c=1∴c=0,当n≥2时,a n=S n﹣S n﹣1=3n﹣2∴…(2分)由a n=3n﹣2≤m得:因为使得a n≤m成立的n的最大值为b m,所以,当m=3t﹣2(t∈N*)时:,当m=3t﹣1(t∈N*)时:,水秀中华当m=3t(t∈N*)时:,所以(其中t∈N*).。

上海市静安区达标名校2018年高考二月调研数学试卷含解析

上海市静安区达标名校2018年高考二月调研数学试卷含解析

上海市静安区达标名校2018年高考二月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a ,b ,b =(1),且a 在b 方向上的投影为12,则a b ⋅等于( ) A .2B .1C .12D .02.已知函数()(2)3,(ln 2)()32,(ln 2)xx x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m 的取值范围是( ) A .1,2e -⎛⎤-∞ ⎥⎝⎦B .(,1]-∞C .1,12e -⎡⎤⎢⎥⎣⎦D .[ln 2,1]3.已知a ,b ,c 分别是ABC 三个内角A ,B ,C的对边,cos sin a C A b c +=+,则A =( )A .6πB .4π C .3π D .23π 4.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( )A .3πB .4πC .8πD .13π5.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个6.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为m =( ) A .1B .2CD .37.若x ,y 满足约束条件0,2,10,x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则4z x y =+的取值范围为( )A .[]5,1--B .[]5,5-C .[]1,5-D .[]7,3-8.近年来,随着4G 网络的普及和智能手机的更新换代,各种方便的app 相继出世,其功能也是五花八门.某大学为了调查在校大学生使用app 的主要用途,随机抽取了56290名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用app 主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数; ②可以估计不足10%的大学生使用app 主要玩游戏; ③可以估计使用app 主要找人聊天的大学生超过总数的14. 其中正确的个数为( )A .0B .1C .2D .39.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④10.已知12,F F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于,A B两点,若2AB =,则2ABF ∆的内切圆半径为( )A .23 B .33C .323D .23311.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A .物理化学等级都是B 的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人12.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )A.1 2B.35C.710D.45二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市静安区2018届高三二模数学试卷2018.05一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 已知集合{1,3,5,7,9}A =,{0,1,2,3,4,5}B =,则图中阴影部 分集合用列举法表示的结果是2. 若复数z 满足(1)2z i i -=(i 是虚数单位),则||z =3. 函数lg 2y x =+()的定义域为 4. 在从4个字母a 、b 、c 、d 中任意选出2个不同字母的试验中,其中含有字母d 事件 的概率是5. 下图中的三个直角三角形是一个体积为20 cm 3的几何体的三视图,则h =6. 如上右图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线 为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1BD 的坐标为7. 方程3cos22x =-的解集为 8. 已知抛物线顶点在坐标原点,焦点在y 轴上,抛物线上 一点(,4)M a -(0)a >到焦点F 的距离为5,则该抛物线的标准方程为9. 秦九韶是我国南宋时期数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,右边的流程图是秦九韶算法的一个实例. 若输入n 、x的值分别为4、2,则输出q 的值为(在算法语言中用“*”表示乘法运算符号,例如5210*=)10. 已知等比数列{}n a 的前n 项和为n S (n ∈*N ),且63198S S =-,42158a a =--,则3a 的值为11. 在直角三角形ABC 中,2A π∠=,3AB =,4AC =,E 为三角形ABC 内一点, 且22AE =,若AE AB AC λμ=+,则34λμ+的最大值等于 12. 已知集合2{(,)|()20}A x y x y x y =+++-≤,222{(,)|(2)(1)}2a B x y x a y a a =-+--≤-,若A B ≠∅,则实数a 取值范围为二. 选择题(本大题共4题,每题5分,共20分)13. 能反映一组数据的离散程度的是( ) A. 众数 B. 平均数 C. 中位数 D. 方差14. 若实系数一元二次方程20z z m ++=有两虚数根α,β,且||3αβ-=,那么实数m 的值是( )A. 52B. 1C. 1-D. 52- 15. 函数()sin()f x A x ωϕ=+(0,0)A ω>>的部分图像如图所示,则()3f π的值为( ) A. 22 B. 32 C. 62D. 0 16. 已知函数3()10f x x x =++,实数1x 、2x 、3x 满足120x x +<,230x x +<,310x x +<,则123()()()f x f x f x ++的值( )A. 一定大于30B. 一定小于30C. 等于30D. 大于30、小于30都有可能三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 某峡谷中一种昆虫的密度是时间t 的连续函数(即函数图像不间断). 昆虫密度C 是指每平方米的昆虫数量,已知函数21000(cos(4)2)990,816()2,081624t t C t m t t ππ⎧-+-≤≤⎪=⎨⎪≤<<≤⎩或, 这里的t 是从午夜开始的小时数,m 是实常数,(8)m C =.(1)求m 的值;(2)求出昆虫密度的最小值并指出出现最小值的时刻.18. 已知椭圆Γ的中心在坐标原点,长轴在x 轴上,长轴长是短轴长的2倍,两焦点分别为1F 和2F ,椭圆Γ上一点到1F 和2F 的距离之和为12.圆22:24210()k A x y kx y k ++--=∈R 的圆心为k A .(1)求△12k A F F 的面积;(2)若椭圆上所有点都在一个圆内,则称圆包围这个椭圆.问:是否存在实数k 使得圆k A 包围椭圆Γ?请说明理由.19. 如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,2AC =,1BD =,2OP =.(1)求异面直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.20. 已知数列{}n a 中,1a a =1(,)2a R a ∈≠-,1112(1)n n a a n n n -=+++,2n ≥,*n ∈N . 又数列{}n b 满足:11n n b a n =++,*n ∈N . (1)求证:数列{}n b 是等比数列;(2)若数列{}n a 是单调递增数列,求实数a 的取值范围;(3)若数列{}n b 的各项皆为正数,12log n n c b =,设n T 是数列{}n c 的前n 和,问:是否存在整数a ,使得数列{}n T 是单调递减数列?若存在,求出整数a ;若不存在,请说明理由.21. 设函数()|27|1f x x ax =-++(a 为实数).(1)若1a =-,解不等式()0f x ≥;(2)若当01x x>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x a x +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围.参考答案一. 填空题1. {0,2,4}2.3. [1,)-+∞4. 125. 46. (4,3,2)--7. 5{|,}12x x k k ππ=±∈Z 8. 24x y =-9. 50 10.9411. 1 12. 19[14+-二. 选择题 13. D 14. A 15. C 16. B三. 解答题17. 解(1)2(8)=1000(cos0+2)9908010m C =-=; ……4分(2)当cos((8))12t π⋅-=-时,C 达到最小值,得(8)(2+1),2t k k Z ππ⋅-=∈,……8分又[8,16]t ∈,解得10t =或14.所以在10:00或者14:00时,昆虫密度达到最小值10. ……14分18. 解:(1)设椭圆方程为:22221(0)x y a b a b+=>>,……1分 由已知有212,2a a b ==, ……2分 所以椭圆方程为:221369x y +=, …… 3分 圆心(,2)k A k - ……5分所以,△12k A F F 的面积121211222k K A F F A S F F y =⋅=⨯= ……6分 (2)当0k ≥时,将椭圆椭圆顶点(6,0)代入圆方程得:22601202115120k k ++--=+>,可知椭圆顶点(6,0)在圆外;……10分当0k <时,22(6)01202115120k k -+---=->,可知椭圆顶点(-6,0)在圆外; 所以,不论k 取何值,圆k A 都不可能包围椭圆Γ.……14分19. 解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点, 直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. ……1分 则(1,0,0)A ,1(0,,0)2B ,(0,0,2)P ,(1,0,0)C -,1(,0,1)2M -. 所以(1,0,2)AP =-,11(,,1)22BM =--,52AP BM ⋅=,||5AP =,6||2BM =. ……3分 则530cos ,6||||56AP BM AP BM AP BM ⋅<>===⨯. 故异面直线AP 与BM 所成角的余弦值为306……6分 (2)1(1,,0)2AB =-,11(,,1)22BM =--. 设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得10211022x y x y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,令2x =,得4y =,3z =. 得平面ABM 的一个法向量为(2,4,3)n =. ……9分又平面PAC 的一个法向量为1(0,,0)2OB =, ……10分所以n 2OB ⋅=,||29n =,1||2OB =.则44cos ,2929||||29n OB n OB n OB ⋅<>===. 故平面ABM 与平面PAC 所成锐二面角的余弦值为42929. ……14分 20. 解:(1)1111111111221(1)111n n n a a a n n n n n n n n n --+=+++=++-++++++ 112122()n n a a n n--=+=+ ……2分 即12n n b b -= ……3分 又111122b a a =+=+,由12a ≠-,则10b ≠ 所以{}n b 是以112b a =+为首项,2为公比的等比数列. ……4分 (2)11()22n n b a -=+⋅,所以111221n n a a n -⎛⎫=+⋅- ⎪+⎝⎭ ……6分 若{}n a 是单调递增数列,则对于*n N ∈,10n n a a +->恒成立 ……7分111111222221n n n n a a a a n n -+⎛⎫⎛⎫-=+⋅--+⋅+ ⎪ ⎪++⎝⎭⎝⎭ 1111=2212n a n n -⎛⎫+⋅+- ⎪++⎝⎭111=22(1)(2)n a n n -⎛⎫+⋅+ ⎪++⎝⎭ ……8分 由111202(1)(2)n a n n -⎛⎫+⋅+> ⎪++⎝⎭,得11122(1)(2)n a n n -+>-++对于*n N ∈恒成立, ∵112(1)(2)n n n --++递增,且1102(1)(2)n n n --<++,11lim[]02(1)(2)n n n n -→∞-=++,所以102a +≥,又12a ≠-,则12a >-. ……10分 (3)因为数列{}nb 的各项皆为正数,所以102a +>, 则12a >-.112211log [()2]1log ()22n n c a n a -=+=-+-+, ……13分 若数列{}n T 是单调递减数列,则21T T >,即2221112log ()1log (),log ()1222a a a -+->-++<-,即1122a +<, 所以102a -<<.不存在整数a ,使得数列{}n T 是单调递减数列. ……16分 21. 解:(1)由()0f x ≥得271x x -≥-, ……1分 解不等式得8|63x x x ⎧⎫≤≥⎨⎬⎩⎭或 ……4分 (利用图像求解也可)(2)由01x x>-解得01x <<.由()1f x ≥得|27|0x ax -+≥, 当01x <<时,该不等式即为(2)70a x -+≥; ……5分 当=2a 时,符合题设条件; ……6分下面讨论2a ≠的情形,当2a >时,符合题设要求; ……7分当2a <时,72x a ≤-,由题意得712a≥-,解得25a >≥-; 综上讨论,得实数a 的取值范围为{}|5a a ≥- ……10分(3)由21()=21(1)1x g x x a x a x +=-++--, ……12分代入()()f x g x ≤得|27|2|1|1x x a ---+≤,令()|27|2|1|1h x x x =---+, 则6,17()410,1274,2x h x x x x ⎧⎪≤⎪⎪=-+<≤⎨⎪⎪->⎪⎩, 74()()(1)62h h x h -=≤≤=, ∴min ()4h x =- ……15分若存在x 使不等式()()f x g x ≤成立,则min (),4h x a a ≤≥-即. ……18分。

相关文档
最新文档