导学案(任意角的三角函数)

合集下载

1.2.1 任意角的三角函数(1)导学案

1.2.1 任意角的三角函数(1)导学案

1.2.1 任意角的三角函数<第一课时>【学习目标】通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数, 理解并掌握正弦、余弦、正切函数在各象限内的符号.【重点难点】教学重点:任意角的正弦、余弦、正切的定义。

.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号。

【导学过程】我的问题你的思考与解答问题1:在初中,我们已经学过锐角三角函数.如图1,在直角△POM 中,∠M 是直角,那么根据锐角三角函数的定义,∠O 的正弦、余弦和正切分别是什么?问题2:我们知道,借助平面直角坐标系,可以把几何问题代数化,比如把点用坐标表示,把线段长用坐标算出来。

你能用直角坐标系中角终边上点的坐标来表示锐角三角函吗?如图2,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离r= >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b. 根据初中学过的三角函数定义,我们有 sinα=______________,cosα=______________, tanα=______________问题3:改变终边上点的位置,这三个比值会改变吗?由此你得出什么结论?问题4:能否通过取适当的点而将表达式简化呢?图3单位圆的概念:在直角坐标系中,我们称 以 为圆心,以 为半径的圆为单位圆.问题5:能不能继续在直角三角形中定义任意角的三角函数呢?图4图2问题6:如图4,在平面直角坐标系中,如何定义任意角α的三角函数呢?(终边是OP 的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如果角α的终边不在第I 象限又该怎么办?)问题7:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化? 三角函数的概念 我们可以利用单位圆定义任意角的三角函数. 如图4所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1) 叫做α的正弦,记作sinα,即sinα= ;(2) 叫做α的余弦,记作cosα,即cosα= ;(3) 叫做α的正切,记作tanα,即tanα= (x≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数. 自学例1,例2,并完成下面练习。

任意角的三角函数导学案2

任意角的三角函数导学案2

1.2.1 任意角的三角函数< 第二课时>班级姓名学习目标1.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.2.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.重点难点教学重点终边相同的角的同一三角函数值相等教学难点利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.教学过程(一)复习提问1、三角函数(正弦,余弦,正切函数)的概念。

(两个定义)2、三角函数(正弦,余弦,正切函数)的定义域。

3、三角函数(正弦,余弦,正切函数)值在各象限的符号。

4、<小结>常见常用角的三角函数值(二)新知探究1、问题 :如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?2、求下列三角函数值 (1)sin420°; (2) sin60°3、结论 由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):(作用)利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”. 4.例题讲解例1、确定下列三角函数值的符号:(1)sin(-392°) (2)tan(-611π)练习(1)、确定下列三角函数值的符号: (1)tan(-672°) (2)sin1480°10¹ (3)cos 49π例2、求下列三角函数值 (1)sin390°; (2)cos 613π; (3)tan(-690°).练习(2)、求下列三角函数值 (1)sin420°; (2)cos 625π; (3)tan(-330°).5、由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.三角函数线(定义):(1) (2) (3) 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交点P (,)x y 。

任意角的三角函数 学案 导学案 课件

任意角的三角函数   学案  导学案  课件

课题: 任意角的三角函数(第2课时)
学习目标:
1. 掌握三角函数诱导公式一;
2.会用三角函数线表示任意角三角函数的值
学习重点:会用三角函数线表示任意角三角函数的值 学习难点:用三角函数线解三角不等式 导学流程: 一.了解感知
请同学们自己学习课本P15—17页了解三角函数线的相关概念
二.深入学习 1.诱导公式一
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)的作用:把任意角的正弦、余弦、正切化为0~360°之间角的正弦、余弦、正切。

2.三角函数线
(1) 叫做有向线段。

(2)请在单位圆上作出角α的正弦线、余弦线、正切线。

sin α=y = ;cos α=x = ;
tan α=x
y
= 。

3.典例解析:
例1. 求下列三角函数的值
(1)sin1480°10′ (2)49cos
π (3))6
11tan(π-.
例2. 作出下列各角的正弦线、余弦线、正切线。

⑴ 3
π; ⑵56π; ⑶23π-; ⑷136π-
例3. 解不等式sin x ≥2
2
三.迁移运用
O x
y
四.思维导图。

导学案任意角的三角函数

导学案任意角的三角函数

1.2.1任意角的三角函数<第一课时>学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义理解正弦、余弦、正切函数的定义域。

2.能初步应用定义分析和解决与三角函数值相关的一些简单问题重点难点教学重点:任意角的正弦、余弦、正切的定义。

教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗如图,设锐角a的顶点与原点0重合,始边与X轴的非负半轴重合,那么它的终边在第一象限•在a 的终边上任取一点P(a,b),它与原点的距离r= a2 b2>0.过P作x轴的垂线,垂足为M,则线段0M的长度为a线段MP的长度为b. 根据初中学过的三角函数定义,我们有MP b OM a MP bsin a= =—,cos a= =—,tan a= =—OP r OP r OP a问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化(二)新课导学1、单位圆的概念:.在直角坐标系中,我们称以__________ 为圆心,以 ___________ 为半径的圆为单位圆2、三角函数的概念我们能够利用单位圆定义任意角的三角函数.如图2所示,设a是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做a的正弦,记作sin即sin a =y;(2)X叫做a的余弦,记作cos a即cos a =X;(3)—叫做a的正切,记作tan o即卩tan a= (x工0).X X所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数注意:(1)正弦、余弦、正切、都是以角为自变量 ,以比值为函数值的函数•(2)由相似三角形的知识,对于确定的角 a 这三个比值不会随点 P 在a 的终边上的 位置的改变而改变•3、例1 求 5的正弦、余弦和正切值•思考:若把角5、探究三角函数值在各象限的符号三角函数 定义域sincostan探究三角函数的定义域 4、 练习1:已知角B 的终边经过点 P( 12,5),求角B 正弦、余弦和正切值。

人教A版高中数学必修四 1.2.1《任意角的三角函数》导学案(1)

人教A版高中数学必修四 1.2.1《任意角的三角函数》导学案(1)

1.2.1 任意角的三角函数(1)导学案【学习目标】1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一). 【导入新课】【复习导入一】:初中锐角的三角函数是如何定义的?在Rt ABC ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为sin ,cos ,tan a b a A A A c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义. 【情境导入二】提问:锐角O 的正弦、余弦、正切怎样表示? 借助直角三角形,复习回顾.引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP bOP r α==;cos OM a OP r α==;tan MP bOM aα==. 思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢? 显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==;cos OM a OP α==;tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数. 新授课阶段1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y,它与原点的距离为(0)r r ==>,那么:(1)比值y r叫做α的正弦,记作sin α,即sin y r α=;(2)比值x r 叫做α的余弦,记作cos α,即cos xr α=; (3)比值y x叫做α的正切,记作tan α,即tan y x α=;说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义. ④除以上两种情况外,对于确定的值α,比值y r 、x r 、yx分别是一个确定的实数,所以正弦、余弦、正切 是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数.2.三角函数的定义域、值域义{|,}2k k Z ααπ≠+∈例1 已知角α的终边经过点(2,3)P -,求α的三个函数制值. 解: 变式训练:已知角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.解:例2 求下列各角的正弦值、余弦值、正切值:(1)0;(2)π;(3)32π.解:例3 已知角α的终边过点(,2)(0)a a a≠,求α的正弦值、余弦值、正切值. 解:变式训练:求函数xxxxytantancoscos+=的值域.解析:答案:4.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>);②余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>);③正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号). 说明:若终边落在轴线上,则可用定义求出三角函数值. 5.诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同.即有:sin(2)sin k απα+=,cos(2)cos k απα+=, tan(2)tan k απα+=,其中k Z ∈.课堂小结1.任意角的三角函数的定义; 2.三角函数的定义域、值域;3.三角函数的符号及诱导公式.作业 见 同步练习 拓展提升1.α是第二象限角,P (x ,5)为其终边上一点,且x42cos =α,则αsin 的值为( )A. 410B. 46C. 42D.410-2.α是第二象限角,且2cos2cosαα-=,则2α是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θ C. tan sin cos θ<θ<θ D. cos sin tan θ<θ<θ 二、填空题4.已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 .5.函数x x y tan sin +=的定义域为 .6.4tan 3cos 2sin ⋅⋅的值为 (正数,负数,0,不存在). 三、解答题7.已知角α的终边上一点P的坐标为(y )(y 0≠),且sin y 4α=,求cos tan αα和1.2.1 任意角的三角函数(1)导学案参考答案例1解:因为2,3x y ==-,所以r ==sin13y r α===-;cos 13x r α===; 3tan 2y x α==-. 变式训练 解:4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 例2解:(1)因为当0α=时,x r =,0y =,所以sin 00=, cos 01=, tan 00=;(2)因为当απ=时,x r =-,0y =,所以sin 0π=, cos 1π=-, tan 0π=;(3)因为当32πα=时,0x =,y r =-,所以 3sin12π=-, 3cos 02π=, 3tan 2π不存在. 例3解:因为过点(,2)(0)a a a ≠,所以|r a =,,2x a y a ==.当0siny a r α>====时,cosx r α===;2tan =α;当0siny a r α<===时,cosx r α===;2tan =α. 变式训练:解析:分四个象限讨论.答案:{2,-2,0}拓展提升一、选择题:1. A 2 . C 3. D二、填空题4.]3,2(- 5. ⎭⎬⎫⎩⎨⎧Z∈+≠kkxx,2|ππ6. 负数三、解答题7. 解:由题意,得:sin y4α==解得:y=cos tan43α=-α=±。

高中数学必修四导学案-任意角的三角函数2

高中数学必修四导学案-任意角的三角函数2

1.2.1 任意角的三角函数< 第二课时>班级姓名学习目标1.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.2.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.重点难点教学重点终边相同的角的同一三角函数值相等教学难点利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.教学过程(一)复习提问1、三角函数(正弦,余弦,正切函数)的概念。

(两个定义)2、三角函数(正弦,余弦,正切函数)的定义域。

3、三角函数(正弦,余弦,正切函数)值在各象限的符号。

4、<小结>常见常用角的三角函数值(二)新知探究1、问题 :如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?2、求下列三角函数值 (1)sin420°; (2) sin60°3、结论 由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):(作用)利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”.4.例题讲解例1、确定下列三角函数值的符号:(1)sin(-392°) (2)tan(-611π) 练习(1)、确定下列三角函数值的符号: (1)tan(-672°) (2)sin1480°10¹ (3)cos49π例2、求下列三角函数值 (1)sin390°; (2)cos613π; (3)tan(-690°). 练习(2)、求下列三角函数值 (1)sin420°; (2)cos 625π; (3)tan(-330°).5、由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.三角函数线(定义):(1) (2) (3) (4)设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交点P (,)x y 。

人教版高中数学全套教案导学案1.2.1任意角的三角函数(1)

人教版高中数学全套教案导学案1.2.1任意角的三角函数(1)

1. 2.1 任意角的三角函数<第一课时>班级 姓名学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义。

.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符。

教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?(二)新课导学 1、单位圆的概念:.在直角坐标系中,我们称以 为圆心,以 为半径的圆为单位圆.2、三角函数的概念我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x; (3)x y 叫做α的正切,记作tanα,即tanα=xy (x≠0).所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的. (3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.3、例1:已知角α的终边与单位圆的交点是 求角α的正弦、余弦和正切值。

练习1:已知角α的终边经过点 ,求角α正弦、余弦和正切值。

任意角的三角函数 学案 导学案 课件

任意角的三角函数   学案  导学案  课件

课题: 任意角的三角函数【学习目标】1. 通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.;2. 借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数在各象限内的符号;3. 通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.第一环节:导入学习(激情导入)(约3分钟)问题一:回忆学过的锐角三角函数的定义问题二:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗; 问题三:改变终边上的点的位置,这三个比值会改变吗?为什么?第二环节:自主学习(知识点以题的形式呈现)(约15分钟) (一)基础学习(本课需要掌握的基础知识)[预习导引]1.任意角的三角函数的定义(1)在平面直角坐标系中,设α是一个任意角, 它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α,即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.(2)设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x .2.正弦、余弦、正切函数值在各象限的符号记忆口诀:一全正、二正弦、三正切、四余弦. 3.诱导公式一终边相同的角的同一三角函数的值相等,即: sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .(二)深入学习(需掌握的知识转化成能力——知识运用) 要点一 三角函数定义的应用例1 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则 x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10kk =10,∴10sin α+3cos α=10×⎝⎛⎭⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α为第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10kk =-10,∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.规律方法 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点坐标(a ,b ),则对应角的正弦值为sin α=ba 2+b 2,cos α=a a 2+b 2,tan α=ba .要点二 三角函数值符号的判断 例2 判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角).解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限,∴sin 3>0,cos 4<0,tan 5<0.(2)∵θ是第二象限角,∴-π2<-1<cos θ<0,∴sin(cos θ)<0.规律方法 由三角函数的定义知sin α=y r ,cos α=x r ,tan α=yx(r >0),可知角的三角函数值的符号是由角终边上任一点P (x ,y )的坐标确定的,则准确确定角的终边位置是判断该角的三角函数值符号的关键.要点三 诱导公式一的应用 例3 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 规律方法 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,亦可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”.第三环节:互助学习(约7分钟)1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C .-35 D .-45 答案 D解析 因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5,所以cos α=x r =-45.2.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.32 答案 A解析 2sin 30°=1,-2cos 30°=-3, ∴r =2,∴cos α=12.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34 B.34 C.43 D .-43答案 D 解析 ∵cos α=332+y2=35,∴32+y 2=5, ∴y 2=16,∵y <0,∴y =-4,∴tan α=-43.4.tan 405°-sin 450°+cos 750°= . 答案32解析 tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 5.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.要善于利用三角函数的定义及三角函数的符号规律解题,并且注意掌握解题时必要的分类讨论及三角函数值符号的正确选取.3.要牢记一些特殊角的正弦、余弦、正切值.第四环节:展示学习(约7分钟)第五环节:精讲学习(学生对应的是反思学习)(约8分钟)1. 角的定义;2. 终边相同的角;3. 象限角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013 高一数学必修 4 导学案
编制人 :郭超侠
班级:
学号:
姓名:
个人评价:
教师评价:
使用时间:
1.2.1 任意角的三角函数
【使用说明及学法指导】针对自己的特点合理运用导学案 【学习目标】 知识与技能: 掌握任意角的三角函数的定义;已知角α终边上一点,会求角α的各三角函数值; 过程与方法: 理解并掌握任意角的三角函数的定义;通过对定义域,三角函数值的符号,诱导公式一的推导, 提高学生分析、探究、解决问题的能力。 情感态度与价值观: 认识到事物之间是有联系的,学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 【教学重点】 :任意角的正弦、余弦、正切的定义,诱导公式(一) ; 【教学难点】 :利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集 合形式表示出来. 一、自主预习案: 【教材助读】 1.角的范围推广了,锐角三角函数的定义还能用吗? 2.三角函数是如何定义的?三角函数能否用几何中的方法表示出来,应怎样表示? 3.根据定义,如何判断正弦函数、余弦函数、正切函数的值在各个象限的符号? 4.根据定义,如何判断正弦函数、余弦函数、正切函数的定义域、值域? 5.什么是有向线段?怎样把三角函数与有向线段联系起来? 6.什么是正弦线、余弦线、正切线? 【预习自测】 1. 求下列各角的三角函数值: (1) 0 ; 2. 确定下列三角函数值的符号: (1) cos 250 ; (2) ;
C.第三象限角 [ ]
D.第四象限角
3.设θ 是三角形的内角,下列各对数中均取正值的是
A.tanθ 和 cosθ
B.co和 cosθ
D.sinθ 和 cos

2
4.函数 y
sin x sin x

cos x tan x 的值域是[ cos x tan x
]
A.{-1,1}
三、训练案 1.若 为第一象限角,那么 sin 2 , cos A.0 个 2.已知 tan cos 0 , B.1 个
tan 0 ,则 是 sin

, cos 2 , sin 中,其值必为正的有 2 2
C.2 个 [ ] D.3 个
[
]
A.第一象限角
B.第二象限角
2 n i s y y 0 ( 3 , y ) o s 和 tan 。 4 , 10. 已知角 的终边上一点 P 的坐标为 ( ) , 且 求c
例 2.已知角α的终边经过点 P(-3,-4) ,求角α的正弦、余弦和正切值 例 3.已知角α的终边过点 (a, 2a)(a 0) ,求α的正弦、余弦和正切值; 例 4. 求证:若 sin 0, 且tan 0 ,则角 是第三象限角,反之也成立
B.{-1,1,3} [ ]
C.{-1,3}
D.{1,3}
5.下列各式为正号的是 A.cos2·sin2
3 (3) 2
B.cos3·sin2
C.tan3·cos2
D.sin2·tan2
6.若|sinx|=sinx,则角 x 的集合是______.
sin( ) 4 ; (2)

cos 分别在第______象限. 7.设 是第二象限角,则点 Psin ,
四、畅谈分享本节课的收获和心得
8.若 cos
3 ,且 的终边过点 P( x,2) ,则 是第_____象限角, x =_____。 2
(3) tan(672 )
【我的疑惑】请你将预习中未能解决的问题和有疑惑的问题写下来,带到课堂上与大家探究。 二、合作探究案 例 1. 求
5 3
的正弦、余弦和正切值
9.已知角α 的终边经过点 P(4a,-3a)(a≠0)则 2sinα +cosα =_______.
相关文档
最新文档