南京市溧水区2013-2014学年初三数学第二次调研测试
13-14初三第二次统测数学参考答案

2013—2014学年度初三级第二次统测数 学 参 考 答 案一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中. 11.3212.BD AC = (答案不唯一) 13. 4- 14.315.4.6三、用心做一做 (本大题共3小题,每小题7分,共21分) 16.解:0)5)(3(=--x x 03=-x 或05=-x31=∴x ,52=x17. 解:原式=2)22(212333⨯-+⨯ =1121-+ =118. 解:(1)将)3,1(-A 代入542++=x ax y ,得 543+-=a 解得2=a 5422++=x x y(2)3)1(254222++=++=x x x y∴对称轴为直线1-=x ,顶点坐标为)3,1(-四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分). 19. 解:设鱼塘里有x 条鱼,则1002200=x 解得10000=x3000010030010000=⨯(千克) 所以,鱼塘里大约有10000条鱼,共有30000千克.20.证明:DE ∥AC ,DF ∥AB ∴四边形AEDF 是平行四边形AD 是ABC ∆的角平分线 DAF DAE ∠=∠∴ DE ∥ACDAF ADE ∠=∠∴ ADE DAE ∠=∠∴ DE AE =∴∴四边形AEDF 是菱形五、满怀信心,再接再厉 (本大题共3小题,每小题8分,共24分). 21. 解:(1)0436)(14)6(222>+=-⨯⨯--k k ∴方程有两个不相等的实数根 (2)由题意,有⎩⎨⎧=+=+14262121x x x x ,解得⎩⎨⎧=-=8221x x 当2-=x 时,有0)2(6)2(22=--⨯--k解得4±=k所以,方程的两个实数根是2-和8,k 的值为4±. 22.解:过点C 作AB CD ⊥于点D ,由题意得 ︒=∠30CAD ,︒=∠60CBD 在ACD Rt ∆中,ADCD=︒30tan CD CDCD AD 33330tan ==︒=∴在BCD Rt ∆中,BDCD=︒60tan CD CD CD BD 33360tan ==︒=∴BD AD AB -= CD CD 3333-=∴ 解得233=CD (米) 所以,生命所在点C 的深度为233米. 23. 解:(1)2000100)80100(=⨯-(元)所以,商场经营该商品原来一天可获利润2000元.(2)200010010)10100)(80100(2++-=+--=x x x x y (3)由题意,有 21602000100102=++-x x解得21=x ,82=x 当2=x 时,售价为982100=-(元) 当8=x 时,售价为928100=-(元) 所以,每件商品售价应为92元或98元. 24. (1)证明:ABC ∆ 是等边三角形∴︒=∠=∠=∠60ACB ABC BACEG ∥BC︒=∠=∠∴60ABC ADG ,︒=∠=∠60ACB AGD ADG ∆∴是等边三角形(2)ADG ∆ 是等边三角形 AG DG AD ==∴ ABC ∆ 是等边三角形 BC AC AB ==∴DB DE = AC AB EG ==∴︒=∠=∠60DAC AGE ,AC EG =,AD AG = AGE ∆∴≌DAC ∆(3)连接AF ,AEF ∆为等边三角形EG ∥BC ,EF ∥DE∴四边形EFCD 是平行四边形CD EF =∴,DCF DEF ∠=∠由(2)知AGE ∆≌DAC ∆CD AE =∴,ACD AED ∠=∠AE CD EF == ,︒=∠+∠=∠+∠=∠60DCB ACD DEF AED AEF AEF ∆∴为等边三角形25. 解:(1)43522=-=CD∴点A 的坐标为)3,4((2)在图乙中,由题意可知点A 的坐标为)3,5(设反比例函数的表达式为x ky =,则 1553=⨯=k 所以,反比例函数的表达式为xy 15=. (3)A 在双曲线上时1=t1-=∴t AP t t AP BA BP -=--=-=∴5)1(4215233)5(21211+-=⨯-=⋅=∴t t BD BP S t 秒后A 的坐标为)3,4(t +,将t x +=4代入x y 15=,得ty +=415Q ∴的坐标为)415,4(tt ++ t t DQ DC S +=+⨯⨯=⋅=∴430415421212 即215231+-=t S ,t S +=430212710S S =)21523(710430+-⨯=+∴t t 解得31=t ,21-=t (舍去)∴当31=t ,12710S S =。
江苏省南京市溧水区九年级上学期第二次月考模拟数学试题

江苏省南京市溧水区九年级上学期第二次月考模拟数学试题一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 2.一组数据0、-1、3、2、1的极差是( ) A .4 B .3C .2D .13.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒4.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°5.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,156.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断7.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 8.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .10π D .π10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 11.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°12.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( ) A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)13.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 14.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1915.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 18.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.19.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.20.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.21.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.24.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.25.一组数据:2,5,3,1,6,则这组数据的中位数是________.26.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.27.已知关于x 的一元二次方程2230x x k-+=有两个不相等的实数根,则k的取值范围是________.28.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .29.若m是关于x的方程x2-2x-3=0的解,则代数式4m-2m2+2的值是______.30.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.三、解答题31.如图,在ABC∆中,AB AC=.以AB为直径的O与BC交于点E,与AC交于点D,点F在边AC的延长线上,且12CBF BAC∠=∠.(1)试说明FB是O的切线;(2)过点C作CG AF⊥,垂足为C.若4CF=,3BG=,求O的半径;(3)连接DE,设CDE∆的面积为1S,ABC∆的面积为2S,若1215SS=,10AB=,求BC的长.32.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-33.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?34.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3. (1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标; ②若 tan ∠BPM=25,求抛物线的解析式.35.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程),四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.37.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.38.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.39.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据位似图形的性质,再结合点A与点A'的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.2.A解析:A 【解析】 【分析】根据极差的概念最大值减去最小值即可求解. 【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4. 故选A . 【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.3.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.B解析:B【解析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.7.C解析:C【解析】【分析】 由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.8.B解析:B【解析】【详解】解:将点(m,3m)代入反比例函数kyx=得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803π=.故选C.10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.12.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 13.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标. 【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(25∴5OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3, 由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=,即453O'F 22⋅=, ∴45.在Rt △O′FB 中,由勾股定理可求BF=22458433⎛⎫-= ⎪⎪⎝⎭,∴OF=820433+=. ∴O′的坐标为(2045,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.解析:a >0.【解析】试题分析:∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.18.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B2、B4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B 2020在第一象限,∵OA =53,OB =4,∠AOB =90°,∴AB 133===, ∴OA+AB 1+B 1C 2=53+133+4=10, ∴B 2的横坐标为:10, 同理:B 4的横坐标为:2×10=20,B 6的横坐标为:3×10=30,∴点B 2020横坐标为:2020102⨯=10100. 故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.19.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.20.50【解析】【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可. 【详解】解:连接AC,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】 连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 21.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:45【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.24.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2-解析:272【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=1MD=1,2∴FM=DM×cos30°=3,∴2227MC FM CF=+=,∴A′C=MC﹣MA′=272-.-.故答案为272【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.25.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.26.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.27.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.=方程有两个不相等的实数根,a,b=-,c k1241240∴∆=-=->,b ac k∴<.k3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.29.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.30.【解析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形. 三、解答题 31.(1)详见解析;(2)3;(3)45BC =.【解析】【分析】(1)根据切线的判断方法证明AB BF ⊥即可求解;(2)根据tan CG AB F CF BF==即可求出AB 即可求解; (3)连接BD .求出E 为BC 中点,得到BDE CDE S S ∆∆=,根据1215S S =,设1S a =,25S a =,得到2BCD S a ∆=,3ABD S a ∆=,求出23CD AD =得到6AD =,4CD =,再根据勾股定理即可求解.【详解】(1)证明:连接AE . ∵AB 为直径,∴90AEB =︒∠.又∵AB AC =,∴12BAE BAC ∠=∠, ∵12CBF BAC ∠=∠,∴CBF BAE ∠=∠. ∵90BAE ABE ∠+∠=︒,∴90FBC ABE ∠+∠=︒,即AB BF ⊥.又∵AB 是直径,∴FB 与O 相切.(2)解:∵AB AC =,∴A ABC CB =∠∠,又∵AB BF ⊥,CG AC ⊥,∴ABC GBC ACB BCG ∠+∠=∠+∠,∴GBC BCG ∠=∠,∴3BG CG ==.∵3CG =,4CF =,∴5FG =,∴8FB =.∵tan CG AB F CF BF==, ∴6AB =,∴O 的半径是3.(3)解:连接BD .∵AB 为直径,∴90ADB ∠=︒.∵AB AC =,AE BC ⊥,∴E 为BC 中点,∴BDE CDE S S ∆∆=.又∵1215S S =,设1S a =,25S a =,∴2BCD S a ∆=,3ABD S a ∆=, ∴23BCD ABD S S ∆∆=,∴23CD AD =. 又∵10AB AC ==,∴6AD =,4CD =.∵在Rt ABD ∆中,BD 8==,∴在Rt BCD ∆中,BC =【点睛】此题主要考查圆的切线综合,解题的关键是熟知三角函数的性质、切线的判定、勾股定理的应用.32.(1)1233x x =-=-;(2)122,33x x == 【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)2620x x ++= 2697x x ++=2(3)7x +=3x +=1233x x =-=-.(2)2(3)3(3)x x x -=-2(3)3(3)0x x x ---=(23x)(x 3)0--=,2-3x=0或x-3=0 ∴122,33x x == 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.33.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.34.(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++. 【解析】【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO △EPM 得到AO EM OB PM =,找出OE=a c-,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式. 【详解】(1)∵二次函数为:22y ax ax c =-+(a<0), ∴对称轴为2122b a x a a-=-=-=, 过点P 作PM ⊥x 轴于点M ,则M (1,0),M 为AC 中点,又OA :OC=1:3,设A (-m ,0),C (3m ,0), ∴231m m -+=, 解得:m=1, ∴A (-1,0),C (3,0),(2)①做图如下:∵PE∥AB,∴∠BAO=∠PEM,又∠AOB=∠EMP,∴△ABO△EPM,∴AO EM OB PM=,由(1)知:A(-1,0),C(3,0),M(1,0),B(0,c),P(1,c-a),∴11OEc c a+=-,∴OE=ac -,将A(-1,0)代入解析式得:3a+c=0,∴c=-3a,∴133a aOEc a=-==,∴E(-13,0);②设PM 交BD 于点N ;∵22y ax ax c =-+(a<0),∴x=1时,y=c-a ,即点P (1,c-a ),∵BN ‖AC ,PM ⊥x 轴∴NM= BO=c ,BN=OM=1,∴PN=-a ,∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52, 由(1)知c=-3a , ∴c=152; ∴原函数解析式为:2515522y x x =-++. 【点睛】 此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式.35.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩,解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0. 【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.四、压轴题36.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】 解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+= ∵OD m ⊥,m l ⊥∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】 本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.37.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】【分析】。
江苏省2013初三第二次调研测试

P(奇数)= ……………………………………… …………………………(8分)
23解:(1)a=5,b=0.2,c=0.24………………………………………………(3分)
(2)72………………………………………………………………(5分)
(3)1525 ×100=60(个)
A.先抽的概率大些B.三人的概率相等C.无法确定谁的概率大D.以上都不对
7.二次函数y=x2+2x-5有………………………………………………………………………(▲)
A.最大值-5 B.最小值-5C.最大值-6 D.最小值-6
8.若圆柱的底面半径为3,母线长为4,则这个圆柱的全面积为…………………………………(▲)
13.因式分解:2x2-8y2=▲.
14.已知⊙O1与⊙O2外切,圆心距为8cm,且⊙O1的半径为5cm,则 ⊙O2的半径为▲厘米.
15.在一模考试中,某小组8名同学的数学成绩(单位:分)如下:108,100,108,112,120,95,118,92.这8名同学这次成绩的极差为▲分.
16如图,在Rt△ABC中,∠ACB=90°,D、E分别是AC、AB的中点,DE=3,CE=5,则AC= ▲.
∵B′Q=QP-B′PБайду номын сангаас-1,
∴BB′=2-2,即四边形ABCD沿直线l向右平移(2-2)cm可以得到菱形AEFD.
………(5分)
②如图,当四边形ABCD沿直线l向左平移形成菱形时,过点A做AP⊥直线l,
由①知AP=.
∵四边形AEFD为菱形,∴AE=AD=6.
根据题意有AB′∥EB,∴∠EBQ=∠AB′Q .
1.-5的相反数是…………………………………………………………………………………(▲)
南京市溧水区中考二模数学试题及答案

溧水区2012~2013学年度第二学期第二次调研测试九年级数学试卷注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上........,不能答在试卷上........ 一、选择题(本大题共有6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.以下关于8的说法,错误..的是( ▲ ) A .822=±B .8是无理数C .283<<D .822=2.数据7、8、9、10、6、10、8、9、7、10的众数是( ▲ )A .7B .8C .9D .103.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( ▲ )A .120°B .135°C .145°D .150°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( ▲ )A .100°B .105°C .108°D .110°5.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上,点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2013所表示的数为( ▲ ). A. -2013 B. 2013 C. -1007 D.10076.如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( ▲ ) A .2π B .π C .32 D .4二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直1 234DC BA E第5题图第6题图 第3题图接填写在答题卡相应的位置........上) 7.不等式组⎩⎨⎧><2-1x x 的解集为 ▲ .8.方程x (x -1)=2(x -1)的解是 ▲ .9.若两个相似三角形的相似比为1:4,则它们的周长比为 ▲ . 10.等腰△ABC 的一个外角是80°,则其顶角的度数为 ▲ . 11.分解因式2x 2—4x +2的最终结果是 ▲ .12.把一次函数y =-2x +4的图象向左平移2个长度单位,新图象的函数表达式是 ▲ .13.已知二次函数c bx x y ++=2中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当0<x 1<1,2<x 2<3时,则1y ▲ 2y (填“>”或“<”).x …… 0 1 2 3 …… y……1-2-3-2……14.已知关于x 的方程422=+-x mx 的解是负数,则m 的取值范围为___ ___ ▲ ______. 15.如图,以数轴上的原点O 为圆心,6为半径的扇形中,圆心角∠AOB =90°,另一个扇形是以点P 为圆心,10为半径,圆心角∠CPD =60°,点P 在数轴上表示实数a ,如果两个扇形的圆弧部分(⌒AB 和⌒CD )相交,那么实数a 的取值范围是 ▲ .16.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = ▲ cm .三、解答题(本大题共12小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题6分)计算:()()022013812--+-18.(本题6分)先化简再求值:21(1+)11x x x ÷--,其中x 是方程022=-x x 的根. 第16题图A DBE C第15题图19.(本题6分)在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a 、b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校; 情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图像分别为▲ , ▲ .(填写序号) (2)请你为剩下的函数图像写出一个适合的情境.20.(本题6分)今年N 市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a = ▲ ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为 ▲ ;(3)求被调查的消费者平均每人年收入为多少万元?21.(本题6分)某商场“五一节”期间举办促销活动,顾客每购买一定金额的商品,即可获得一次摸奖机会,中奖的概率为0.5,该商场设计了一个摸奖方案:在一个不透明的口袋里放入红、白、黄三种颜色的球(除颜色外其余都相同),已放入消费者打算购买住房面积统计图年收入(万元) 5 6 1012 25 被调查的消费者数(人)1050a82消费者年收入统计表红球2个,黄球1个.若从中任意摸出一个球为红球即为中奖.(1)在口袋中还应放入几个白球?(2)在(1)的条件下,从袋中任意摸出一球,不放回,摇匀后再摸出一球,则两次都摸到红球的概率是多少?请列表或画树状图进行说明.22.(本题6分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN的数量关系,并证明你的结论.23.(本题6分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =16km ,∠A =53°,∠B =30°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据:73.13≈,sin53°≈0.80,cos53°≈0.60)24.(本题8分)古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如22x ax b +=(a >0,b >0)的方程的图解法是:如图,以2a 和b 为两直角边作Rt △ABC ,再在斜边上截取BD= BC =2a,则AD 的长就是所求方B CA D MN53°30°D CE F BAACBD程的解.(1)请用含字母a 、b 的代数式表示AD 的长;(2)请利用你已学过的方程知识验证该图解法的正确性,并说说这种解法的遗憾之处.25.(本题8分)已知抛物线y =ax 2+bx 经过点A (3,3)和点P (t ,0) ,且t ≠ 0. (1) 若t =2,求a 、b 的值;(2) 若t >3,请判断该抛物线的开口方向.26.(本题8分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若34 DE ,∠D =45°. (1)求⊙O 的半径; (2)求图中阴影部分的面积.27.(本题10分)我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理. 当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x (元),年销售量为y (万件),年获利为W (万元).●AB DFPOC E(年利润=年销售总额―生产成本―投资成本) (1)直接写出y 与x 之间的函数关系式;(2)求第一年的年获利W 与x 之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是多少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?28.(本题12分)已知两个全等的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C =∠EFB =90º,∠E =∠ABC =30º,AB=DE =4. (1)若纸片△DEF 不动,把△ABC 绕点F 逆时针旋转30º时,连结CD ,AE ,如图2. ①求证:四边形ACDE 为梯形; ②求四边形ACDE 的面积.(2)将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,直接写出△ABC 恰有一边与DE 平行的时间.(写出所有可能的结果)AC F E(D )B图1GACFEDB图2G2013年溧水区初三第二次模拟试卷评分标准一、选择题(本大题共6小题,每小题2分,共计12分.)1.A 2.D 3.B 4.A 5.C 6.C 二、填空题(本大题共10小题,每小题2分,共计20分.)7.12-<<x 8.x=1、x =2 9.1:4 10.100° 11.2(x —1)2 12.y=-2x 13.> 14.m >-8且m ≠-4 15.4-8-<<x 16.8三、解答题(本大题共12小题,共计88分) 17.()()022009812--+-=122122-2-++……………………………………………………4分 =2……………………………………………………………………………6分 18.21(1+)11x x x ÷-- =()()1-x 1x x 1-x 11-x 1-x +÷⎪⎭⎫⎝⎛+……………………………………………3分 =x+1…………………………………………………………………………4分 方程022=-x x 的根是:x 1=0、x 1=2 ……………………………………………………………5分∵x 不能取0,∴当x 1=2时,原式=3…………………………………6分 19.(1)③、①(对1个得2分) …………………………………………4分(2)小芳离开家走了一段路程后来到一个报亭,在报亭读了一段时间报后,按原速回家了.(答案不唯一)……………………………………………………………6分 20.(1)a =30; ……………………………………………………………2分(2)48%;………………………………………………… ……………4分(3)96.71002258121030650105=⨯+⨯+⨯+⨯+⨯……………6分21.解:(1)设白球的个数有x 个.12x 2++=21……………………………………………………2分解得x =1.…………………………………………………………3分 答:白球的个数为1个; (2)白 白 白白P (两次摸到红球)=61…………………………………………………6分 22.如图,在△ABC 和△DCB 中, AC 与DB 交于点M .(1)∵AB = DC ,AC = DB ,BC=CB …………………2分∴△ABC ≌△DCB ………………………………………3分 (2)BN=CN理由:∵CN ∥BD 、BN ∥AC∴∠1=∠4、∠2=∠3…………………………………4分 ∵△ABC ≌△DCB∴∠1=∠2 ……………………………………………5分 ∴∠3=∠4∴BN=CN ………………………………………………6分 23.作DG ⊥AB 于G 、CH ⊥AB 于H 在Rt △BCH 中,Sin ∠B=CBCH,BC =16km ,∠B =30° ∴CH=8;………………………………………………………2分 cos ∠B=CBBH∴BH=83………………………………………3分 易得DG=CH=8 在△ADG 中,Sin ∠A=ADDG、DG=8 ∴AD=10、AG=6………4分 ∴(AD+DC+CB )-(AG+GH+HB )=20-83≈6.2…………6分 24.解:(1)∵∠C =90°,BC =2a,AC=b ∴AB=422a b +…………………………………………………………………3分22224422a ab a aAD b +-=+-=………………………………………5分 (2) 用求根公式求得:22142b a a x -+-= ;22242b a ax +-= …………7分正确性:AD 的长就是方程的正根。
溧水区第一初级中学2014届九年级上期中质量调研数学试题

溧水区2013~2014学年度第一学期期中质量调研测试九年级数学试卷(考试时间120分钟 试卷满分120分)注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,不能答在试卷上. 一、选择题(本大题共有6小题,每小题2分,共12分) 1.下列各式中,与3是同类二次根式的是( ▲ ) A .24 B .18C .12D .92.方程322-=x x 的根的情况是( ▲ )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根 3.下列运算正确的是( ▲ )A .a a ±=2B .24·32= 6 C .18÷2 = 9 D .43- 27 = 14.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差( ▲ )A .不变B .增大C .减小D .无法确定5.已知一元二次方程01582=+-x x 的两个解恰好分别是Rt △ABC 的两边长,则第3条边长为 ( ▲ ) A .3B .4C .5D .4或346.如图,O 为□ABCD 内任意一点,连接OA 、OB 、OC 、OD 、BD ,△AOB 的面积为a ,△BOC 的面积为b (b >a ),则△BOD 的面积为( ▲ ) A .)21a b -( B .)(a b +21 C .b - a D .a+bBCDOA第6题图二、填空题(本大题共有10小题,每小题2分,共20分)7.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ▲ ,使得该菱形为正方形.8.要使二次根式x -1有意义,则x 的取值范围是 ▲ .9.一组数据1,3,2,5,x 的平均数为3,那么这组数据的极差是 ▲ . 10.已知一元二次方程032=+-mx x 的一个根为1,则另一个根为 ▲ .11.化简:①=-2)4( ▲ ;②=-⨯263= ▲ .12.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD 、BC 于E 、F 点,连结CE , 则△CDE 的周长为 ▲ cm .13.若6+11和6-11的整数部分分别是a 和b ,则a+b 的值是 ▲ .14.已知关于x 的一元二次方程0422=++-k x k x 有两个不相等的实数根,则k 的取值范围是 ▲ .15.如图,已知EF 是梯形ABCD 的中位线,△DEF 的面积为24cm ,则梯形ABCD 的面积为 ▲ cm 2.16.计算(1-2-3-4- 5)(2+3+4+ 5+6)-(1-2-3-4- 5-6)(2+3+4+ 5)的结果是 ▲ .三、解答题(本大题共有12小题,共88分) 17. (本题5分)6243322÷-+.18.(本题5分)化简:322y x · )41(y x(x >0,y ≥0).A BCDD C B AOO第7题图A D E BCF第15题图第12题图19.(本题5分)用公式法解方程 x x 5322=- .20.(本题5分)解方程 3x (x -1)=2-2x .21.(本题7分)如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.22.(本题7分)已知关于x 的一元二次方程12+++n mx x =0的一根为2. (1)用含m 的代数式表示n ;(2)试说明:关于y 的一元二次方程02=++n my y 总有两个不相等的实数根.23.(本题7分)小秋与小夏是某中学篮球队的队员,在最近五场球赛中的得分如下表所示:第一场 第二场 第三场 第四场 第五场 小秋10139810第21题图小夏 12 2 13 21 2(1)根据上表所给的数据,填写下表:平均数 中位数 众数 方差 小秋 10 ▲ 10 2.8 小夏1012▲32.4(2)根据以上信息,若教练选择小秋参加下一场比赛,教练的理由是什么?(3)若小秋的下一场球赛得分是11分,则在小秋得分的四个统计量中(平均数、中位数、众数与方差)哪些发生了改变;改变后是变大还是变小(只要回答是“变大”或“变小”)? ( ()()()[]2222121x x x x x x nS n -++-+-= )24.(本题8分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?25.(本题8分)如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,BE ∥AC 交DC 的延长线于点E .(1)求证:BD=BE ;(2)若∠DBC =30°,BO =4,求梯形ABED 的面积.26.(本题9分)某超市进一批运动服,每件成本50元,如果按每件60元出售,可销售800件;如果每涨价5元,其销售量就将减少100件.如果超市销售这批运动服要获利12000元,那么这批运动服售价应定为多少元?该超市应进这种运动服多少件?ABCDOE第25题图27.(本题10分)如图①,在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于F ,然后展开铺平,则以B 、E 、F 为顶点的三角形△BEF 称为矩形ABCD 的“折痕三角形” .(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”形状是一个_________三角形;(2)当“折痕△BEF ”的顶点E 位于AD 的中点时,在图(2)中,作出这个“折痕△BEF ”(要求尺规作图,保留作图痕迹,并写出作法);(3)如图③,在矩形ABCD 中,若AB =2,BC =4,当“折痕△BEF ”的顶点F 和点C 重合时,设折痕与AB 交于点N ,求AN 的长.28.(本题12分) 情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C′D ,如图1所示.将△A′C′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′ )、B 在同一条直线上,如图2所示. 观察图2可知:与BC 相等的线段是 ▲ ,∠CAC′= ▲ °.问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰直角三角形ABE 和等腰直角三角形ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q .试探究EP 与FQ 之间的数量关系,并证明你的结论.图1 图2C'A'B A DCABCDBCD A (A')C'AEFPQ拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H .若AB= k AE ,AC= k AF ,试探究HE 与HF 之间的数量关系,并说明理由.溧水区2013~2014学年度第一学期期中质量调研测试初三数学答案一、选择题:(本大题共有6小题,每小题2分,共12分) 1.C 2.D 3.B 4.A 5.D 6.C 二、填空题(本大题共10个小题,每小题2分,共20分)7.答案不唯一,如AC=BD 或∠ABC=90°等; 8. x ≤1; 9.4; 10.3; 11.4、23; 12.10 13.11; 14. -2≤k <2; 15.16; 16. 6 三、解答题(本大题共有12小题,共88分)17. 原式=24238+-…………………………………………3分 =23 ……………………………………………………5分 18.当x >0,y ≥0时,原式=y y x 22·y x2……………………2分=222y xy …………………………4分=222xy ………………………………5分 (其它方法参照给分)19.解:移项得 03522=--x x ……………………………………………1分,∵3,5,2-=-==c b a∴ ()()0493245422>=-⨯⨯--=-ac b (可不写) ……………3分图4MNGFECBAH∴()344951=+--=x ,()2144952-=---=x ………………………5分(不写b 2-4ac 的计算过程,结果正确不扣分,另其它方法得3分)20.解:3x (x -1)=-2(x -1) ……………………………………………………1分3x (x -1)+2(x -1)=0……………………………………………………2分 (x -1)( 3x +2) =0 ………………………………………………………3分 32,121-==x x (其它方法参照给分)…………………………………4分 21.证明: ∵AD∥BC; ∴∠ADE=∠CBF …………1分 又∵AE⊥AD,CF⊥BC;∴∠EAD=∠FCB=90°………3分 又∵AE=CF ∴△AED ≌△CFB (AAS) …………5分 ∴AD=BC ……………………………………………6分 又∵AD ∥BC, ∴四边形ABCD 是平行四边形 ………7分22.解:(1)由题意得,4+2m+n+1=0 ……………………………………… 1分; 所以n=-5-2m ……………………………………………………2分. (2) 由题意得,=-ac b 42n m 42--=2m 4(-5-2m) …………………3分=4)4(2++m …………………………………5分∵2)4(+m ≥0;∴ac b 42->0;……………………………… 6分 ∴关于y 的一元二次方程02=++n my y 总有两个不相等的实数根……7分 23.(1)10 , 2………………………………………………………………2分; (2)理由:小秋与小夏平均得分相同,且小秋的方差小于小夏,即小秋的得分稳定,能正常发挥. …………………………………5分 (答到小秋方差小,得分稳定即可得2分)(3)平均数变大,方差变小………………………………………………7分(答对每一项即可得1分,少答一个扣1分;若仅回答中位数不变,众数不变也可得1分) 24.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .………1分根据题意得:5000(1+x )2=7200.…………………………………4分 解得 x 1 =0.2=20%,x 2 =﹣2.2 (不合题意,舍去) ………………6分 答:这两年我国公民出境旅游总人数的年平均增长率为20%.…………7分 (2)如果2013年仍保持相同的年平均增长率,则2013年我国公民出境旅游总人数为 7200(1+x )2 =7200×1.44=10368万人次. 答:预测2013年我国公民出境旅游总人数约1.368万人次.…………………8分 25.(1)证明:∵四边形ABCD 是矩形∴AC =BD , AB ∥CD …1分又∵BE ∥AC , ∴四边形ABEC 是平行四边形 … 2分ADO第21题图∴BE= AC ……………………………………… 3分 ∴BD=BE ………………………………………… 4分(2)解:∵四边形ABCD 是矩形 ∴AO=OC=BO=OD=4,即BD=8∵∠DBC =30︒ ,∴∠ABO= 90°— 30°= 60°∴△ABO 是等边三角形 即AB=OB=4 于是AB =DC =CE =4 ……… 6分 在Rt △BCD 中,由勾股定理得BC=34 …………………………… 7分∴梯形ABED 的面积=32434)444(21)(21=⋅++⋅=⋅+⋅BC DE AB … 8分26.解:设这批运动服定价为每件x 元, ……………………………………… 1分根据题意得:12000)100560800)(50(=⨯---x x ……………………4分 解这个方程得 80,7021==x x …………………………………………6分 当701=x 时,该商店应进这种服装600件;当802=x 时,该商店应进这种服装400件;……………………………8分 答:这批服装定价为每件70元,该商店应进这种服装600件,这批服装定价为每件80元,该商店应进这种服装400件.………………9分 27. (1)等腰三角形……………………………………………………………… 1分 (2)(作图2分,写作法2分)①连接BE,②画BE 的垂直平分线,交BC 于点F③连接EF ,则△BEF 即为所求作的折叠三角形…………………………4分(3)∵四边形ABCD 为矩形∴CD=AB=2,AD=BC=4,∠A=∠D=90°由折叠可知:FE=BC=4,NE=BE在Rt △DEF 中,由勾股定理可得:DE=22FE CD -=42—22=23 …………6分 设AN=x , 则NE=BN=AB -AN=2-x在Rt △ANE 中,由勾股定理可得:AN 2+AE 2=NE 2……………………… 7分即222)2()324(x x -=-+,………………………………………………… 8分 解得:634,634-==∴-=x AN x ………………………………………10分 28. 情境观察 AD (或A′D ),90 ……………………2分问题探究 结论:EP =FQ . ……………………3分 证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°.∴∠BAG +∠EAP =90°. ……………………………4分 ∵AG ⊥BC ,∴∠BAG +∠ABG =90°, ……………5分 ∴∠ABG =∠EAP . …………………………………6分图3ABCEFGPQ∵EP ⊥AG ,∴∠AGB =∠EPA =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . …………………7分同理AG =FQ . ∴EP =FQ . …………………………8分 拓展延伸 结论: HE =HF . ……………………9分 理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .∵∠AGB =∠EPA =90°,∴△ABG ∽△EAP ,∴AG EP = ABEA. ……………………………………………10分同理△ACG ∽△FAQ ,∴AG FP = ACFA .∵AB =k AE ,AC =k AF ,∴AB EA = AC FA =k ,∴AG EP = AGFP. ∴EP =FQ . …………11分∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF ……………………12分Q P H ABCEFGNM。
江苏省南京市溧水区中考数学二模试卷

江苏省南京市溧水区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)肥皂泡的泡壁厚度大约是0.000 07mm,用科学记数法表示为()A.7×10﹣4B.7×10﹣5C.0.7×10﹣4D.0.7×10﹣5 2.(2分)下列计算正确的是()A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)9 3.(2分)数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为()A.3﹣a B.﹣3﹣a C.a﹣3D.a+34.(2分)估计介于()A.0.6与0.7之间B.0.7与0.8之间C.0.8与0.9之间D.0.9与1之间5.(2分)如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A.10B.9C.8D.76.(2分)如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A、P、E三点为顶点的直角三角形的个数为()A.2B.3C.4D.5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)5的算术平方根是;将写成负整数指数幂的形式是.8.(2分)计算的结果是.9.(2分)设x1x2是方程2x2+nx+m=0的两个根,且x1+x2=4,x1x2=3,则n =.10.(2分)在函数y=中,自变量x的取值范围是.11.(2分)方程=的解是.12.(2分)已知(x﹣y﹣3)2+|x+y+2|=0,则x2﹣y2的值是.13.(2分)若a m=6,a n=3,则a m+2n的值为.14.(2分)如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是.15.(2分)如图,在⊙O的内接五边形ABCDE中,∠B+∠E=215°,则∠CAD =°.16.(2分)如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是四边形内一点,若S 四边形AEOH =3,S四边形BFOE =4,S四边形CGOF =5,则S四边形DHOG= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表. 根据以上信息回答下列问题:最喜爱的趣味运动项目类型频数分布表: 项目类型 频数 频率 跳长绳 25 a 踢毽子 20 0.2 背夹球 b 0.4 拔河150.15(1)直接写出a = ,b = ;(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?20.(8分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,过点D作BA的平行线交AC于点O,过点A作BC的平行线交DO的延长线于点E,连接CE.(1)求证:四边形ADCE是菱形;(2)作出△ABC外接圆,不写作法,请指出圆心与半径;(3)若AO:BD=:2,求证:点E在△ABC的外接圆上.21.(8分)(1)小杨和小姜住在同一个小区,该小区到苏果超市有A、B、C三条路线.①求小杨随机选择一条路线,恰好是A路线的概率;②求小杨和小姜两人分别随机选择一条路线去苏果超市,恰好两人选择同一条路线的概率.(2)有4位顾客在超市中选购4种品牌的方便面.如果每位顾客从4种品牌中随机的选购一种,那么4位顾客选购同一品牌的概率是,至少有2位顾客选择的不是同一品牌的概率是(直接填字母序号)A.B.()3C.1﹣()3D.1﹣()3.22.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.23.(8分)新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:家居用品名称单价(元)数量(个)金额(元)挂钟30260垃圾桶15塑料鞋架40艺术字画a290电热水壶351b合计8280(1)直接写出a=,b=;(2)甲居民购买了垃圾桶,塑料鞋架各几个?(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?24.(8分)某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;(1)当时间为20s、100s时,该食物的温度分别为℃,℃;(2)求线段DE所表示的y与x之间的函数表达式;(3)时间是多少时,该食物的温度最高?最高是多少?25.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.(8分)已知二次函数y1=a(x﹣2)2+k中,函数y1与自变量x的部分对应值如表:x…1234…y…2125…(1)求该二次函数的表达式;(2)将该函数的图象向左平移2个单位长度,得到二次函数y2的图象,分别在y1、y2的图象上取点A(m,n1)B(m+1,n2),试比较n1与n2的大小.27.(11分)【问题探究】已知:如图①所示,∠MPN的顶点为P,⊙O的圆心O从顶点P出发,沿着PN 方向平移.(1)如图②所示,当⊙O分别与射线PM,PN相交于A、B、C、D四个点,连接AC、BD,可以证得△P AC∽△,从而可以得到:P A•P B=P C•P D.(2)如图③所示,当⊙O与射线PM相切于点A,与射线PN相交于C、D两个点.求证:P A2=PC•PD.【简单应用】(3)如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段P A与PE、PF之间的数量关系;当P A=4,EF=2,则PE=.【拓展延伸】(4)如图⑤所示,在以O为圆心的两个同心圆中,A、B是大⊙O上的任意两点,经过A、B两点作线段,分别交小⊙O于C、E、D、F四个点.求证:AC•AE=BD•BF.(友情提醒:可直接运用本题上面所得到的相关结论)江苏省南京市溧水区中考数学二模试卷参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.B;2.D;3.D;4.A;5.A;6.C;二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.;5﹣2;8.1﹣;9.﹣8;10.x≠﹣1;11.x=3;12.﹣6;13.54;14.y1=;15.35;16.4;三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.;18.;19.0.25;40;20.;21.B;C;22.;23.45;35;24.50;62;25.;26.;27.△PDB;PA2=PE•PF;6;。
南京市溧水县第二学期初三第二次调研测试

南京市溧水县第二学期初三第二次调研测试数学试卷一、选择题(每题2 分,共 20 分)1.计算 │- 2│-2 的结果是( ).A . 0B .- 2C .- 4D . 42.计算 x 6÷x 3的结果是().A . x 9B . x 3C . x 2D . 23.一次数学测试后,随机抽取九年级二班 5 名学生的成绩以下: 78, 85, 91, 98, 98.关于这组数听说法错误 的是().....A .极差是 20B .众数是 98C .中位数是 91D .均匀数是 914.从某班学生中随机选用一名学生是女生的概率为3,则该班女生与男生的人数比是 ().5A .3∶2B .3∶5C . 2∶3D .2∶55.不等式组2x 4 03 x的解集为().A . x >2B . x < 3C . x > 2 或 x <- 3D . 2< x < 36.抛物线 y = x 2 - 1 的极点坐标是( ).A .(0, 1)B .( 0,- 1)C .(1, 0)D .(- 1,0)7.假如a 是等边三角形的一个锐角,则tan 的值是(). 13C . 1D . 3A .B .238.以以下图, 一种滑翔伞的形状是左右成轴对称的四边形 ABCD ,此中∠ BAD=150 °,∠ B=40 °,则∠ BCD 的度数是( ).A .130°B . 150 °C . 40°D . 65°9.若 M1, y 1 , N1, y 2 , P 1 , y 3 三点都在函数 yk( k0) 的图象上,242x则 y1、 y2、 y3的大小关系为().A. y2 y3 y1 B y y y C.y3 y1 y2 D.y3 y2 y1 . 2 1 310.以以下图,在平面直角坐标系中,圆心在x 轴上的⊙ E 与两坐标轴分别交于A、B、C、D 四点,已知 A(- 1, 0),B( 9,0),则线段 CD 的长度为().A . 3 B. 4 C. 6 D. 8二、填空题(每题 3 分,共18 分)11.因式分解:2m2-8 = .12.要使二次根式 2 x 6 存心义,13.将一副直角三角尺如图搁置,则∠x 应知足的条件是ABC=__________ .°.14.已知某个几何体的主视图、左视图、俯视图分别为三角形、三角形、圆,则该几何体是.15.已知圆锥的底面半径为9 ㎝,母线长为30 ㎝,则圆锥的侧面积为(结果保存π).16.如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45 后,B 点的坐标为.三、(每题 5 分,共 15 分)17.计算:(π1)0 123.18.解方程: 2 x 2 1 .x 3 x 319.小明在商场帮妈妈买回一袋纸杯,他把纸杯齐整地叠放在一起,如图请你依据图中的信息,(1)求齐整叠放纸杯的高度 y( cm)与纸杯数 x(个)之间的一次函数关系式;(2)若小明把 50 个纸杯齐整叠放在一起时,它的高度是多少?四、(第 20、 21、 22 题,每题6分,第 23题7分,共25 分)20.在“五·一”时期,小明、小亮等同学随家人一起到某旅行景点游乐.下表是该旅行景点的票价状况票价成人40 元/张学生按成人票价的 5 折优惠小明他们 13 个人,共需 420 元,问小明他们一共去了几个成人?几个学生?21.《中学生体质健康标准》规定学生体质健康等级标准为:86 分及以上为优异;76 分~ 85 分为优异; 60 分~ 75 分为及格;59 分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分状况以以下图.( 1)在抽取的学生中不及格人数所占的百分比是;( 2)若抽取的学生中优异的人数有9 人,请算出共抽取了多少名学生?(3)小明按以下方法计算出抽取的学生均匀得分是:(90+78+66+42)÷4=69.依据所学的统计知识判断小明的计算能否正确,若不正确,请写出正确的算式;(不用算出结果)22.甲、乙两人组队参加一次竞猜游戏活动,活动中抽到一道选择题,有A、 B、 C 三个选项,只有选项 B 是正确答案.甲、乙两人都不知道正确答案,两人各随意猜一个答案,若规定两人答案都正确得 3 分,两人中有且只有一个人的答案正确得 1 分,两人答案都不正确得 0 分.回答以下问题:( 1)两人该题得 3 分的概率是多少?( 2)两人该题得 1 分的概率是多少?23.已知, O 为正方形ABCD 对角线上一点,以O 为圆心, OA 的长为半径的⊙O 与 BC 相切于 M,与 AB 、 AD 分别订交于E、 F.(1)求证: CD 与⊙ O 相切;(2)若⊙ O 的半径为2,求正方形 ABCD 的边长.五、(第 24 题 7 分,第 25 题 8 分,共 15 分)24.如图,在△ABC中,D是BC边上的一点, E 是 AD 的中点,过 A 点作 BC 的平行线交 CE 的延伸线于 F ,且 AF BD ,连接 BF .(1)求证:D是BC的中点.(2)假如AB AC,试判断四边形AFBD的形状,并证明你的结论.25.以以下图,某边防巡逻队在一个海滨浴场岸边的 A 点处发现海中的 B 点有人求救,便立即派三名救生员前往救援。
江苏省南京市溧水县中考数学二模试题(含解析)

江苏省南京市溧水县2015年中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算a2•a4÷(﹣a2)2的结果是()A.a B.a2C.﹣a2D.a32.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等3.如图,正方形ABCD的边长为2,若a<AC<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.124.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣7C.0.1×10﹣6D.1×10﹣65.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.6.小明用棋子摆放成图形来研究数的规律,如图所示,图(1)中棋子摆成三角形,其颗数3,6,9,12,…称为三角形数;类似地,图(2)中4,8,12,16,…成正方形数,下列所给的四个数中既是三角形数又是正方形数的是()A.2013 B.2014 C.2015 D.2016二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量的取值范围是.8.分解因式:x3﹣x= .9.把抛物线y=﹣x2向左平移2个单位,再向下平移3个单位,所得抛物线的函数关系式为.10.不等式组的解集是.11.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.12.将三边长为4,5,6的三角形(如图①)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图②)的周长为.(结果保留π)13.如图,点P为反比例函数y=在第一象限图象上的动点,过点P作x轴的垂线,垂足为M,则三角形OPM的面积为.14.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为.15.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.16.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:﹣(π﹣2)0+2cos45°+()﹣1.18.解方程:=﹣5.19.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.20.今年N市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a= ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为;(3)求被调查的消费者平均每人年收入为多少万元?21.光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.22.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?23.如图,一艘轮船位于灯塔P的北偏东45°方向,距灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东35°方向上的B处.这时,轮船所在的B处距离灯塔P有多远?(精确到0.1海里)(参考数据:≈1.41,≈1.73,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?26.已知在Rt△ABC中,AC⊥BC,AD是∠BAC的角分线,以AB上的一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论;(3)若AC=3,BC=4,求⊙O的半径.27.在平面直角坐标系中,A点坐标是(0,6),M点坐标是(8,0).P是射线AM上一点,PB⊥x轴,垂足为B.设AP=a.(1)AM= ;(2)如图,以AP为直径作圆,圆心为点C.若⊙C与x轴相切,求a的值;(3)D是x轴上一点,连接AD、PD.若△OAD∽△BDP,试探究满足条件的点D的个数(直接写出点D的个数及相应a的取值范围,不必说明理由).2015年江苏省南京市溧水县中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算a2•a4÷(﹣a2)2的结果是()A.a B.a2C.﹣a2D.a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:首先根据同底数幂的乘法法则,求出a2•a4的值是多少;然后根据幂的乘方的运算方法,求出(﹣a2)2的值是多少;最后用a2•a4的值除以(﹣a2)2的值即可.解答:解:a2•a4÷(﹣a2)2=a6÷a4=a2故选:B.点评:(1)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).2.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等考点:作图—基本作图;平行线的判定.分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.解答:解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.点评:此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.3.如图,正方形ABCD的边长为2,若a<AC<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.12考点:估算无理数的大小.分析:根据勾股定理计算出AC,再估算出的大小,即可解答.解答:解:在Rt△ABC中,AC=,∵,∴2,∴∵a<AC<b,∴a=2,b=3,∴ab=6.故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是估算的大小.4.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣7C.0.1×10﹣6D.1×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000001=1×10﹣7.故选:B.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,属于基础题,注意主视图是从物体的正面看得到的视图.6.小明用棋子摆放成图形来研究数的规律,如图所示,图(1)中棋子摆成三角形,其颗数3,6,9,12,…称为三角形数;类似地,图(2)中4,8,12,16,…成正方形数,下列所给的四个数中既是三角形数又是正方形数的是()A.2013 B.2014 C.2015 D.2016考点:规律型:图形的变化类.分析:归纳总结得到图1与图2中的规律,用n表示出各自的规律,得到既是三角形数又是正方形数的规律,即可找出判断.解答:解:根据题意得:图1的规律为3n(n≥1,且n为正整数);图2中的规律为4n,(n≥1,且n为正整数),∴既是三角形数又是正方形数的是12n,∵2016÷12=168,∴既是三角形数又是正方形数的是2016.故选:D.点评:此题考查了规律型:数字和图形的变化类,弄清题中的规律是解本题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量的取值范围是x≠﹣2 .考点:函数自变量的取值范围.专题:计算题.分析:根据分式的意义,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+2≠0,解得:x≠﹣2.故答案为x≠﹣2.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.分解因式:x3﹣x= x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.9.把抛物线y=﹣x2向左平移2个单位,再向下平移3个单位,所得抛物线的函数关系式为y=﹣(x+2)2﹣3 .考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式得到抛物线y=﹣x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标为(﹣2,﹣3),然后根据顶点式写出新抛物线解析式.解答:解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣3),所以所得抛物线的函数关系式为y=﹣(x+2)2﹣3.故答案为y=﹣(x+2)2﹣3.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.不等式组的解集是0≤x<2 .考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.解答:解:,由②得﹣x>﹣2,即x<2;故不等式的解集为:0≤x<2.故答案为:0≤x<2.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.考点:解直角三角形;坐标与图形性质.分析:过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.解答:解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.点评:本题考查了锐角三角函数的定义,过点A作x轴的垂线,构造出直角三角形是利用正切列式的关键,需要熟记正切=对边:邻边.12.将三边长为4,5,6的三角形(如图①)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图②)的周长为9+π.(结果保留π)考点:弧长的计算;三角形内角和定理.分析:先计算三段弧的长度,再用三角形的周长减去6,把结果加起来即可得到答案.解答:解:三段弧的长度=π,三角形的周长=4+5+6=15,图②的周长=π+15﹣6=9+π,故答案为9+π.点评:本题考查了弧长的计算以及三角形的内角和定理,解题关键是掌握弧长公式l=.13.如图,点P为反比例函数y=在第一象限图象上的动点,过点P作x轴的垂线,垂足为M,则三角形OPM的面积为8 .考点:反比例函数系数k的几何意义.分析:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变,由此可得出答案.解答:解:根据反比例函数k的几何意义可得:S△OPM=k=8.故答案为:8.点评:此题考查了反比例函数的几何意义,属于基础题,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.14.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为12 .考点:相似三角形的判定与性质;平行四边形的性质.分析:求出CE=3DE,AB=2DE,求出=,=,根据平行四边形的性质得出AB∥CD,AD∥BC,推出△DEF∽△CEB,△DEF∽△ABF,求出=()2=,=()2=,求出△CEB的面积是9,△ABF的面积是4,得出四边形BCDF的面积是8,即可得出平行四边形ABCD的面积.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵CD=2DE,∴CE=3DE,AB=2DE,∴=,=,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DEF∽△CEB,△DEF∽△ABF,∴=()2=,=()2=,∵△DEF的面积为1,∴△CEB的面积是9,△ABF的面积是4,∴四边形BCDF的面积是9﹣1=8,∴平行四边形ABCD的面积是8+4=12,故答案为:12.点评:本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.15.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体.专题:压轴题;数形结合.分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.16.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:数形结合.分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△ECD.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解.解答:解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=∠EBC=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴△ABE∽△ECD,∴=,即=,∴y=(x>0).故答案为:y=(x>0).点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:﹣(π﹣2)0+2cos45°+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用负指数幂法则计算,即可得到结果.解答:解:原式=2﹣1+2×+4=3+3.点评:此题考查了实数的运算,涉及的知识有:零指数幂,负指数幂,二次根式的化简,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.解方程:=﹣5.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1),得﹣3=x﹣5(x﹣1),解得x=2(5分)检验,将x=2代入(x﹣1)=1≠0,∴x=2是原方程的解.(6分)点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.考点:菱形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB 可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.解答:解:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.点评:此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.20.今年N市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a= 30 ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为48% ;(3)求被调查的消费者平均每人年收入为多少万元?考点:频数(率)分布直方图;加权平均数.专题:计算题.分析:(1)根据共发放100份问卷,并全部收回,结合表格中数据得出a的值即可;(2)根据条形统计图得出打算购买住房面积不小于100平米的人数,即可得出打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比;(3)利用(1)中所求结合加权平均数求法得出即可.解答:解:(1)根据题意得出:10+50+8+2+a=100,解得:a=30;条形图中:100到120之间的数据为:100﹣4﹣36﹣12﹣20=28,如图所示:(2)∵打算购买住房面积不小于100平米的人数为:28+20=48(人),∴打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为:×100%=48%;(3)被调查的消费者平均每人年收入为:(5×10+50×6+30×10+12×8+25×2)÷100=7.96(万元),答:被调查的消费者平均每人年收入为7.96万元.故答案为:30;48%.点评:此题主要考查了加权平均数以及频数分布直方图的应用,根据已知得出a的值是解题关键.21.光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.考点:列表法与树状图法.分析:(1)根据检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力可以利用列表法列举出所有可能即可求出;(2)根据图表求出即可.解答:解:∵甲、乙、丙的检测情况,有如下8种可能:A B1 甲乙丙2 甲乙丙3 甲丙乙4 甲乙丙5 乙甲丙6 乙丙甲7 丙甲乙8 甲乙丙∴(1)P(甲、乙、丙在同一处检测)==;(2)P(至少有两人在B处检测)==.点评:此题主要考查了列表法求概率,此题是中考中新题型,列举时一定注意不能漏解.22.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?考点:二次函数的性质.分析:(1)根据顶点坐标(﹣,)直接计算即可;(2)根据点C坐标,点C在直线y=﹣x上,即使横纵坐标互为相反数,计算即可得出答案.解答:解:(1)由y=2x2﹣4mx+m2+2m=2(x2﹣2mx)+m2+2m=2(x﹣m)2﹣m2+2m,得顶点C的坐标为(m,﹣m2+2m);(2)点C坐标(m,2m﹣m2),由题意知,点C在直线y=﹣x上,则﹣m=2m﹣m2,整理得m2﹣3m=0,解得m=0或m=3;所以当m为0或3时,函数图象的顶点C在二、四象限的角平分线上.点评:本题考查了二次函数的性质,主要利用了顶点坐标的公式,是基础题,熟练的把二次函数解析式转化为顶点式解析式是解题的关键.23.如图,一艘轮船位于灯塔P的北偏东45°方向,距灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东35°方向上的B处.这时,轮船所在的B处距离灯塔P有多远?(精确到0.1海里)(参考数据:≈1.41,≈1.73,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)考点:解直角三角形的应用-方向角问题.分析:在Rt△ACP中,根据PC=PA•sin45°,求出PC,在Rt△BCP中,根据sin∠B=,求出PB即可.解答:解:根据题意,在Rt△ACP中,PC=PA•sin45°=100×=50,在Rt△BCP中,∠B=35°,∵sin∠B=,∴PB==≈≈123.7.答:轮船所在的B处距离灯塔P约有123.7海里.点评:此题考查了解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?考点:一元二次方程的应用.专题:销售问题.分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.解答:解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?考点:一次函数的应用.专题:压轴题;阅读型;图表型.分析:(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B 点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙﹣y甲,在点D有x=7,也求出此时的y甲﹣y乙,分别同25比较即可.解答:解:(1)1.9;(2)设直线EF的解析式为y乙=kx+b,∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴,解得∴直线EF的解析式是y乙=80x﹣100;∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6﹣100=380;∴点C的坐标是(6,380);设直线BD的解析式为y甲=mx+n;∵点C(6,380)、点D(7,480)在直线BD上,∴;解得;∴BD的解析式是y甲=100x﹣220;∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳光线
B
30° A (图 1)
C
(第 22 题)
A
(备用图)
24. (8 分)如图,正方形 ABCD 的边长为 4,点 M,N,P 分别为 AD,BC,CD 的中点.现 从点 P 观察线段 AB,当长度为 1 的线段 l(图中的黑粗线)以每秒 1 个单位长的速度沿线 段 MN 从左向右运动时,l 将阻挡部分观察视线,在△ PAB 区域内形成盲区.设 l 的左端点 从 M 点开始,运动时间为 t 秒(0≤t≤3) .设△ PAB 区域内的盲区面积为 y(平方单位) . (1) 求 y 与 t 之间的函数关系式; (2) 请简单概括 y 随 t 的变化而变化的情况.
南京市溧水区 2013-2014 学年初三数学第二次调研测试
注意事项: 1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答 在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将 自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后, 再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡 相应位置 上) ... .... 1.计算-1+2 的值是( ▲ ) A.-3 B.-1 2.不等式组
22. (8 分)某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为 200 元 的药品,经过连续两次降价后,价格控制在 100~140 元范围内.若两次降价相同的百分率, 且已知第二次下降了 32 元,试求第一次降了多少元.
23. (8 分)某数学兴趣小组,利用树影测量树高.如图(1) ,已测出树 AB 的影长 AC 为 12m, 并测出此时太阳光线与地面成 30° 夹角. (1)求出树高 AB; (2)因水土流失,此时树 AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化, 假设太阳光线与地面夹角保持不变,试求树影的最大长度.
2 是否存在以六点 A、B、C、D、E、F 中的四点为顶点的四边形为矩形?若存在,求出 m ○ 的值;若不存在,请说明理由.
九年级数学试卷
第6 页 共 6 页
初三二模数学试题参考答案及评分标准
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 二、 1 2 3 4 题号 题 C D D B 答案 大题 小题,每小题 2 分,共 20 分) 7. 2( x 2)2 8.3 2 9.x1=2,x2=4 5 D 6 B 填空 (本 共 10
x=3, y=1.
„„„„„„„„„„„6 分
19.(本题 8 分) (1)∵△ ABC≌△CAD, ∴AB=AC,AC=CD,BC=AD. „„„„„„„„1 分 ∴AB= CD.„„„„„„„„„„„„„„„„„2 分 D E C ∴四边形 ABCD 为平行四边形.„„„„„„„„3 分 (2) ∵AB=AC,∴∠ACB=∠B. 又∵∠CFB=∠B,∴∠ACB=∠CFB. F B A ∴∠BCF=∠CAB, (第 19 题) 又∵∠ACF=∠BCF, ∴∠ACF=∠CAF. ∴AF=CF. „„„„„„„„„„„„„„„„„„„„5 分 ∵∠CFB=∠B,∴CF=CB. ∴AF=CF=CB. „„„„„„„„„„„„„„„„„„6 分 同理,AE=CE=AD.
10.乙
11.2
12.
2 2
13.-2
14.50°
15.
4 n(n 1)
16.0.5 或 1.5
三、解答题(本大题共 11 小题,共 88 分) 17. (本题 6 分) 解:①+②,得 3x=9.„„„„„„„„„„„„„„„1 分 解得 x=3.„„„„„„„„„„„„„„„„„„3 分 把 x=3 代入①,得 y=1. „„„„„„„„„„„5 分 ∴原方程组的解是 18. (本题 6 分) a 2-1 a 1 解:原式= · 2 - „„„„„„„„„„„2 分 a-1 a -a a-1 = = = (a-1)(a+1) a 1 · - „„„„„„4 分 a-1 a(a-1) a-1 a+1 1 - „„„„„„„„„„„„„„5 分 a-1 a-1 a . „„„„„„„„„„„„„„„„6 分 a-1
D
A
O
E
C
B (第 25 题)
26. (9 分) (1)探究规律: 已知:如图(1) ,点 P 为□ABCD 内一点,△ PAB、△ PCD 的面积分别记为 S1、S2,□ABCD 的面积记为 S,试探究 S1+S2 与 S 之间的关系.
A S1 B P S2 C (第 26 题图(1)) D
(2)解决问题: 如图(2)矩形 ABCD 中,AB= 4,BC=7,点 E、F、G、H 分别在 AB、BC、CD、DA 上, 且 AE=CG=3,AH=CF=2.点 P 为矩形内一点,四边形 AEPH、四边形 CGPF 的面积分 别记为 S1、S2,求 S1+S2.
▲
.
▲
.
10.甲、乙、丙三位选手各 10 次射击成绩的平均数和方差.统计如下表: 选手 平均数 方差 则射击成绩最稳定的选手是 甲 9.3 0.026 ▲ 乙 9.3 0.015 丙 9.3 0.032
(填“甲”、“乙”、“丙”中的一个) .
11. 如图 (1) , 两个等边△ ABD, △ CBD 的边长均为 1, 将△ ABD 沿 AC 方向向右平移到△ A′B′D′ 的位置,得到图(2) ,则阴影部分的周长为 ▲
19. (8 分)已知:如图,△ ABC≌△CAD. (1)求证:四边形 ABCD 为平行四边形; (2)若 AE、CF 分别平分∠CAD、∠ACB,且∠CFB=∠B,求证:四边形 AECF 为菱形.
D E C
A
20. (9 分)以下是某省 2013 年教育发展情况有关数据:
F (第 19 题)
B
全省共有各级各类学校 25000 所,其中小学 12500 所,初中 2000 所,高中 450 所,其它 学校 10050 所;全省共有在校学生 995 万人,其中小学 440 万人,初中 200 万人,高中 75 万人,其它 280 万人;全省共有在职教师 48 万人,其中小学 20 万人,初中 12 万人,高中 5 万人,其它 11 万人. 请将上述资料中的数据按下列步骤进行统计分析. (1)整理数据:请设计一个统计表,将以上数据填入表格中; (2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整; (3)分析数据: 1 分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段? ○ 请直接写出; (师生比=在职教师数∶在校学生数 ) 2 根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ○ 3 从扇形统计图中,你得出什么结论?(写出一个即可) ○
(第 16 题)
l
三、解答题(本大题共 11 小题,共 88 分.请在答题卡指定区域 内作答,解答时应写出文字说 ....... 明、证明过程或演算步骤)
九年级数学试卷 第2 页 共 6 页
17. (6 分)解方程组
x+y=4, 2x-y=5.
18. (6 分)计算:
a2-a a 1 ÷2 - . a-1 a -1 a-1
2013 年全省教育发展情况统计表 全省各级各类学校所数扇形统计图 高中 1.8%
九年级数学试卷
第3 页 共 6 页
21. (8 分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三 张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五星 纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人 大?”你认为他的怀疑有没有道理?谈谈你的想法和原因.
16.如图,相距 2cm 的两个点 A,B 在直线 l 上,它们分别以 2 cm/s 和 1 cm/s 的速度在 l 上同 时向右平移,当点 A,B 分别平移到点 A1,B1 的位置时,半径为 1 cm 的⊙A1 与半径为 BB1 的⊙B1 相切,则点 A 平移到点 A1 的所用时间为 ▲ s.
A B
2 x>-1, x-1≤0
C .1 ) C.x≤1
D.3
的解集是( ▲
1 A.x>- 2
1 B.x<- 2
1 D.- <x≤1 2
3. 计算 (a 2 ) 3 的结果是( ▲ ) A.
3a 2
B.
2a 3
C.
a5
D. a
6
4.地球绕太阳每小时转动通过的路程约是 1.1× 105 千米,用科学记数法表示地球一天(以 24 小时计)转动通过的路程约是( ▲ ) A.0.264× 10 7 千米 B.2.64× 10 6 千米 C.26.4× 10 5 千米 D.264× 10 4 千米
D O B (第 14 题) C O 1 2 3 4 (第 15 题) x
.
D D AA
B C C A′
D
D′ C B′
A
B 11) 图 8— 2 图 8— (图 (图 2) 图 8—2 图 8—1(第 11 题)
B
12.在△ ABC 中,∠C=90° ,tan A=1,那么 cos B=
▲
.
13.已知一次函数 y 2 x b 的图象过点 ( x1 , y1 ) 、 ( x2 , y 2 ) .若 x2 x1 1,则 y2 y1 ▲ . ° .