VLS法制备一维纳米材料ppt课件
一维纳米材料制备

导热性能(声子传送特性) 当硅纳米线直径小于20 nm时,声子色散的关系可能会改
变(由声子局限效应造成),导致声波速度和热导率大大 低于标准值。分子动力学模拟还表明,在200K到500K的温 度范围内,硅纳米线的热导率比硅块低2个等级。
纳米线的特性及其应用
导电性能 尺寸下降导致导电性能的转变。如Bi纳米线在52nm时由金 属转变为半导体;Si纳米线在15nm时由半导体转变为绝缘 体
通过对一些氧化物纳米线(如SnO2) 电学输运性能(如 电导率)的检测,就可能对其所处的化学环境作出检测,可 用于医疗,环境,或安全检查。
纳米线的制备策略
问题:如何控制晶核(纳米颗粒)的尺寸和生长方向?
局限于特殊结 构的材料
VLS 机制
晶体结构的各项异性导致定向生 长。生长速率 Si {111}< Si{110}
• 液相自发组装
• 基于模板合成(模板法)
• 静电纺丝
纳米线的自发生长
• 气相法 - 气-固(VS)生长机理 - 气-液-固(VLS)生长机理
• 液相法 - 溶液-液相-固相机理 (SLS) - “毒化”晶面控制生长的机理(包覆法); - 溶剂热合成方法。
气相法
在合成纳米线时, 气相合成可能是用得最多的方法。
气-固生长机理又称为位错机理,是通过气-固反应形核并长成纳米线的过程。 是一种经常采用的晶须生长机理。 气固机理的发生过程: • 通过热蒸发或气相反应等方法产生气相; • 气相分子或原子被传输到低温区并沉积在基底上; • 在基底表面反应、形核与生长,通常是以气固界面上微观缺陷 (位错、
孪晶等) 为形核中心生长出一维材料。
碳纳米管制造人造卫星的拖绳
第四章 一维纳米材料

1. 气相生长理论
(1) 气-液-固(VLS)生长
所谓VLS生长,是指气相反应系统中存 在纳米线产物的气相基元(B)(原子、离 子、分子及其团簇)和含量较少的金属 催化剂基元(A),产物气相基元(B)和催化 剂气相基元(A)通过碰撞、集聚形成合 金团簇,达到一定尺寸后形成液相生核 核心(简称液滴)合金液滴的存在使得气 相基元(B)不断溶入其中从图4-2(b)相图 上看,意味着合金液滴成分[不断向右 移动],当熔体达到过饱和状态时(即成 分移到超过c点时),合金液滴中即析出 晶体(B)。析出晶体后的液滴成分又回 到欠饱和状态,通过继续吸收气相基元 (B),可使晶体再析出生长。如此反复, 在液滴的约束下,可形成一维结构的晶 体(B)纳米线。
1. 阳极氧化铝模板法
AAO(anodic aluminum oxide)阳极氧化铝模板是由很多规则的六角形的单 元(cell)所组成的,结构单元间彼此呈六角密排分布,有序孔占据结构单元 的中间位置,是由六角密排高度有序的孔阵列构成的。 孔的轴向与其表 面垂直,孔的底部和铝片之间隔了一层阻挡层(barrier layer) 。阳极氧化铝 模板的孔径一般在5~420nm范围内可调控,孔密度为109~1012个孔/cm2, 膜的厚度可达100m以上。 热稳定性和化学稳定性都很好,且对可见光 透明,便于光学性质的研究以及光电器件的制作,是一种比较理想的模板, 也是目前应用最多的硬模板。
Shyne和Milewski在20世纪60年代提出了晶须生长的VLS机理, 并第一次被Wagner和Ellis成功地应用于β-SiC晶须的合成。 20世纪90年代,美国哈佛大学的M.C.Lieber和伯克利 大学P.D.Yang以及其他的研究者借鉴这种晶须生长的VLS法 来制备一维纳米材料。 现在VLS法已广泛用来制备各种无机材料的纳米线,包括元 素半导体(Si,Ge),III-V族半导体(GaN,GaAs,GaP,InP, InAs),II-VI族半导体(ZnS,ZnSe,CdS,CdSe),以及氧化 物(ZnO,Ga2O3,SiO2)等。下面我们结合图4-2来说明什么是 VLS生长。
第四章-一维纳米材料ppt课件

Au-Ag-Au-Ag nanowire
17
1.3 硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
18
碳纳米管
以碳纳米管为模板合成的
GaN纳米线
19
1.4 硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图 20
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method.
10
1.2 硬模板:多孔氧化铝膜(AAO)
结构特点是孔洞为六边形或圆形且垂直于膜面,呈 有序平行排列。孔径在5至200nm 范围内调节,孔密 度可高达1011 个/cm2。
184nm
477nm
666nm
11
利用AAO模板合成纳米材料
沉积
电抛光 纳米棒
阳极氧化
Al 纳米有序阵列复合结构
纳米管
纳米粒子
32
2.6 软模板法特点: (1) 模拟生物矿化; (2)软模板的形态具有多样性; (3)容易构筑,不需要复杂的设备; (4)稳定性较差,模板效率不够高。
33
2.7 模板法制备纳米材料的比较 共性:能提供一个有限大小的反应空间 区别:硬模板提供的是静态的孔道,物质只能从开口
处进入孔道内部 软模板:提供的则是处于动态平衡的空腔,物质可以
杂后的C60表现出良好的导电性和超导性。 57
碳60超导体
C60中掺杂,引入碱金属、碱土金属原子,
《纳米材料制备》PPT课件

23
气体蒸发法中,初期纳 米微粒聚集,结合而形 成的纳米微粒(颗粒大 小为20一30nm)
生成的磁性合金连接成
链状时的状态(纳米微 粒组成为Fe-Co合金,平 均粒径为20nm)
24
② 高频感应法
以高频感应线圈为热源,使坩埚内的导电 物质在涡流作用下加热,在低压惰性气体 中蒸发,蒸发后的原子与惰性气体原子碰 撞冷却凝聚成纳米颗粒。 特点:采用坩埚,一般也只是制备象低熔 点金属的低熔点物质。
16物理法化学法粉碎法构筑法沉淀法溶胶凝胶法干式粉碎湿式粉碎气体冷凝法溅射法氢电弧等离子体法共沉淀法均相沉淀法水解沉淀法气相反应法液相反应法气相分解法气相合成法气固反应法化学物理法喷雾法化学气相沉积法微波辐照法冷冻干燥法17溶胶凝胶法冷冻干燥法喷雾法气体冷凝法氢电弧等离子体法溅射法真空沉积法加热蒸发法混合等离子体法共沉淀法化合物沉淀法水解沉淀法粉碎法干式粉碎湿式粉碎化学气相反应法气相分解法气相合成法气固反应法物理气相法热分解法其它方法固相反应法18物理方法采用光电技术使材料在真空或惰性气氛中蒸发然后使原子或分子形成纳米颗粒以及球磨喷雾等以力学过程为主的制备技术
1985年,Kroto和Smalley等人发现C60 1990年7月,在美国巴尔的摩召开第一届纳米科技会议 1994年,在波士顿召开的MRS秋季会议上正式提出纳米材料工程
14
2 纳米粒子的常见制备方法
根据不同的分类标准,可以有多种分类方法。根据反应环 境可分为液相法、气相法和固相法;根据反应性质可分为物 理制备法、化学制备法和化学物理制备法。不同的制备方法 可导致纳米粒子的性能以及粒径各不相同。 在制备过程中,随着实验参数的不同,结果也大不相同, 尽管也展开了广泛的研究,取得了大量的结果,要真正实现 控制合成尚有待进一步的工作积累,涉及到化学反应机制、 热力学、动力学及晶体成核与生长动力学的微观机制问题。 虽有大量的文献方法可以借鉴但研究在某种程度上带有一 定的随机性,谈人工控制尚为时过早,这也是化学的魅力之 所在,制备与其说是一门科学不如说是艺术。
《纳米材料制备方法》课件

欢迎来到《纳米材料制备方法》的课程PPT。让我们一起探索纳米世界的奇 妙之处吧!
概述
纳米材料是什么?它们有什么特性?本节将介绍纳米材料的定义、特点以及 各种制备方法。
物理法
气相沉积法
通过将气态物质沉积到基底上,制备出纳米 材料。
气溶胶法
通过溶胶的干燥、热解等过程制备出纳米材 料。
利用电子束的辐照作用,在材料中形成纳 米结构。
纳米材料制备方法选择的因素
纳米材料的性质
不同制备方法会影响到纳米 材料的性质和特性。
制备条件和设备
制备方法需要考虑的因素包 括温度、压力和设备的可用 性。
经济成本和环境影 响
制备方法的选择还需要考虑 成本和对环境的影响。
总结
1
各种纳米材料制备方法的比较
对不同的制备方法进行比较,找出最适合特定需求的方法。
2
纳米材料制备技术的前景和应用的展望
展望纳米材料制备技术的发展趋势,并探讨其在各个领域的应用潜力。
生物法
1
蚕丝法
利用蚕丝腺分泌的丝素制备纳米纤维。
2
海绵法
利用海绵类生物的骨骼结构制备纳米材料。
3
微生物发酵法
通过微生物代谢产物的沉积制备纳米材料。
其他制备方法
1 机械法
2 光化学法
通过机械力的作用,在材料间产生纳米尺 寸的颗粒。
通过光化学反应合成纳米材料。
3 玻璃化法
4 电子束辐照法
通过将材料玻璃化,制备出纳米尺寸的颗 粒。
溅射法
利用离子束轰击固体目标,产生纳米尺寸物 质。
水热法
在高温高压水溶液中,通过化学反应合成纳 米材料。
化学法
一维纳米材料

4.1.3 模板法制备
定义:所谓模板合成就是将具有纳米结构且形状容易控制的物 质作为模板(模子),通过物理或化学的方法将相关材料沉积 到模板的孔中或表面,而后移去模板,得到具有模板规范形貌 与尺寸的纳米材料的过程。
优点:①多数模板不仅合成方便,而且其性质可在广泛范围内 精确调控;②合成过程相对简单,很多方法适合批量生产;③ 可同时解决纳米材料的尺寸与形状控制及分散稳定性问题;④ 特别适合一维纳米结构( 如纳米线和纳米管)的合成。因此模 板合成是公认的合成纳米材料及纳米阵列的最理想方法之一。
1. 阳极氧化铝模板法
❖AAO(anodic aluminum oxide)阳极氧化铝模板是由很多规则的六角形的单 元(cell)所组成的,结构单元间彼此呈六角密排分布,有序孔占据结构单元 的中间位置,是由六角密排高度有序的孔阵列构成的。 ❖孔的轴向与其表 面垂直,孔的底部和铝片之间隔了一层阻挡层(barrier layer) 。阳极氧化铝 模板的孔径一般在5~420nm范围内可调控,孔密度为109~1012个孔/cm2, 膜的厚度可达100m以上。 ❖热稳定性和化学稳定性都很好,且对可见光 透明,便于光学性质的研究以及光电器件的制作,是一种比较理想的模板, 也是目前应用最多的硬模板。
(3) 自催化气-液-固生长(self-catalytic VLS)
通过VS生长的纳米线,源材
料中一般没有金属催化剂。
然而,近年来的研究发现,
尽管有些源材料中并没有使
用金属催化剂,但在一些外
在条件( 如加热等) 作用下,
源材料自身内部可产生内在
反应( 如分解等) ,形成具
有催化作用的低熔点金属
( 合金) 液核,并以此促进
TCO: Transparent Conductive Oxide.
第一章 一维无机纳米材料的制备方法

【文献综述】一维无机纳米材料的制备方法一.气相法制备①汽-液-固(VLS)机理生长方法一(VLS生长法):1.以液态金属团簇催化剂作为反应物。
2. 将要制备的一维纳米材料的材料源加热形成蒸汽。
3. 蒸汽扩散到液态金属团簇催化剂表面,形成过饱和团簇后在催化剂表面饱和析出,从而形成一维纳米结构备注:液态金属催化剂液滴的尺寸决定了制备出的纳米线的直径。
方法二(激光烧蚀法+VLS生长法):1.用含有少量Fe、Au、Ni等金属催化剂的硅粉作为烧蚀靶2.以氩气作为保护气3.在陶瓷管中以一定温度下激光蒸发就可获得纳米线备注:激光烧蚀法制备出的纳米线直径小于VLS生长法催化剂的选定:根据相图选定一种能与纳米线材料形成液态合金的金属催化剂温度的选定:根据相图选定液态合金和固态纳米线材料共存区及制备温度在纳米线生长头部有一个催化剂纳米颗粒应用:VLS生长机理可以应用于制备一维无机纳米材料,例如元素半导体,半导体,氧化物等。
但不能制备一维金属纳米材料。
同时还应继续探索去除金属催化剂的后处理工序。
②氧化物辅助生长方法:1.用SiO2取代金属催化剂制成硅靶,2.采用激光烧蚀法,热蒸发,化学气相沉积法大规模制备硅纳米线备注:1.氧化物在硅纳米线的成核及生长过程中起主导作用2.不需要金属催化剂,避免了金属污染,保证了硅纳米线的纯度。
应用:除了硅以外,还可以制备Ge、C、SiC等Ⅳ族元素及化合物半导体,GaN等Ⅲ-Ⅴ族化合物半导体及ZnO和ZnS等Ⅱ-Ⅵ族材料,并可制备包括线、棒、共轴线、链和丝带状在内的一维纳米结构。
③气-固(VS)生长方法:1.将一种或几种反应物在反应容器的高温区加热形成蒸汽2.利用惰性气体的流动输送到低温区或者通过快速降温使蒸汽沉积下,从而制备出各种纳米材料备注:1.可分为固体粉末物理蒸发法和化学气相沉积法。
前者属于物理过程,后者在形成蒸汽后发生了化学反应。
且此方法不需加入金属催化剂。
2.纳米线外部包围氧化物层3.所需制备温度较高4.制备得到的纳米材料质量较高应用:氧化铝纳米带、氧化锌、氧化锡、氧化铟纳米带,氧化铝、氧化镁及氧化锌纳米棒,氮化镓和硫化镉钠米线。
微乳液法制备纳米材料PPT教案

第19页/共32页
B 反应物浓度的影响
➢ 适当调节反应物的浓度,可使制取粒子的大小受到控制。理 论上,在最优反应物浓度条件下可获得最小的粒子粒径。 Ravet et al(1987)利用成核过程解释这一现象: 反应物浓度较低时,用于形成成核中心的粒子数量较少,因
此反应之初只形成少量的成核中心,导致粒径较大; 增加反应物浓度,成核数目增多,粒径尺寸降低; 继续增加反应物浓度,成核数目达到一定程度时保持不变,
第12页/共32页
(2)向微乳液中直接加还原剂或气体
将气体鼓入阳离子可溶盐(微乳液)发生反应后形成氢氧化物或氧化物沉淀 将还原剂加入到可溶金属盐(微乳液)发生还原反应后形成金属沉淀
反应物 A
Microemulsion containing reactant A
加入反应物B 还原剂
或气体 还原剂通常为N2H4.H2O,NaBH4,H2 气体通常为NH3,H2S
1 微乳液基本原理
定义:微乳液是由两种互不相溶液体在表面活性剂的作用 下形成的热力学稳定的、各向同性、外观透明或半透明的 液体分散体系,分散相直径约为1-100nm。
亲油端
O/W
W/O
W
亲水端
习惯上将不溶于水的有机物称油,将不连续以液珠形式存在的相称 为内相,将连续存在的液相称为外相。
第4页/共32页
将两种反应物分别溶于组成完全相同的两份微乳液中 一定条件下混合 两种反应物通过物质交换而彼此遭遇,产生反应,纳米微粒可 在“水池”中稳定存在 通过超速离心,或将水和丙酮的混合物加入反应完成后的微乳 液中等办法使纳米微粒与微乳液分离 以有机溶剂清洗以去除附着在微粒表面的油和表面活性剂 在一定温度下进行干燥处理,即可得到纳米微粒的固体样品
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
(一)Zn从Zn-Au合金液滴中析出 (二)析出的Zn在高温下被氧化成ZnO ,形成氧化锌纳米线
17
SiC纳米线的制备
(一)制备氧化硅凝胶包含氧化铁纳米颗粒的预制复合体 (二)与一定量的石墨粉混合,使C/Si成分比为4:1 (三)500度下通入氢气,还原氧化铁得到铁纳米颗粒 (四)持续通入Ar气,迅速加热到1400度
18
Fe-Si-C +CO
19
七ห้องสมุดไป่ตู้有关生长终止的问题
一 温度降低,合金液滴凝固成固体颗粒,反应终止
二 随着原料的消耗,生长材料组元的蒸气浓度降 低,导致合金液滴中的过饱和度降低,相变驱动力 不足,反应终止。
三 随着结晶反应的进行,杂质在生长点不断聚集使得 生长受阻
20
八 用VLS机理所得纳米线的形貌特征 纳米线顶端留有含有催化剂成分的球形颗粒
10
A3 蒸镀法:将金属催化剂纳米级薄膜蒸镀在基体上, 薄
膜自组织 蒸镀Au薄膜在GaAs基体上,可形成大量的
纳米级的Au-As合金液滴 制备Zn0纳米线时,将Au薄膜蒸镀在蓝宝石
衬底上,形成纳米级的Au-Zn合金液滴
A4 高温快速加热法:激光烧蚀Si-Fe目标靶,产生蒸气,迅 速浓缩成液态纳米团簇
GaN纳米线
Si纳米线
21
通常,纳米线的顶端会留有球形颗粒,但是也可能出现 有的纳米线上没有球形颗粒或中间有的情况,甚至有的会发 生分支生长或非直线生长。这与生长条件(温度、浓度等) 的波动有关
22
九 在运用VLS制备纳米线时,怎样实现对纳米线直径 的有效控制并同时保证其均匀性?
(一) 严格保持纳米线生长条件(温度、蒸气浓度等)的稳定 性(二) 实现对催化剂颗粒尺寸的控制
5
Au-Ge二元系相图
6
三 制备特点
1 催化剂纳米团簇的尺寸在很大程度上决定了所生长一 维纳米材料的直径
2 可利用相图选择适宜的催化剂,制备温度所处范围 也可根据相图来确定
7
四 常用的催化剂与可制备的材料
Au:Si、Ge元素纳米线,ZnO、氧化镓等氧化物纳米线, CdS、ZnS纳米线 Fe:Si 、Ge元素纳米线,SiC 纳米线、 GaN纳米线 Ni: Si纳米线、GaN纳米线
溶液法: 制备出含规定尺寸催化剂纳米颗粒的溶液
镀膜法: 弄清膜的厚度与所形成的颗粒尺寸的定量 关系
模板法: 制备出规定孔径的模板
23
谢 谢!
24
B3 化学气相沉积:以硅烷为硅源 ,以Au或Fe或Ni或 AuPd 为催化剂,制备Si纳米线
13
B4 化学气相传输: Y.Wu等利用化学气相传输法和VLS生长机制生
14
六 两个实例 (一) 用VLS机理制备一维ZnO纳米线 (二) 用VLS机理制备一维SiC纳米线
15
Zn0纳米线的制备
方法一:热蒸发ZnO和石墨的混合物,通过气相传输在 镀有Au催化剂的硅衬底上得到氧化锌纳米线
用VLS机理 制备一维纳米材料
1
一 气-液-固( V-L-S )机理概述: 二十世纪六十年代,Shyne和Milewesk提出了晶须生长
的VLS机理,并首先由Vagner和Ellis用于合成了SiC晶须。 之后,人们用此机理合成了各种各样的晶须.随着纳米尺度
材料研究的兴起,人们又开始用这种机理来合成一维纳米材料. 现在这种方法已被广泛用来制备各种无机材料的纳米线,
8
五 制备中的两个重要问题 A 如何得到纳米级的催化剂团簇? B 如何提供出所需的蒸气?
9
A1 溶液干燥法: 氯金酸 + 柠檬酸钠 颗粒溶液
将溶液滴至基底上、干燥、反复数次
Au纳米
A2 模板限域法:交流电化学沉积法在氧化铝模板底部 引入金纳米颗粒
在贯通的氧化铝模板一面喷一层金膜
溶胶凝胶法制备包含氧化铁纳米颗粒 的氧化硅介孔体系,还原氧化铁的Fe纳米颗粒
包括元素半导体(Si、Ge),Ⅲ-V族半导体(GaN、GaAs、 InAs等),Ⅱ-VⅠ族半导体(ZnS、ZnSe、CdS、CdSe),氧 化物(ZnO、氧化镓、二氧化硅)等
V-L-S法是一维纳米材料制备中最主要的机理之一。
2
二 生长机理: 在适当温度下,催化剂纳米团簇与生长材料的组元互溶形
成纳米级共溶液滴。
11
B1 激光烧蚀:用含少量的Au、Fe或Ni的硅粉作为靶,以Ar 气作为保护气体,在石英管内,在一定温度下激光烧蚀即 可制得Si纳米线
以
为靶材,可制备出Ge 纳米线
激光烧蚀可形成直径仅几个纳米的液态催化剂团簇,这 种制备技术具有一定的普适性
12
B2 热蒸发:蒸发金属Zn粉,通过气相传输在镀有Au膜的Si 衬底上得到ZnO纳米线 高温加热CdS或ZnS纳米粉,通过气相传输在镀有 Au膜的Si衬底上得到CdS或ZnS纳米线
共熔液滴持续吸入生长材料的组元蒸气,以至达到过饱和, 促成了生长材料的晶体晶核在液滴上生成。
蒸气继续被吸入,晶体在已生成的固液界面处不断析出, 推动固液界面移动,从而长出一维纳米材料
3
用VLS机理制备Ge纳米线示意图
4
Au催化作用下Ge纳米线生长的原位TEM像
Ⅰ 形成纳米级共溶液滴
Ⅱ 成核过程
Ⅲ 轴向生长