2013年全国高中数学联赛江苏赛区预赛模拟训练及参考答案(三)
江苏赛区高中数学联赛一试(上)

高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
第一章 集合一、基础知识定义1 差集,},{\B x A x x B A ∉∈=且。
定义2 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =; (3));(111B A C B C A C = (4)).(111B A C B C A C =定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法。
全国高中数学联赛江苏赛区初赛试卷(含答案)

全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
全国高中数学联赛预赛试题(模拟)201307

全国高中数学联赛预赛试题(模拟)一、选择题(每小题6分,共36分)1、若函数()()2lg 43f x ax x a =-+-的值域为R ,则实数a 的取值范围是( ). A 、()4,+∞ ;B 、[]0,4;C 、()0,4;D 、()(),14,-∞-+∞.2、设221a b +=,()0b ≠,若直线2ax by +=和椭圆22162x y +=有公共点,则a b 的取值范围是( ).A 、11,22⎡⎤-⎢⎥⎣⎦; B 、[]1,1-; C 、(][),11,-∞-+∞; D 、[]2,2-.3、四面体ABCD 的六条棱长分别为7,13,18,27,36,41,且知41AB =,则 CD = .A 、7 ;B 、13 ;C 、18 ;D 、27.4、若对所有实数x ,均有sin sin cos cos cos 2k k k x kx x kx x ⋅+⋅=,则k =( ). A 、6; B 、5; C 、4; D 、3.5、设(212n n a +=,n b 是n a 的小数部分,则当*n N ∈时,n n a b 的值( ).A 、必为无理数;B 、必为偶数;C 、必为奇数;D 、可为无理数或有理数.6、设n 为正整数,且31n +与51n -皆为完全平方数,对于以下两个命题: (甲).713n +必为合数;(乙).()28173n n +必为两个平方数的和.你的判断是( ) A.甲对乙错; B. 甲错乙对; C.甲乙都对; D.甲乙都不一定对. 二、填空题(每小题9分,共54分)7、过点()1,1P 作直线l ,使得它被椭圆22194x y +=所截出的弦的中点恰为P ,则直线l 的方程为 .8、设x R ∈,则函数()f x =的最小值为 .9、四面体ABCD 中,面ABC 与面BCD 成060的二面角,顶点A 在面BCD 上的射影H 是BCD ∆的垂心,G 是ABC ∆的重心,若4AH =,AB AC =,则GH = .10、000sin 20sin 40sin80⋅⋅= .11、数列{}n a 满足:11a =,且对每个*n N ∈,1,n n a a +是方程230n x nx b ++=的两根,则201k k b ==∑ .12、从前2008个正整数构成的集{}1,2,,2008M =中取出一个k 元子集A ,使得A 中任两数之和不能被这两数之差整除,则k 的最大值为 . 三、解答题:13、(20分)AD 是直角三角形ABC 斜边BC 上的高,(AB AC <),12,I I 分别是,ABD ACD ∆∆的内心,12AI I ∆的外接圆O 分别交,AB AC 于,E F ,直线,EF BC 交于点M ;证明:12,I I 分别是ODM ∆的内心与旁心.14、(20分)设,,x y z 为非负实数,满足1xy yz zx ++=,证明:11152x y y z z x ++≥+++. 15、(20分)对于2n 元集合{}1,2,,2M n =,若n 元集{}12,,,n A a a a =,{}12,,,n B b b b =满足:,A B M A B ==∅,且11nnk k k k a b ===∑∑,则称A B 是集M 的一个“等和划分”(A B 与B A 算是同一个划分).试确定集{}1,2,,12M =共有多少个“等和划分”.试题解答一、选择题(每小题6分,共36分)1、若函数()()2lg 43f x ax x a =-+-的值域为R ,则实数a 的取值范围是( ). A 、()4,+∞ ;B 、[]0,4;C 、()0,4;D 、()(),14,-∞-+∞.答案:B .解:欲使()f x 的值域为R ,当使真数243ax x a -+-可取到一切正数,故或者0a =;或者0a >且()24430a a --≥,解得04a ≤≤2、设221a b +=,()0b ≠,若直线2ax by +=和椭圆22162x y +=有公共点,则a b 的取值范围是( ).A 、11,22⎡⎤-⎢⎥⎣⎦; B 、[]1,1-; C 、(][),11,-∞-+∞; D 、[]2,2-.答:C . 解:将2axy b-=代入椭圆方程并整理得,()22223121260a b x ax b +-+-=, 因直线和椭圆有公共点,则判别式()()()222212431260a a b b -+-≥,利用221a b +=,化简得22a b ≥,所以1ab≥.即(][),11,a b ∈-∞-+∞.3、四面体ABCD 的六条棱长分别为7,13,18,27,36,41,且知41AB =,则 CD = .A 、7 ;B 、13 ;C 、18 ;D 、27. 答案:B .解:四面体中,除CD 外,其余的棱皆与AB 相邻接,若长13的棱与AB 相邻,不妨设13BC =,据构成三角形条件,可知{}7,18,27AC ∉,36, 7AC BD ⇒=⇒=,{}{},18,27AD CD ⇒=,于是ABD ∆中,两边之和小于第三边,矛盾。
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。
2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。
3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。
4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。
5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。
若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。
6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。
7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
2009-2010年全国高中数学联赛江苏赛区复赛试题

2009年全国高中数学联赛江苏赛区复赛试题第一试(80分钟)一、填空题(本题满分56分,每小题8分)1.已知数列{}n a 的前n 项和234n S n n =++()*n ∈N ,则13521a a a a ++++=L ________.2.若集合{}1,A ax x ==+∈R 为空集,则实数a 的取值范围是________.3. 设x 、y 为实数,21x y +≥,则二元函数2242u x x y y =++-的最小值是________4.设1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,以12F F 为直径的圆交双曲线左支于A 、B 两点,且1120AF B ∠=︒. 双曲线的离心率的值介于整数k 与1k +之间,则k =________.5.已知长方体1111ABCD A B C D -的体积为216,则四面体11AB CD 与四面体11A BC D 的重叠部分的体积等于________.6.设[]x 表示不大于x 的最大整数,则3333[log 1][log 2][log 3][log 258]++++=L ________.7.设方程21221221100n n n n n x a x a x a x a +--------=L 的根都是正数,且1a =()21n -+,则0a 的最大值是________.8. 20091911⨯的方格棋盘的一条对角线穿过________个棋盘格.二、 解答题(本题满分14分)求函数()44sin tan cos cot f x x x x x =⋅+⋅的值域.三、解答题(本题满分15分)如图,抛物线22y x =及点()1,1P ,过点P 的不重合的直线1l 、2l 与此抛物线分别交于点A ,B ,C ,D .证明:A ,B ,C ,D 四点共圆的充要条件是直线1l 与2l 的倾斜角互补.四、解答题(本题满分15分)设a ,b 是正数,且1a ≠,1b ≠,求证:()()55441125111164a b a b a b --⋅>++--. 第二试(150分钟) 一、(本题满分50分)如图,在△ABC 中,DE ∥BC ,△ADE 的内切圆与DE 切于点M ,△ABC 的BC 边上的旁切圆切BC 于点N ,点P 是BE 与CD 的交点,求证M 、N 、P 三点共线.二、(本题满分50分)设k ,n 为给定的整数,2n k >≥. 对任意n 元的数集P ,作P 的所有k 元子集的元素和,记这些和组成的集合为Q ,集合Q 中元素个数是Q C ,求Q C 的最大值.三、(本题满分50分)设12222s n n n M=+++L ,12,,,s n n n L 是互不相同的正整数,求证:.(122222221s n n n M =+++<+L四、(本题满分50分)求满足下列条件的所有正整数x ,y :(1)x 与1y -互素; (2)231x x y -+=.AB C D PE N M2009年全国高中数学联赛江苏赛区复赛参考答案与评分标准第一试一、填空题(本题满分56分,每小题8分) 1.2682. 11(,)(,)36-∞-+∞U 3.95-4.25.366.9327.18.3871 二、 解答题(本题满分14分)解 因为()2664432sin 2sin cos sin cos 2sin cos cos sin sin cos sin 2xx x x x f x x x x x x x x-+=⋅+⋅==. ………………8分令sin 2t x =,则[)(]1,00,1t ∈-U ,()2322322t f x t t t -==-. 易知函数()232g t t t =- 在区间[)1,0-与(]0,1上都是减函数,所以()g t 的值域为11(,][,)22-∞-+∞U ,故()f x 的值域为11(,][,)22-∞-+∞U . ………………14分三、解答题(本题满分15分)解 设1l 、2l 的倾斜角分别为α、β,由题设知α、()0,βπ∈. 易知直线1l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩, 代入抛物线方程可化得 ()22sin2sin cos 10t t ααα+--=.设上述方程的两根为1t 、2t ,则 1221sin t t α-=. 由参数t 的几何意义,得21sin AP BP α⋅=. …………………5分同理 21sin CP DP β⋅=. …………………7分若A 、B 、C 、D 四点共圆,则 AP BP CP DP ⋅=⋅,即 22sin sin αβ=. 因为α、()0,βπ∈,所以 sin sin αβ=.又由1l 、2l 不重合,则αβ≠. 所以αβπ+=. …………………11分反过来,若αβπ+=,则因α、()0,βπ∈,故sin sin αβ=,且0α≠,0β≠. 所以2211sin sin αβ=,即AP BP CP DP ⋅=⋅. 故A 、B 、C 、D 四点共圆. …………………15分 四、解答题(本题满分15分)解 因为 54324321111a a a a a a a a a -++++=-+++, 且 ()()()4323281511a a a a a a a a ++++-++++43232223a a a a =---+()()424322121a a a a a =-++--+()()()222212110a a a a =-+-++> (1a ≠), 所以 ()4323215118a a a a a a a a ++++>++++,即()5415118a a a ->+-. …………………10分 同理可证 5415(1)18b b b ->+-.于是,()55441125(1)11164a b a b a b --⋅>++--. …………………15分2009年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一、(本题满分50分)证 设BE 与MN 交于点'P . 因为DE ∥BC ,所以BP BC PE DE =,''BP BNP E EM=. 故只需证明BC BN DE EM =,或BN EMBC DE=. ………………10分 如图, 设1O 、2O 分别为三角形的内切圆与旁切圆的圆心,F 、G 、H 、I 为切点,则 ()12EM AE DE AD =+-, AH AB BH AB BN =+=+,()12AH AI AB BC AC ==++,ABCD PE NM()12BN AH AB AC BC AB =-=+-. ………………30分又 ADE ∆∽ABC ∆, 故可设AB BC ACk AD DE AE===, 则1()2AC BC AB BN BC BC+-=()2()2k AE k DE k AD k DEAE DE AD EM DE DE⋅+⋅-⋅=⋅+-==故结论成立. ………………50分二、(本题满分50分)解 Q C 的最大值为kn C . …………………10分因P 共有k n C 个k 元子集,故显然有kQ n C C ≤. …………………20分 下面我们指出,对集合2{2, 2, , 2}nP =L ,相应的Q C 等于k n C ,即P 的任意两个不同的k元子集的元素之和不相等. 从而Q C 的最大值为k n C .事实上,若上述的集合P 有两个不同的k 元子集12{2,2,,2}k r r r A =L , 12{2,2,,2}k s s s B =L ,使得A 与B 的元素之和相等,则1212222222k k r s r r s s M +++=+++=L L (设). ①因①可视为正整数M 的二进制表示,由于i r 互不相同,i s 互不相同,故由正整数的二进制表示的唯一性,我们由①推出,集合12{,,,}k r r r L 必须与12{,,,}k s s s L 相同,从而子集A B =,矛盾.这就证明了我们的断言. …………………50分 三、(本题满分50分)证 对s 归纳.(1) 当1s =时,结论显然成立. …………………10分 (2) 假设s k =时结论成立,当1s k =+时,不妨设121k k n n n n +>>>>L .AB C D P E NM O 1 O 2F GIH由归纳假设可知,122222(1knn+++<L,则1121222222222(12k kn nn n n+++++<L.所以只要证明:12(12(1n<此即1>. …………………30分因为正整数121k kn n n n+>>>>L,所以122231211222221222.kn n n nn nn++-≥>++++≥+++LL.故=所以1>=,即1s k=+时,命题成立.因此,由数学归纳法可知,命题对所有正整数s成立.…………………50分四、(本题满分50分)解显然1x=,1y=满足要求.…………………10分对于1x>,1y>,方程可化为()()()2111y y y x x-++=-.显然x y>. 因为(),11x y-=,故x一定是21y y++的一个因子. 设21y y kx++=(k为正整数),从而()11x k y-=-. 由x y>可知2k≥.…………………20分消去x,得()2211y y k y k++=-+,即()()()221113y y k y k-+-=-+-. 由此推得()13y k--. …………………40分若3k>,则13y k-≤-,即2k y≥+,从而()()2221121k y k y y k k-+=++<+-+,故必有10y-=,矛盾.所以3k≤,从而2k=,3. 验证知7y=,19x=.综上,()(),1,1x y=,()19,7. …………………50分2010年全国高中数学联赛江苏赛区复赛一、填空题(本题满分64分,每小题8分) 1.已知数列{a n }、{b n }满足a n =22n +35,b n =1nlog 2(a 1a 2a 3…a n ),n ∈N*,则数列{b n }的通项公式是 .答案:b n =n +45,n ∈N*简解:由a n =22n +35,得a 1a 2a 3…a n =22(1+2+…+n )+3n5=2n (n +4)5,n ∈N*.所以b n =1n ×n (n +4)5=n +45,n ∈N*.2.已知两点M (0,2)、N (-3,6)到直线l 的距离分别为1和4,则满足条件的直线l 的条数是 .答案:3简解:易得MN =5,以点M 为圆心,半径1为的圆与以点N 为圆心,半径为4的圆外切,故满足条件的直线l 有3条.3.设函数f (x )=ax 2+x .已知f (3)<f (4),且当n ≥8,n ∈N*时,f (n )>f (n +1)恒成立,则实数a 的取值范围是 .答案:(-17,-117)简解:(方法一) 因为当n ≥8时,f (n )>f (n +1)恒成立,所以a <0,此时f (n )>f (n +1)恒成立等价于f (8)>f (9),即64a +8>81a +9,解得a <-117.因为f (3)<f (4),所以9a +3<16a +4,解得a >-17.即a ∈(-17,-117).(方法二)考察二次函数f (x )=ax 2+x 的对称轴和开口方向.因为当n ≥8时,f (n )>f (n +1)恒成立,所以a <0,且-12a <172,解得a <-117.因为f (3)<f (4),所以-12a >72,解得a >-17.即a ∈(-17,-117).4.已知ABCD -A 1B 1C 1D 1是边长为3的正方体,点P 、Q 、R 分别是棱AB 、AD 、AA 1上的 点,AP =AQ =AR =1,则四面体C 1PQR 的 体积为 .答案:43简解:因为C 1C ⊥面ABCD ,所以C 1C ⊥BD . 又因为AC ⊥BD , 所以BD ⊥面ACC 1,所以AC 1⊥BD .又PQ ∥BD ,所以AC 1⊥PQ .同理AC 1⊥QR .所以AC 1⊥面PQR .因为AP =AQ =AR =1,所以PQ =QR =RP =2.因为AC 1=33,且V A -PQR =13·12·12·1=16,所以V C 1-PQR =13·34·(2)2·33-V A -PQR =43.5.数列{}n a 满足1112,1nn na a a a ++==-,n ∈N *.记T n =a 1a 2…a n ,则T 2010等于 . (第4题)C A BD D 1C 1B 1A 1P QR答案:-6 简解:易得:a 1=2,a 2=-3,a 3=-12,a 4=13,a 1a 2 a 3a 4=1.又a 5=2=a 1,由归纳法易知a n +4=a n ,n ∈N*.所以T 2010=T 2008×a 2009×a 2010=a 1a 2=-6.6.骰子是一个立方体,6个面上分别刻有1、2、3、4、5、6点. 现有质地均匀的 骰子10只. 一次掷4只、3只骰子,分别得出各只骰子正面朝上的点数之和为6的 概率的比为 .答案:1:6.提示:掷3只骰子,掷出6点的情况为1,1,4;1,2,3;2,2,2. 共 3+3!+1=10种,概率为 3106 .掷4只骰子,掷出6点的情况为1,1,1,3;1,1,2,2. 共 4+24C =10种,概率为 4106 . 所以概率的比为 3106:4106 = 1:6 .7.在△ABC 中,已知BC =5,AC =4,cos(A -B )=78,则cos C = .答案:1116简解:因BC AC >,故A B ∠>∠. 如图,作AD ,使∠BAD =∠B ,则∠DAC =∠A -∠B .设AD =BD =x ,则DC =5-x .在△ADC 中,由余弦定理得x =3.再由余弦定理得cos C =1116.8.在平面直角坐标系xOy 中,抛物线y 2=2x 的焦点为F . 设M 是抛物线上的动点,则MO MF 的最大值为 .答案:233简解:设点M (x ,y ),则(MO MF )2=x 2+y 2(x +12)2=4x 2+8x 4x 2+4x +1=1+4x -14x 2+4x +1.令4x -1=t ,当t ≤0时,显然MOMF ≤1.当t >0时,则(MO MF)2=1+4t +6+9t ≤1+13=43,且当t =3,即x =1时,等号成立. 所以MO MF 的最大值为233,此时点M 的坐标为(1,±2).二、解答题(本题满分16分)如图,点P 是半圆C :x 2+y 2=1(y ≥0)上位于x 轴上方的任意一点,A 、B 是直径的两个端点,以AB 为一边作正方形ABCD ,PC 交AB 于E ,PD交AB 于F ,求证:BE ,EF ,F A 成等比数列.ABC(第7题)证明:设P (cosα,sinα),C (-1,-2),D (1,-2),E (x 1,0),F (x 2,0).因为点P 、E 、C 三点共线,所以sinα+2cosα+1=2x 1+1,所以x 1=2(cosα+1)sinα+2-1. ………………5分由点P 、F 、D 三点共线,所以sinα+2cosα-1=2x 2-1,所以x 2=2(cosα-1)sinα+2+1. ………………10分所以BE =x 1+1=2(cosα+1)sinα+2,EF =x 2-x 1=2sin αsinα+2 ,F A =2(cosα-1)sinα+2.所以BE ·F A =2(cosα+1)sinα+2×2(cosα-1)sinα+2=4sin 2α(sinα+2)2=EF 2.即BE ,EF ,F A 成等比数列. ………………16分三、解答题(本题满分20分)设实数a ,m 满足1a ≤,0m <≤()()2221amx mx f x a a a m-=+-,()0,x a ∈. 若存在a ,m ,x ,使()f x ≥,求所有的实数x 的值. 解答:因为(0, )x a ∈时,2222()244x ma ma amx mx m a -=--+≤, 当且仅当2ax =时等号成立, ……………5分 所以222222224(1)(1)4(1(1))a mamx mx am a a a m a a a m a m -≤≤=+-+-+-44am m ≤≤≤……………15分 当且仅当2ax =及1a =与m =. 故1x =. ……………20分 四、解答题(本题满分20分)数列{a n }中,已知a 1∈(1,2),a n +1=a n 3-3a n 2+3a n ,n ∈N*,求证:(a 1-a 2)( a 3-1)+(a 2-a 3)( a 4-1)+…+(a n -a n +1)( a n +2-1)<14.证明:(方法一) 由a n +1=a n 3-3a n 2+3a n ,得a n +1-1=(a n -1)3.令b n =a n -1,则0<b 1<1,b n +1=b n 3<b n ,0<b n <1. ………………5分 所以 (a k -a k +1)( a k +2-1)=(b k -b k +1)×b k +2=(b k -b k +1)×b k +13<14(b k -b k +1)×(b k 3+b k 2b k +1+b k b k +12+b k +13)<14(b k 4-b k +14). ………………15分所以 (a 1-a 2)(a 3-1)+(a 2-a 3)(a 4-1)+…+(a n -a n +1)(a n +2-1)<14(b 14-b 24)+14(b 24-b 34)+…+14(b n 4-b n +14) =14(b 14-b n +14)<14b 14<14. ………………20分 (方法二) 由a n +1=a n 3-3a n 2+3a n ,得a n +1-1=(a n -1)3.令b n =a n -1,则0<b 1<1,b n +1=b n 3,0<b n <1. ………………5分 所以 (a 1-a 2)( a 3-1)+(a 2-a 3)( a 4-1)+…+(a n -a n +1)( a n +2-1)=(b 1-b 2) b 3+(b 2-b 3) b 4+…+(b n -b n +1) b n +2 =(b 1-b 2) b 23+(b 2-b 3) b 33+…+(b n -b n +1) b n +1313014x dx <=⎰.………………20分2010年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一、(本题满分40分)圆心为I 的ABC ∆的内切圆分别切边AC 、AB 于点E 、F . 设M 为线段EF 上一点, 证明:MAB ∆与MAC ∆面积相等的充分必要条件是MI BC ⊥.证明:过点M 作MP AC ⊥、MQ AB ⊥,垂足分别为P 、Q . 圆I 切边BC 于点D ,则ID BC ⊥, IF AB ⊥, IE AC ⊥.显然AF=AE , 所以AFM AEM ∠=∠, 从而推知Rt Rt QFM PEM ∆∆:, 得A BCEFPQM IDA B C EF M I(第1题)MQ MF MP ME=. 又 1212MAB MAC MQ AB S MQ AB MF AB S MP AC ME ACMP AC ∆∆⋅==⋅=⋅⋅, 所以 MAB ∆与MAC ∆面积相等的充要条件是AB ME AC MF=. ① 由①可知,问题转化为证明:AB ME AC MF=的充分必要条件是MI BC ⊥. ………10分 首先证明:若MI BC ⊥,则AB ME AC MF=. 由MI BC ⊥可知点M 在直线ID 上.因为B 、D 、I 、F 四点共圆,所以MIF DBF B ∠=∠=∠,MIE ECD C ∠=∠=∠. 又 IE=IF ,则由正弦定理得sin sin sin()sin MF FI IE ME MIF IMF IMF MIEπ===∠∠-∠∠, 即 sin sin ME C MF B =,而sin sin AB C AC B =. 所以AB ME AC MF=. ……………30分 其次证明:若AB ME AC MF=,则MI BC ⊥. 设直线ID 与EF 交于点'M ,则由上述证明可知''AB M E AC M F=,于是有 ''AB M E AC M F=,从而 'M M ≡. 故命题成立. ……………40分 二、(本题满分40分)将凸n 边形12n A A A L 的边与对角线染上红、蓝两色之一,使得没有三边均为蓝色的三角形. 对k =1, 2,…,n ,记k b 是由顶点k A 引出的蓝色边的条数,求证:2122n n b b b +++≤L . 证明:不妨设12max{,,,}n b b b b =L ,并且由点A 向12,,,b A A A L 引出b 条蓝色边,则12,,,b A A A L 之间无蓝色边,12,,,b A A A L 以外的n b -个点,每点至多引出b 条蓝色边,因此蓝色边总数()n b b ≤-22()24n b b n -+⎛⎫≤= ⎪⎝⎭. …………20分故 2212242n n n b b b +++≤⨯=L . 命题得证. ……………40分 三、(本题满分50分)设正整数的无穷数列{}n a (n ∈N *)满足44a =,2111n n n a a a -+-=(2n ≥),求{}n a 的通项公式.解:由已知得11n n n na a a a -+>. 若有某个n ,使11n n a a -≥,则 1n n a a +>, …………10分 从而112n n n n a a a a -++≥>>>L ,这显然不可能,因为*{} (N )n a n ∈是正整数的无穷数列. 故数列{}n a 中的项是严格递增的. …………20分 从而由44a =可知, 11a =,22a =,33a =. …………30分于是由{}n a 的递推公式及数学归纳法知* (N )n a n n =∈. …………40分显然数列*{} (N )n n ∈满足要求,故所求的正整数无穷数列为{}n (1)n ≥.…………50分四、(本题满分50分)设p 是一个素数, 3 (mod 4)p ≡. 设x ,y 是整数,满足221|4p p x xy y +-+. 求证:存在整数u ,v ,使得222211()44p p x xy y p u uv v ++-+=-+. 证明:由条件可知22|(2)p x y py -+,则2|(2)p x y -.因p 是素数,故有|2p x y -. 设2x y pk -=, …………20分 则 222211((2))44p x xy y py x y +-+=+- 2221((2))4x pk p p k =-+ 22((2))4p x pk pk =-+ …………30分 22((2))4p x pk k k pk =-+-+ 22((2))4p u v pv =-+ (这里(1)2k p u x -=-,v k =)22(44(1))4p u uv p v =-++ 221()4p p u uv v +=-+. 命题得证. …………50分。
2018年全国高中数学联赛江苏赛区复赛参考答案

……………………… 20 分
设 y2= 1-x2+12( 2-1)在[0,1]中的两端点分别为 A,B, 则 A,B 的坐标分别为(0,12( 2+1)),(1,12( 2-1)), 因此直线 AB 的方程为 y=-x+12( 2+1), 而点 D(0,-12( 2-1))到直线 AB 的距离为 1,所以线段 AB 与四分之一圆周相切(如图), 由此可见,对任意 x∈[0,1],使 y3≤y1≤y2 恒成立的唯一线段是 y=-x+12( 2+1),
若{bn}是等比数列,且 a2+b2=108,
an+1 ,n为偶数.
则数列{an}的通项公式为
.
答案:an=9n.
解:因为{bn}是等比数列,所以其子列{b2n-1}也成等比数列, 而 b2n-1=an,故{an}也是等比数列,设其公比为 q.
又 b1=a1,b2= a3,b3=a2,得 a3=a1a2,即 a1=q.
x∈[0,1].
所以 a=-1,b=12( 2+1).
……………………… 40 分
二、(本题满分 40 分)
如图,大圆和小圆为同心圆,其圆心为 O.过大圆上一点 A 作小圆的切线 AC,切点为
B,点 C 在大圆上,D 为 AB 的中点.△ACE 的顶点 E 在小圆上,AE 交小圆于 F.设 CE,
2.在平面直角坐标系
xOy
中
,
若
双
曲
线
x2 a2
-
y2 b2
=
1
(
a
>
0
,
b
>
0
)
的
渐
近
线
与
圆 x2+y2-6y+5=0 没有公共点,则该双曲线离心率的取值范围是
江苏省近四年高中数学竞赛初赛试题及答案讲解

2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .EBCD AB CDAPQ R13.若不等式x+y≤k2x+y对于任意正实数x,y成立,求k的取值范围.14.⑴写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1, ∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52. 4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;BCDAPQ R又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4. 又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点. 由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 . 填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy ) ≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则RRBCA OR M NR Q PA DCB→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 填0,3-12,3-1. 解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12; a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x .二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形.CFy xOBA得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB ⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.EBCDAs (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.解:对于任意n ∈N*,n 2≡0,1(mod 4).设a ,b 是两个不同的自然数,①若a ≡0(mod 4)或b ≡0(mod 4),或a ≡b ≡2(mod 4),均有ab ≡0(mod 4),此时,ab +10≡2(mod 4),故ab +10不是完全平方数;② 若a ≡b ≡1(mod 4),或a ≡b ≡3(mod 4),则ab ≡1(mod 4),此时ab +10≡3(mod 4),故ab +10不是完全平方数.由此知,ab +10是完全平方数的必要不充分条件是a ≡/b (mod 4)且a 与b 均不能被4整除. ⑴ 由上可知,满足要求的三个自然数是可以存在的,例如取a =2,b =3,c =13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵ 由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.2010年全国高中数学联赛江苏赛区·初赛一、填空题(本题满分70分,每小题7分) 1.方程9135x x +-=的实数解为 .2.函数sin cos y x x =+(x ∈R )的单调减区间是 .3.在△ABC 中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB = . 4.函数()()()221f x x x =-+在区间[]0,2上的最大值是 ,最小值是 . 5.在直角坐标系xOy 中,已知圆心在原点O 、半径为R 的圆与△ABC 的边有公共点,其中()4,0A =、()6,8B =、()2,4C =,则R 的取值范围为 . 6.设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.7.从正方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为 .8.圆环形手镯上等距地镶嵌着4颗小珍珠,每颗珍珠镀金、银两色中的一种.其中镀2金2银的概率是 .9.在三棱锥A BCD -中,已知ACB CBD ∠=∠,ACD ADC BCD BDC ∠=∠=∠=∠θ=,且10cos 10θ=.已知棱AB 的长为62,则此棱锥的体积为 . 10.设复数列{}n x 满足1n x a ≠-,0,且11nn n a x x x +=+.若对任意n ∈N * 都有3n n x x +=,则a 的值是 .(第7题)二、解答题(本题满分80分,每小题20分)11.直角坐标系xOy 中,设A 、B 、M 是椭圆22:14x C y +=上的三点.若3455OM OA OB =+,证明:AB 的中点在椭圆22212x y +=上. 12.已知整数列{}n a 满足31a =-,74a =,前6项依次成等差数列,从第5项起依次成等比数列.(1) 求数列{}n a 的通项公式;(2) 求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥,垂足H .过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形.14.求所有正整数x ,y ,使得23x y +与23y x +都是完全平方数.参考答案1、x <0无解; 当0x ≥时,原方程变形为32x +3x -6=0,解得3x =2,x =log 32.2、与f (x )=y 2=1+|sin2x |的单调减区间相同, [,],2422k k k ππππ++∈Z . 3、216AB AC AB BC AB ⋅-⋅==,得4AB =.4、极小值-4,端点函数值f (2)=0,f (0)=-2,最小值-4,最大值0.5、画图观察,R 最小时圆与直线段AC 相切,R 最大时圆过点B .[855,10].6、f (2k -1)=0,k ∈Z . 又可作一个函数()f x 满足问题中的条件,且()f x 的一个零点恰为21x k =-,k ∈Z . 所以至少有50个零点. 7、不能有公共端点,最多4条,图上知4条可以.8、穷举法,注意可翻转,有6种情况,2金2银有两种,概率为 13 .9、4面为全等的等腰三角形,由体积公式可求得三棱锥的体积为 144 .10、由11n n n a x x x +=+,2321n n n a x x x +++==+()21111n n a x a x ++=++()3211n n n a x x a a x =+++ 恒成立,即()()2110n n a a x x a +++-=. 因为1n x a ≠-或0,故210a a ++=,所以1322a i =-±.11、解:设A (x 1,y 1),B (x 2,y 2),则 x 124+y 12=1,x 224+y 22=1.由3455OM OA OB =+,得 M (35x 1+45x 2,35y 1+45y 2). 因为M 是椭圆C 上一点,所以(35x 1+45x 2)24+(35y 1+45y 2)2=1, …………………6分即 (x 124+y 12)(35)2+(x 224+y 22)(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,得 (35)2+(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,故x 1x 24+y 1y 2=0. …………………14分 又线段AB 的中点的坐标为 (x 1+x 22,y 1+y 22),所以 (x 1+x 22)22+2(y 1+y 22)2=12(x 124+y 12)+12(x 224+y 22)+x 1x 24+y 1y 2=1,从而线段AB 的中点(x 1+x 22,y 1+y 22)在椭圆x 22+2y 2=1上. ………………20分12、解:(1) 设数列前6项的公差为d ,则a 5=-1+2d ,a 6=-1+3d ,d 为整数. 又a 5,a 6,a 7成等比数列,所以(3d -1)2=4(2d -1),即 9d 2-14d +5=0,得d =1. …………………6分 当n ≤6时,a n =n -4,由此a 5=1,a 6=2,数列从第5项起构成的等比数列的公比为2, 所以,当n ≥5时,a n =2n -5.故 a n =⎩⎪⎨⎪⎧n -4,n ≤4,2n -5, n ≥5.…………………10分(2) 由(1)知,数列{}n a 为:-3,-2,-1,0,1,2,4,8,16,… 当m =1时等式成立,即 -3-2-1=―6=(-3)(-2)(-1); 当m =3时等式成立,即 -1+0+1=0;当m =2、4时等式不成立; …………………15分 当m ≥5时,a m a m +1a m +2 =23m -12, a m +a m +1+a m +2=2m -5(23-1)=7×2m -5,7×2m -5≠23m -12,所以 a m +a m +1+a m +2≠a m a m +1a m +2 . 故所求 m = 1,或m =3. …………………20分 13、证明:(1) 由HG ∥CE ,得∠BHF =∠BEC , 又同弧的圆周角 ∠BAF =∠BEC , ∴ ∠BAF =∠BHF ,∴ 点 A 、B 、F 、H 共圆;…………………8分(2) 由(1)的结论,得 ∠BHA =∠BFA , ∵ BE ⊥AD , ∴ BF ⊥AC ,又AD 是圆的直径,∴ CG ⊥AC , …………………14分 由A 、B 、C 、D 共圆及A 、B 、F 、H 共圆,∴∠BFG =∠DAB =∠BCG , ∴ B 、G 、C 、F 共圆.ABCDEFH G∴∠BGC=∠AFB=900, ∴BG⊥GC,∴所以四边形BFCG是矩形.…………………20分14、解:若x=y,则x2+3x是完全平方数.∵x2<x2+3x<x2+4x+4= (x+2)2,∴x2+3x= (x+1)2,∴x=y =1. ………………5分若x>y,则x2<x2+3y<x2+3x<x2+4x+4= (x+2)2.∵x2+3y是完全平方数,∴x2+3y= (x+1)2,得3y =2x+1,由此可知y是奇数,设y =2k+1,则x=3k+1,k是正整数.又y2+3x= 4k2+4k+1+9k+3=4k2+13k+4是完全平方数,且(2k+2)2=4k2+8k+4<4k2+13k+4<4k2+16k+16= (2k+4)2,∴y2+3x=4k2+13k+4=(2k+3)2,得k=5,从而求得x=16,y=11. …………………15分若x<y,同x>y情形可求得x=11,y=16.综上所述,(x,y)= (1,1), (11,16), (16,11).…………………20分2011年全国高中数学联赛江苏赛区初赛题一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= .2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示).4. 已知1cos45θ=,则44sin cos θθ+= .5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段 为邻边的平行四边形的面积为 .6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 .7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值是 .二、解答题(本大题共4小题,每小题20分,共80分)11.已知圆221x y +=与抛物线2y x h =+有公共点,求实数h 的取值范围.AB CP12.设2()(,)f x x bx c b c =++∈R .若2x ≥时,()0f x ≥,且()f x 在区间(]2,3上的最大值为1,求22b c +的最大值和最小值.13.如图,P 是ABC 内一点.(1)若P 是ABC 的内心,证明:1902BPC BAC ∠=+∠;(2)若1902BPC BAC ∠=+∠且1902APC ABC ∠=+∠,证明:P 是ABC 的内心.14.已知α是实数,且存在正整数n 0,使得0n α+为正有理数.证明:存在无穷多个正整数n ,使得n α+为有理数.2011年全国高中数学联赛江苏赛区初赛题 答案及点评一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= . 答案:-8基础题,送分题,高考难度2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .答案:32-基础题,送分题,高考难度3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示). 答案:19145基础题,送分题,高考难度,但需要认真审题,否则很容易有错4. 已知1cos45θ=,则44sin cos θθ+= .答案:45计算量挺大的,要注重计算的方法,对于打酱油的同学有一定难度5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段为邻边的平行四边形的面积为 . 答案:103可以用特殊法,把向量放在直角坐标系中,很容易可以得出答案6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 . 答案:1(848)7n +高考难度级别,基础好的同学可以做出来7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 答案:(0,2)这是一道高考题8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .答案:6这也是一道高考题9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 答案:4 3还是一道高考题10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值 是 . 答案:3,14,30这是2011年苏州市一模的第十四题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又由对称性,可设a≥b≥c,从而a≥,
故a2+b2+c2+18abc=a2+(1-a)2-2bc+18abc=2a2-2a+1+2bc(9a-1)≥2a2-2a+1=2(a-)2+≥.(a=b=,c=0时等号成立)
3、已知 ,则 =__________
4、已知 ,把数列 的各项排成三角形状如右图所示,记 表示第 行中第 个数,则
5、已知f(x)=sin(+α-x)+cos(-α-x)是偶函数,且-π2<α<π2,则满足条件的实数α有个.
6、甲、乙、丙三人互相传球,先由甲开始作第一次传球,则5次传球后球仍回到甲手中的不同的传球方式共有.
= ,故 为角 的角平分线,
为 的内心.………………………………(20分)
13、解:l1:bx-ay=0,l2:bx+ay=0.
m:ax+by-ac=0.(c=,e=,0<e<1)
∴P(,),即P在椭圆的右准线上.
记=(>0),则由定比分点公式得点A坐标:
x=;y=.此坐标满足椭圆方程,代入得:
∴(c2+a2)2+2a4=a2c2(1+)2.c4+2a2c2+22a4=a2c2+2a2c2+2a2c2.
11、解:⑴1f(x)0,否则f(y)=f(x+y-x)=f(x)f(y-x)=0,矛盾.
2f(x)=f()f()>0.
3f(x)=f(x+0)=f(x)f(0),但f(x)0,f(0)=1.a1=1.
∴f(an+1)f(-2-an)=f(an+1-an-2)=1=f(0),由f(x)单调,an+1-an-2=0,an+1=an+2.
13、已知l1、l2是双曲线-=1的两条渐近线,过椭圆+=1(a>b>0)的右焦点F作直线m,使m⊥l1,m与l2的交点为P,m与已知椭圆的交点记作A与B(如图所示),求的最大值及此时椭圆的离心率.
14、设正整数 , , 的最大公约数为1,并且 ,证明: 是一个完全平方数.
1、解: ,故对应的点位于第一象限
是数列 中的第89项,∴
5、解:f(x)=f(-x),cos(-x)+sin(+x)=cos(+x)+sin(-x),
cos(+x)-cos(-x)=sin(+x)-sin(-x),
-sinsinx=cossinx,tan=-1,=k-(k∈Z),
-2<<2,k=-2,-1,0,1,2,3,共6个值.
8、解:作P关于、的对称点Q、R,则QR2=42+63-246cos120=76.故最小值=2.
9、解: ,
即 . 取 ,得49个式子,并相加,得 .
显然 在8与9之间,故
10、解:a2+b2+c2+18abc=(a+b+c)2-2(ab+bc+ca)+18abc.
但,ab+bc+ca=(ab+bc+ca)(a+b+c)≥3·3=9abc.
2013年全国高中数学联赛江苏赛区预赛模拟训练及参考答案(三)
1、复数 ,则复数 在复平面内对应的点位于第__________象限
2、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5个球随机放入这5个盒子内,要求每个盒子内放一个球,记“恰有两个球的编号与盒子的编号相同”为事件 ,则事件 发生的概率为__________
11、定义在实数集R上的单调函数y=f(x),当x<0时f(x)>1,且f(x+y)=f(x)f(y)对任意实数都成立.又数列{an}满足a1=f(0),f(an+1)=(n∈N*).
(1)求通项an.
(2)求使(1+)(1+)…(1+)≥p对任意正整数n都成立的实数p的最大值.
12、如图。△ABC中,AB>AC,AE是其外接圆的切线,D为AB上的点,且AD=AC=AE.求证:直线DE过△ABC的内心.
2、解:事件总数为 ,A发生可分两步完成,首先选盒子编号与球编号相同的,共有 种情况,不妨设为4号与5号,则第二步需要将1,2,3号球与盒子完全装错,只有两种情况(2,3,1或3,1,2),故 =
3、改编:求 的值
解:对已知等式两边求导可得:
令 ,得:
4、解:各行数的个数构成一个等差数列,则前9行共有 项,∴
同除以a4:e4+22=e2+2e2.2==e2+1-=3-(2-e2+)≤3-2(当2-e2=时取等号).即e=时,max=-1.
记t=,作椭圆的右准线,分别过A、B作此准线的垂线,交准线于M、N.由P在此准线上,知t===.|BF|=t|AF|,故|AB|=(1+t)|AF|,
又|AB|=(t-1)|PA|,故=,即=,从而≤-1,t≤+1.当椭圆的离心率=时,取得最大值.
6、解:5次任意传球,第5次给甲,有24种方法,其中第4次传到甲时,第5次不可能给甲,故应减去23种方法,再加上22种方法,减去2种方法,共有24-23+22-2=10种方法.
7、解:以y=2k-1-x代入圆方程得:2x2-2(2k-1)x+3k2-6k+4=0.
=-2k2+8k-7≥0,≤k≤.
2xy=(x+y)2-(x2+y2)=3k2-6k+4=3(k-1)2+1,在k=时取得最小值.
∴an=2n-1.
⑵1+1≥p,p≤.
记bn=.则==>1.于是bn>bn-1>…>b1=.即bn+1≥对于一切n成立.故pmax=.
12、证明:设角 的内角平分线与 交于点 ,连接 ,由于 是
外接圆的切线,故
,……(5分)
又 ,故
,
故 ,所以 四点共圆.……(10分)
………………………………(15分)
7、已知(x0,y0)是直线x+y=2k-1与圆x2+y2=k2+2k-3的交点,则当x0y0取最小值时,实数k的值等于.
8、已知点M、N分别在大小为60°的二面角α-a-β的α、β内,又点P到α、β的距离依次为2与3,则ΔPMN周长的最小值等于.
9、 的整数部分是
10、已知非负实数a、b、c满足a+b+c=1,则a2+b2+c2+18abc的最大值等于__________,最小值等于____________