八年级上数学复习提纲(全)

合集下载

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

八年级上册数学期中复习提纲

八年级上册数学期中复习提纲

八年级上册数学期中复习提纲爱好是做好的老师,想要学好初中数学首先就要对它有浓厚的爱好,调整好自己的状态,下面给大家分享一些(八班级)上册数学期中复习提纲,希望能够帮助大家,欢迎阅读!八班级上册数学期中复习提纲全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本(方法)步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,老师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点〔精选9篇〕篇1:八年级上册数学第三单元复习要点平移:在平面内,将一个图形沿某个方向挪动一定间隔,这样的图形运动称为平移。

平移的根本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫旋转中心,转动的角度叫旋转角。

旋转的性质:旋转后的图形与原图形的大小和形状一样;旋转前后两个图形的对应点到旋转中心的间隔相等;对应点到旋转中心的连线所成的角度彼此相等。

篇2:八年级上册数学第三单元复习要点一次函数的表达式是y=kx+b〔k≠b,k、b是常数〕,其中是x自变量,y 是因变量,读作y是x的一次函数,当x取一个值时,y有且只有一个值与x对应,假如有两个或两个以上的值与x对应,那么这个函数就不是一次函数。

一次函数表达式求解:一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

一次函数的表达方式一般都为y=kx+b的函数,叫做Y是X的一次函数,当常数项为零时的一次函数,可表示为y=kx 〔k≠0〕,这时的`常数k也叫比例系数。

常用来表示一次函数的方法有解析法,图像法和列表法。

一次函数的解析式一般分为点斜式,两点式,截距式。

解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。

还有一个描点法。

一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

通常情况下y=kx+b〔k≠0〕的图象过〔0,b〕和〔―b/k,0〕两点即可画出。

一次函数与一次方程之间的关系:一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三局部的关系提到了十清楚朗化的程度。

因此,应该重视这局部内容的教学在教学中,可以从以下几个知识点进展辨析。

八年级上册数学知识点总复习提纲

八年级上册数学知识点总复习提纲

八年级上册数学知识点总复习提纲一、知识框架:新人教版八年级上册复习提纲第十一章三角形二、知识概念:1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4. 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8. 多边形的内角:多边形相邻两边组成的角叫做它的内角.9. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13. 公式与性质:⑴三角形的内角和:三角形的内角和为180°八年级上册数学知识点总复习提纲二、知识概念: 1. 基本定义:⑴全等形:能够完全重合的两个图形叫做全等形 . ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形 .⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点 . ⑷对应边:全等三角形中互相重合的边叫做对应边 . ⑸对应角:全等三角形中互相重合的角叫做对应角 .2. 基本性质:⑴三角形的稳定性: 三角形三边的长度确定了, 这个三角形的形状、大小就全确定, 这个性质叫做三角形的稳定性 .⑵全等三角形的性质:全等三角形的对应边相等,对应角相等 .3. 全等三角形的判定定理:⑴边边边( SSS ):三边对应相等的两个三角形全等 .⑵三角形外角的性质:性质 1:三角形的一个外角等于和它不相邻的两个内角的和性质 2:三角形的一个外角大于任何一个和它不相邻的内角 . .⑶多边形内角和公式: n 边形的内角和等于 ( n 2) ·180° ⑷多边形的外角和:多边形的外角和为 360°. ⑸多边形对角线的条数:①从 n 边形的一个顶点出发可以引 ( n 3) 条对角线,把多边形分成 ( n 2) 个三角形 . ② n 边形共有 n( n 3) 条对角线 .2第十二章 全等三角形一、知识框架:八年级上册数学知识点总复习提纲⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4. 角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5. 证明的基本方法:⑴明确命题中的已知和求证. (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1. 基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这八年级上册数学知识点总复习提纲条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形. 相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2. 基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, y) .②点P (x, y) 关于y 轴对称的点的坐标为P " ( x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一( 1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一( 3 条).3. 基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.八年级上册数学知识点总复习提纲②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) .⑵等边三角形的判定:①三条边都相等的三角形是等边三角形 . ②三个角都相等的三角形是等边三角形 . ③有一个角是 60°的等腰三角形是等边三角形 . 4. 基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线 .⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架 :整式乘法乘法法则整式除法因式分解二、知识概念: 1. 基本运算:⑴同底数幂的乘法: amanam nn ⑵幂的乘方: am⑶积的乘方: abamna n bn2. 整式的乘法:等边三角⑴单项式 单项式:系数 系数形,的性同质字母 同字母,不同字母为积的因式 . ⑵单项式 多项式:用单项式乘以多项式的每个项后相加 .⑶多项式 多项式:用一个多项式每个项乘以另一个多项式每个项后相加 .3. 计算公式:n八年级上册数学知识点总复习提纲③立方和: a 3 b 3( a b)( a2ab b 2)④立方差: a 3 b 3(a b)( a2ab b 2)⑶十字相乘法: x2p q x pq x p x q⑷拆项法⑸添项法一、知识框架 :第十五章 分式⑴平方差公式: a b a b22ab⑵完全平方公式: a b 2a22ab b ; 2a b2a22ab b24. 整式的除法: ⑴同底数幂的除法: amanam n⑵单项式 ⑶多项式 单项式:系数 系数,同字母 同字母,不同字母作为商的因式 . ⑷多项式 单项式:用多项式每个项除以单项式后相加 . 多项式:用竖式 .5. 因式分解: 把一个多项式化成几个整式的积的形式 子因式分解 .6. 因式分解方法:, 这种变形叫做把这个式⑴提公因式法:找出最大公因式 . ⑵公式法: ①平方差公式: a2b2a b a b②完全平方公式: a22ab b 2a b22⑵完全平方公式: a b a22ab b 2 ; a b a 2 2ab b24. 整式的除法:⑴同底数幂的除法:a m a n a m n⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5. 因式分解:把一个多项式化成几个整式的积的形式, 这种变形叫做把这个式子因式分解.6. 因式分解方法:2③立方和: a 3 b3( a b)( a2ab b2 )④立方差: a 3 b3(a b)( a 2ab b2 )⑶十字相乘法:x2p q x pq x p x q⑷拆项法⑸添项法一、知识框架:第十五章分式2⑴提公因式法:找出最大公因式⑵公式法:.①平方差公式:a2 b2 a b a b②完全平方公式: a 2 2ab b2 a b2⑵完全平方公式: a b a22ab b 2 ; a b a 2 2ab b24. 整式的除法:⑴同底数幂的除法:a m a n a m n⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5. 因式分解:把一个多项式化成几个整式的积的形式, 这种变形叫做把这个式子因式分解.6. 因式分解方法:2③立方和: a 3 b3( a b)( a2ab b2 )④立方差: a 3 b3(a b)( a 2ab b2 )⑶十字相乘法:x2p q x pq x p x q⑷拆项法⑸添项法一、知识框架:第十五章分式2⑴提公因式法:找出最大公因式⑵公式法:.①平方差公式:a2 b2 a b a b②完全平方公式: a 2 2ab b2 a b。

八年级上册数学沪科版复习提纲

八年级上册数学沪科版复习提纲

八年级上册数学沪科版复习提纲数学是三大主科之一,同时也是必考科目。

你知道怎么才能考好数学吗?做好复习提纲吧,下面小编给大家分享一些八年级上册数学沪科版复习提纲,希望能够帮助大家,欢迎阅读!八年级上册数学沪科版复习提纲第一章一元一次不等式和一元一次不等式组一、一般地,用符号(或),(或)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分.等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项;4、系数化为1. 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集. 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型:1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法.2、运用公式法.第三章分式注:1对于任意一个分式,分母都不能为零.2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3分式的值为零含两层意思:分母不等于零;分子等于零.( 中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.第四章相似图形一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c 与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形. 相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么 .3、等比性质:如果 == (b+d++n0),那么 .4、更比性质:若那么 .5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.第五章数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.刻画平均水平用:平均数,众数,中位数. 刻画离散程度用:极差,方差,标准差.常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义第六章证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.学好数学的方法有哪些1.学好初中数学课前预习是重点数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。

八年级上数学复习提纲(全)

八年级上数学复习提纲(全)

全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

第十三章实数知识要点归纳一、实数的分类:2、数轴:规定了、和的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

八年级上册数学期中复习提纲(人教版)

八年级上册数学期中复习提纲(人教版)

八年级上册数学期中复习提纲(人教版)一、知识点复1. 整数与分数- 整数的概念与运算- 分数的概念与运算2. 有理数的加减法- 有理数的相反数与绝对值- 有理数的加法运算- 有理数的减法运算3. 乘法与除法运算- 有理数的乘法运算- 有理数的除法运算4. 平方根与实数- 平方根的概念与计算- 实数的概念与性质5. 一元一次方程- 一元一次方程的定义与解法- 一元一次方程的实际问题应用二、技巧要点总结1. 整数与分数的相互转化- 整数转化为分数- 分数转化为整数- 分数的化简与约分2. 有理数的运算技巧- 加法与减法运算的技巧- 乘法与除法运算的技巧3. 解一元一次方程的方法- 通过逆运算解方程- 通过变形解方程三、典型题型演练1. 填空题- 对所学概念与计算进行填空练2. 计算题- 进行整数、分数、有理数的复杂计算练3. 应用题- 解决涉及一元一次方程的实际问题四、例题解析1. 针对重要知识点的例题进行解析与讲解- 解题思路的分析- 步骤和方法的讲解2. 困难与易错题的解析- 分析常见错误原因- 给出正确解决方法五、模拟测试1. 综合练题- 汇总各个知识点的综合题目- 模拟测试考察学生的综合应用能力2. 提供答案与解析- 给出模拟测试的答案与解析,帮助学生检查与复以上是八年级上册数学期中复习提纲的主要内容,通过系统的复习和练习,相信同学们能够更好地掌握数学知识,提升学习成绩。

希望大家认真备考,加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档