第七章 数字式传感器

合集下载

传感器与检测技术ppt课件

传感器与检测技术ppt课件

22
重复性
图1-4所示为校正曲线的重复特性。
正行程的最大重复性偏差为△Rmax1, 反行程的最大重复 性偏差为△Rmax2,重复性误差取这两个最大偏差中之较 大者为△Rmax,再以满量程输出的百分数表示,即
rR
Rmax yFS
100%
(1-15)
式中 △Rmax----输出最大不重复误差。
精选课件ppt
现代人们的日常生活中,也愈来愈离不开检测技术。例 如现代化起居室中的温度、湿度、亮度、空气新鲜度、防火、 防盗和防尘等的测试控制,以及由有视觉、听觉、嗅觉、触 觉和味觉等感觉器官,并有思维能力机器人来参与各种家庭 事务管理和劳动等,都需要各种检测技术。
精选课件ppt
34
自动检测系统的基本组成
自动检测系统是自动测量、自动资料、自动保护、自动 诊断、自动信号处理等诸系统的总称,基本组成如图1-7。
图1-10 微差法测量稳压电源输出电压的微小变化
精选课件ppt
44
误差处理 主要内容
• 一、误差与精确处理 • 二、测量数据的统计处理 • 三、间接测量中误差的传递 • 四、有效数字及其计算法则
精选课件ppt
45
误差与精确处理
主要内容
(1)绝对误差与相对误差 (2)系统误差、偶然误差和疏失误差 (3)基本误差和附加误差 (4)常见的系统误差及降低其对测量结果影响的方法
(1-17)
由于种种原因,会引起灵敏度变化,产生灵敏度误差。灵 敏度误差用相对误差来表示
k10% 0 sk
(1-18)
精选课件ppt
25
分辨率
分辨率是指传感器能检测到的最小的输入增量。 分辨率可用绝对值表示,也可以用满量程的百分比表 示。

传感器原理与应用习题及答案

传感器原理与应用习题及答案

《第一章传感器的一般特性》1转速(r/min)0 500 1000 1500 2000 2500 3000输出电压(V)0 9.1 15.0 23.3 29.9 39.0 47.51)该测速发电机的灵敏度。

2)该测速发电机的线性度。

2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。

3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少?4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大?5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。

6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。

《第二章应变式传感器》1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。

又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。

2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。

在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。

第7章 数字式传感器

第7章 数字式传感器
第7章 数字式传感器
本书前几章所涉及的传感器属于模拟式传感器。这 类传感器将诸如应变、压力、位移、加速度等被测参数 转换为电模拟量,如电流、电压。因此,若需要数字显 示或输入计算机,就需要经过模数转换单元(A/D转换), 将模拟量变成数字量。这不但增加了投资,而且增加了 系统的复杂性,降低了系统的可靠性和测量精度。若采 用数字式传感器将被测参数直接转换成数字信号输出, 则具有以下优点:
n=60 m1/ ts N=60×8192/(2048×0.2) (r/min) =1200 (r/min) (2)工位编码
由于绝对式编码器每一转角位置均有一个固定的编
码输出,若编码器与转盘同轴相连,则转盘上每一工位 安装的被加工工件均可以有一个编码相对应,转盘工位 编码原理图如图7-10所示。
8
第7章 数字式传感器
为了消除粗误差,可以采用循环码代替二进制码。图 7-3所示是一个6位的循环码码盘。循环码码盘具有以下 特点:
①n位循环码码盘,与二进制码一样具有2n种不同编
码,最小分辨力为θ1=360°/2n,最内圈为Rn码道,一半
透光、一半不透光,其他第i码道相当于二进制码码盘第 i+1码道向零位方向转过θ1角,它的最外圈R1码道的角节
距为4θ1;
②循环码码盘具有轴对称性,其最高位相反,而其 余各位相同;
9
第7章 数字式传感器
③循环码为无权码; ④循环码码盘转到相邻区域时,编码中只有一位发 生变化,不会产生粗误差。由于这一原因使得循环码码 盘获得了广泛应用。
图7-3 6位循环码码盘
10
第7章 数字式传感器
(2)二进制码与循环码的转换
图7-2 式传感器
二进制码盘具有以下主要特点: ①n位(n个码道)的二进制码盘具有2n种不同编码,称

传感器原理及工程应用答案

传感器原理及工程应用答案

传感器原理及工程应用答案1—1:测量的定义,答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。

所以, 测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。

1—2:什么是测量值的绝对误差、相对误差、引用误差,答:绝对误差是测量结果与真值之差,即: 绝对误差=测量值—真值相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值×100%引用误差是绝对误差与量程之比,以百分数表示,即: 引用误差=绝对误差/量程×100%1—3什么是测量误差,测量误差有几种表示方法,它们通常应用在什么场合, 答: 测量误差是测得值减去被测量的真值。

测量误差的表示方法:绝对误差、实际相对误差、引用误差、基本误差、附加误差。

当被测量大小相同时,常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。

2,1:什么是传感器,它由哪几部分组成,它的作用及相互关系如何,答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

通常,传感器由敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分; 转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

2—2:什么是传感器的静态特性,它有哪些性能指标,分别说明这些性能指标的含义, 答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。

灵敏度定义是输出量增量Δy与引起输出量增量Δy的相应输入量增量Δx之比。

传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

输出与输入关系可分为线性特性和非线性特性。

数字温度传感器工作原理

数字温度传感器工作原理

数字温度传感器工作原理
数字温度传感器是一种用于测量温度的装置,它能够将温度转化为数字信号输出。

这类传感器通常使用特定的敏感元件,如热敏电阻(PTC或NTC)、热电偶或热电阻(如铂电阻)等。

对于热敏电阻传感器,它的阻值会随温度的变化而变化。

通常情况下,热敏电阻是一个负温度系数(NTC)电阻元件,即其阻值随温度的升高而下降。

数字温度传感器通过测量热敏电阻的阻值,并将其转化为数字信号输出,从而得到温度值。

热电偶则是利用两个不同材料的导电性质差异以及温度变化引起的电动势变化来测量温度的传感器。

当两个导电材料的接触点处于不同的温度下时,会产生一定的电势差。

通过测量这个电势差,可以计算出温度值。

而热电阻则是利用材料在不同温度下的电阻值变化来测量温度的传感器。

最常用的热电阻材料是铂电阻(Pt100或Pt1000),其电阻值与温度之间具有良好的线性关系。

将热电阻放置在待测温度环境中,通过测量电阻值的变化,可以通过查表或计算得出温度值。

通过将热敏电阻、热电偶或热电阻连接到一定的电路中,数字温度传感器可以将温度转换为数字信号输出。

这些数字信号可以通过一定的标准协议传输,如I2C、SPI或UART等,从而
将温度值传送给其他的设备或系统进行处理和分析。

传感器原理及工程应用作业

传感器原理及工程应用作业

目录第三章 (5)3-1.什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属电阻应变片和半导体应变片的工作原理。

(5)3-2.试述应变片温度误差的概念,产生原因和补偿方法。

(5)3.试用应变片传感器实现一种应用。

(6)第四章 (6)4-1.说明差动变隙式电感传感器的主要组成、工作原理和基本特征。

(6)4 -3.差动变压器式传感器有哪几种结构形式?各有什么特点? (6)4-10.何为涡流效应?怎用利用涡流效应进行位移测量? (7)4-11.电涡流的形成范围包括哪些内容?他们的主要特点是什么? (7)5.用电感式传感器设计应用 (8)第五章 (8)5-1.根据工作原理可以将电容式传感器分为哪几类?每种类型各有什么特点?各适用于什么场合? (8)5-9.简述差动式电容测厚传感器系统的工作原理。

(8)第六章 (9)6-1.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应? (9)6-3.简述压电陶瓷的结构及其特性。

(9)3.利用压电式传感器设计一个应用系统 (10)第七章 (10)7-4.什么是霍尔效应?霍尔电势与哪些因素有关? (10)7-6.温度变化对霍尔元件输出电势有什么影响?怎样补偿? (10)第八章 (11)8-1.光电效应有哪几种?相对应的光电器件有哪些? (11)8-2.试述光敏电阻、光敏二极管、光敏晶体管和光电池的工作原理,在实际应用时各有什么特点? (11)8-6.光在光纤中是怎样传输的?对光纤及入射光的入射角有什么要求? (12)8-7.试用光电开关设计一个应用系统。

(13)第九章 (13)9-1.简述气敏元件的工作原理 (13)9-2.为什么多数气敏元件都附有加热器 (13)9-3.什么叫湿敏电阻?湿敏电阻有哪些类型?各有什么特点? (14)第十章 (14)10-1.超声波在介质中传播具有哪些特性? (14)10-2.图10-3中,超声波探头的吸收块作用是什么? (15)10-3.超声波物位测量有几种方式?各有什么特点? (15)10-5.已知超声波探头垂直安装在被测介质底部,超声波在被猜测介质中的传播速度为1460m/s,测得时间间隔为28μs,试求物位高度? (15)第十一章 (15)11-1.简述微波传感器的测量机理。

《传感器技术与应用》课件第七章光电式传感器

《传感器技术与应用》课件第七章光电式传感器
器人视觉、自动化生产线等领域有广泛应用。
05
光电式传感器的优缺点 与发展趋势
光电式传感器的优点
测量精度高
非接触测量
光电式传感器采用光信号作为测量媒介, 具有较高的测量精度和灵敏度,能够实现 微小量的精确测量。
光电式传感器通过光信号与被测物体的相 互作用进行测量,无需直接接触被测物体 ,能够减少对被测物体的损伤和磨损。
光电二极管和光电晶体管
光电二极管
利用内光电效应制成的光电转换器件,能够 将入射光的辐射能转换为电流。
光电晶体管
在普通晶体管的基础上增加光敏基区,利用 内光电效应实现光信号的放大和调制。
光电耦合器
光电耦合器定义
将发光器件和光敏器件封装在同一壳 体内,通过光的传输实现电信号的传 输与隔离的器件。
光电耦合器原理
响应速度快
抗干扰能力强
光电式传感器具有较快的响应速度,能够 实现快速动态测量和实时控制。
光电式传感器采用光信号传输,不易受到 电磁干扰的影响,能够在复杂的环境中进 行稳定测量。
光电式传感器的缺点
对光源依赖性强
光电式传感器依赖于特定光源,如激光、红外线等,需要稳定的 光源和光路系统,对光源的稳定性要求较高。
利用光纤传输光信号,通过光电器 件将光纤中的光信号转换为电信号。
光电式传感器的应用领域
工业自动化控制
用于检测生产线上的产品、测量长度和速度 等参数。
环境监测
用于检测空气质量、水质等环境参数。
医疗诊断
用于检测生物体的生理参数,如血压、脉搏 等。
安全防范
用于监控、报警等安全系统,保障人员和财 产安全。
发光器件发出光线,光敏器件接收光 线并转换为电信号,从而实现输入与 输出之间的电气隔离。

《数字式传感器》课件

《数字式传感器》课件
未来数字式传感器将进一步实现多功能化和集成化,能够同时测量多个物理量,并与其他设备集成在一起。
多功能化和集成化
随着环保意识的提高,低功耗和绿色环保的数字式传感器将成为未来的发展趋势。
低功耗和绿色环保
为了满足各种严苛的工业环境需求,高可靠性、长寿命的数字式传感பைடு நூலகம்将成为研究的重要方向。
高可靠性和长寿命
数字式传感器的设计与实现
易于集成和智能化
数字式传感器通常具有较长的使用寿命和良好的稳定性,能够保证长期的测量精度。
长寿命和稳定性
数字式传感器可以通过数字信号进行远程传输和监控,方便实现远程管理和控制。
易于远程传输和监控
随着物联网技术的发展,数字式传感器将更加智能化和网络化,能够实现更高效、更准确的测量和控制。
智能化和网络化
总结词
数字式传感器采用数字化测量技术,能够将温度、压力、位移等物理量转换为数字信号,并通过数字通信接口传输给计算机或其他数字设备进行处理。与传统的模拟传感器相比,数字式传感器具有更高的测量精度和稳定性,能够更好地抵抗外部干扰的影响,提高测量的可靠性和准确性。
详细描述
总结词
数字式传感器的工作原理通常涉及信号的转换和传输。首先,传感器将物理量转换为电信号,然后通过模数转换器将模拟信号转换为数字信号,最后通过数字通信接口将数字信号传输到计算机或其他数字设备进行处理。
实验室测试
将传感器安装在实际使用场景中,验证其在各种工况下的性能表现。
实际应用测试
在不同温度、湿度和压力条件下测试传感器的稳定性。
环境适应性测试
数字式传感器的实际案例分析
PART
05
01
智能工厂的温度监控
02
在智能工厂中,温度传感器被用于实时监测生产过程中的温度变化,确保产品质量和设备安全。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)
图7-4-7双管式密度传感器
7.4.3振膜式和振梁式传感器
图7-4-8振膜式压力传感器
图7-4-9振梁式力传感器
图7-3-5感应同步器中的电磁感应
互感与位移图
X
图7-3-6感应同步器的简化等效电路
ku
Ri
M
0
7.4频率式传感器
7.4.1振弦式传感器
图7-4-1振弦式传感器工作原理图 1—振弦2—固定支承3—运动件4—激励磁钢与线圈 5—测量频率的永久磁钢与线圈
f
1 2
F ml
图7-4-2间隙激励电原理图
图7-1-5循环码转换为二进制码的电路 R1R2R3R4……Rn

C1C2C3……Cn-1
C1C2C3C4……Cn
7.1.2增量编码器
图7-1-6脉冲盘式数字传感器
图7-1-7增量码道与辨向码道
1
360 m

图7-1-8辨向环节的逻辑电路框图
图7-1-9 波形图
7.2 光栅与磁栅
7.2.1光栅
7.2.2磁栅
图7-2-6磁栅传感器结构示意图 (a)长磁栅传感器(b)圆磁栅传感器
图7-2-7 动态磁头结构与读出信号 1—磁头2—磁栅3—输出信号波形
图7-2-8静态磁头读出原理
e 0 k m sin ( 2
x W
) co s 2 t
7.3感应同步器
7.3.1感应同步器的类型和结构
图7-4-3(a) 电流激励法
图7-4-3连续激励方式电路 (b)电磁激励法
图7-4-4差动式振弦传感器原理图
7.4.2振筒式传感器
图7-4-5振筒式压力传感器原理示意图
f = f0 1 + a P
图7-4-6振动管式密度传感器
x 0(
D1 D
2
2 2
1) (
f0 f
2
2 x
第七章 数字式传感器
7.1 编码器
7.1.1 直接编码器
图7-1-1光电绝对编码器结构示意图
图7-1-2二元码盘
n n
N 2
n

Ci 2ii 1 Nhomakorabea
Ci 2
ni
i 1
图7-1-3二进码盘的粗误差
图7-1-4二进制码转换为循环码的电路 C1C2C3C4……Cn

C1C2C3……Cn-1 R1R2R3R4……Rn
图7-2-1光栅及光栅传感器 光源 2—聚光镜 3—主光栅 4—指示光栅
5—光电元件
图7-2-2 莫尔条纹的形成
图7-2-3
光强变化信号
u 0 U a v U m co s(
2 W
x)
图7-2-4电位器移相原理
u i K iU m cos( i )
图4-2-5
48点电位器桥细分电路
图7-3-1长感应同步器示意图
图7-3-2园感应同步器结构示意图
图7-3-3定尺滑尺绕组
l1 (
n 2

1 4
)W 1
图7-3-4定子、转子绕组

2 N /2

4 N
( rad )
720 N

1 (
n 2

1 4
)
( 2 n 1) N
( rad )
7.3.2感应同步器的工作原理
相关文档
最新文档