数据仓库与挖掘第五章数据挖掘概述
数据仓库与数据挖掘技术解析

数据仓库与数据挖掘技术解析在现代信息化的时代,数据已经成为了一种非常重要的资产。
在这些海量的数据之中,有很多有价值的信息被隐藏其间。
这就需要我们使用数据仓库与数据挖掘技术,通过对数据的分析和挖掘,向我们呈现出内在有价值的数据信息,帮助我们更好地理解数据,并从中发现我们需要的信息。
一、什么是数据仓库?在这个信息时代,数据已经成为企业不可缺少的一部分。
数据仓库是一个专门用于存储数据的系统。
它是一个集成的数据存储库,可以提供数据分析、数据挖掘、Web 搜索和企业报告等功能,以帮助企业快速响应客户需求、创造商业价值。
数据仓库是一个面向主题、集成、时间相对稳定和可刷新的数据存储库,用于支持企业智能化决策的整个过程。
面向主题: 数据仓库是围绕企业内关键业务件建立的,如销售、供应、市场等;集成: 数据仓库可集成不同来源的数据;时间相对稳定: 数据仓库存储的数据相对长周期,如一年或更长;可刷新: 数据仓库是可刷新的,数据可以通过批处理或实时方式更新。
二、数据仓库的重要性数据仓库非常重要,因为它提供了企业知识管理的基础。
企业知识管理是智能化决策和企业的长期成功的基础。
数据仓库可以帮助企业了解他们的客户、业务和市场动态。
由于大量的数据每天产生,数据仓库是必要的,以便企业能够应对不断变化的市场需求和管理信息的日益复杂的挑战。
数据仓库的另一个重要方面是它可以帮助企业洞察和理解他们的客户。
通过数据仓库分析数据可以确定客户的购买模式、使用历史和趋势,以及他们对于企业的反应。
这有助于企业制定更好的战略、优化点,以更好地满足客户需求。
三、数据挖掘技术数据挖掘是一种从大量数据中提取信息、关系和模式的技术。
数据挖掘不是单纯的筛选和过滤数据,而是在数据中寻找隐含的知识和模式。
如同羊毛出在羊身上,这些我们不曾发现过的、规律性强的数据关联,本身就是数据中蕴藏的财富。
数据挖掘使用抽样、统计分析、模型构建等技术,将庞大、复杂的数据库处理成有价值的信息,一方面为业务提供帮助,一方面成为指导企业决策的可靠的数据来源。
数据仓库与数据挖掘教学大纲

数据仓库与数据挖掘教学大纲引言概述:数据仓库与数据挖掘是现代信息技术领域中的重要概念,对于培养学生的数据分析和决策能力具有重要意义。
因此,制定一份完善的数据仓库与数据挖掘教学大纲是必不可少的。
本文将从数据仓库与数据挖掘的基本概念、教学目标、教学内容、教学方法和评价方式五个方面,详细阐述数据仓库与数据挖掘教学大纲的内容。
一、基本概念1.1 数据仓库的定义与特点数据仓库是指将各类数据按照一定的结构和规范集成到一个统一的存储空间中,以支持决策分析和业务智能的技术体系。
它具有数据集成、主题导向、面向决策支持等特点。
1.2 数据挖掘的定义与作用数据挖掘是指通过自动或者半自动的方式,从大规模数据中发现隐藏的模式、关联和规律,用于预测、分类、聚类和异常检测等任务。
它可以匡助人们更好地理解数据,提供决策支持和业务洞察。
1.3 数据仓库与数据挖掘的关系数据仓库提供了数据挖掘所需的高质量、一致性和集成性数据,而数据挖掘则通过对数据仓库进行分析和挖掘,发现有价值的信息和知识。
二、教学目标2.1 知识目标学生应该掌握数据仓库和数据挖掘的基本概念、原理和方法,了解数据仓库与数据挖掘在实际应用中的意义和作用。
2.2 技能目标学生应该具备数据仓库和数据挖掘的建模、设计和实施能力,能够运用相应的工具和算法进行数据分析和挖掘。
2.3 态度与价值观目标学生应该培养数据驱动决策的思维方式,注重数据的质量和准确性,提高数据分析和决策的能力。
三、教学内容3.1 数据仓库的建设与管理包括数据仓库的设计原则、数据抽取与清洗、数据集成与转换、数据加载与更新、数据仓库的查询与分析等内容。
3.2 数据挖掘的基本方法与算法包括分类与预测、聚类分析、关联规则挖掘、时序模式挖掘等数据挖掘的基本方法和常用算法。
3.3 数据挖掘的应用案例通过实际案例的分析和讨论,让学生了解数据挖掘在不同领域中的应用,如市场营销、金融风控、医疗健康等。
四、教学方法4.1 理论讲授予案例分析通过教师的讲解和案例的分析,向学生介绍数据仓库与数据挖掘的基本概念和方法,培养学生的理论思维和实际应用能力。
数据仓库与数据挖掘区别

数据仓库与数据挖掘区别随着数据的日益增长和应用需求的扩大,数据仓库和数据挖掘成为了越来越重要的领域。
这两个领域虽然有时被混淆在一起,但其实有很大的区别。
本文将深入探讨数据仓库和数据挖掘的区别。
一、数据仓库是什么首先我们来看数据仓库是什么。
数据仓库是一个专门存储企业级数据的系统。
它是一个集中管理和众多决策支持工具的数据中心,可以提供企业数据的历史标准记录和解决方案。
数据仓库包括一个或多个数据源、抽取转换加载程序、集成部分和元数据信息。
在数据仓库中,业务数据从各个操作性/事务型系统收集、清洗、集成并存储,为后期的分析使用提供了数据资源。
数据仓库通常能够支持复杂、高级、决策性的业务分析,而传统的操作数据系统通常只支持简单的查询和记录事务。
二、数据挖掘是什么接下来我们了解一下数据挖掘。
数据挖掘是一种从数据中发掘隐藏模式、关系和规律的过程,可以通过应用统计分析、机器学习、聚类分析以及其它相关技术进行自动化发现。
数据挖掘是在海量、复杂、异构、不确定的数据中获取有用知识的一种方法。
数据挖掘与统计学不同之处在于,统计学更加关注于数据分布、统计量以及推断。
而数据挖掘更加关心的是数据的预测建模、分类和聚类。
数据挖掘还可以探索数据,从而寻找实现业务目标的方案。
在数据挖掘中,数据不仅用于构建模型,还广泛应用于商业分析、客户关系管理、市场探测以及其它领域。
三、数据仓库和数据挖掘的区别数据仓库和数据挖掘经常被误解,认为是相同的领域。
然而,两者之间有很大的区别。
首先,数据仓库旨在存储和管理各种类型的数据。
而数据挖掘旨在从这些数据源中提取有用、有影响的业务信息。
因此,可以说数据仓库是数据挖掘的基础。
其次,数据仓库主要是为数据分析提供数据,而数据挖掘旨在构建更深入的分析和预测模型。
数据仓库会使业务分析师获得简单易懂的答案,而数据挖掘技术能发现隐藏的模式和规律,发掘数据中的未知信息。
另外,数据仓库主要是为企业的管理团队和商业分析师提供数据资源。
数据仓库与数据挖掘教程(第2版)陈文伟版课后答案

第一章数据仓库与数据挖掘概述1.数据库与数据仓库的本质差别是什么?答:数据库用于事务处理,数据仓库用于决策分析;数据库保持事务处理的当前状态,数据仓库既保存过去的数据又保存当前的数据;数据仓库的数据是大量数据库的集成;对数据库的操作比较明确,操作数据量少,对数据仓库操作不明确,操作数据量大。
数据库是细节的、在存取时准确的、可更新的、一次操作数据量小、面向应用且支持管理;数据仓库是综合或提炼的、代表过去的数据、不更新、一次操作数据量大、面向分析且支持决策。
6.说明OLTP与OLAP的主要区别。
答:OLTP针对的是细节性数据、当前数据、经常更新、一次性处理的数据量小、对响应时间要求高且面向应用,事务驱动; OLAP针对的是综合性数据、历史数据、不更新,但周期性刷新、一次处理的数据量大、响应时间合理且面向分析,分析驱动。
8.元数据的定义是什么?答:元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。
9.元数据与数据字典的关系什么?答:在数据仓库中引入了“元数据”的概念,它不仅仅是数据仓库的字典,而且还是数据仓库本身信息的数据。
18.说明统计学与数据挖掘的不同。
答:统计学主要是对数量数据(数值)或连续值数据(如年龄、工资等),进行数值计算(如初等运算)的定量分析,得到数量信息。
数据挖掘主要对离散数据(如职称、病症等)进行定性分析(覆盖、归纳等),得到规则知识。
19.说明数据仓库与数据挖掘的区别与联系。
答:数据仓库是一种存储技术,它能适应于不同用户对不同决策需要提供所需的数据和信;数据挖掘研究各种方法和技术,从大量的数据中挖掘出有用的信息和知识。
数据仓库与数据挖掘都是决策支持新技术。
但它们有着完全不同的辅助决策方式。
在数据仓库系统的前端的分析工具中,数据挖掘是其中重要工具之一。
它可以帮助决策用户挖掘数据仓库的数据中隐含的规律性。
数据仓库和数据挖掘的结合对支持决策会起更大的作用。
《大数据基础》大数据分析与挖掘

5.1.1 数据挖掘起源
➢ 数据挖掘从诞生起就是一个直接面向实际应用的学科领域。 ➢ 大数据时代,数据增长是一个不容回避的棘手问题,数据的来
源包罗万象,归纳起来主要有三个重要来源。
● 人类社会在生产、生活、娱乐、教育、科研等各个方面产生的大量 数据蜂拥而至。 ● 人类自身的一举一动也产生了数据,拍摄照片、录制视频、网上社 交、电话、邮件以及网上购物等都会产生大量的数据。 ● 在物联网世界中,万事万物都在产生数据,而且是不受时间和空间 限制的。
5.1.2 数据挖掘定义
12
③ 数据挖掘的最终目标是获取知识,而这些知识往往具有局限性和针对性。 数据挖掘发现的知识首先要具备可接受、可理解、可运用的特征,但同时并 不要求发现的知识具有普适性,仅需要其在某个领域或者针对某种具体问题 时有效即可。
④ 知识来源于数据,但知识本身的表现形式是多种多样的。从数据中获 取的知识可以表现为概念、规则、模式、规律和约束等。
5.1 数据挖掘概述
7
➢ 数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特 殊关系性(属于Association rule learning)的信息的过程。
➢ 数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、 情报检索、机器学习、专家系统(依靠过去的经验法则)和模式 识别等诸多方法来实现上述目标。。
5.1.4 数字挖掘流程与模型
19
➢ 从数据本身来考虑,数据挖掘是通过分析每个数据,从大量数 据中寻找其规律的技术,需要经过数据准备、规律寻找和规律 表示的基本阶段。
➢ 数据准备是从相关的数据源中选取所需的数据并整合成用于数 据挖掘的数据集;规律寻找是用某种方法将数据集所包含的规 律找出来;规律表示是尽可能以用户可理解的方式(如可视化) 将找出的规律表示出来。这些阶段在具体操作上通常表现为以 下8个步骤。
数据挖掘技术概述

数据仓库与挖掘第五章_数据挖掘概述

好的、结构化的数据,数据挖掘则需要从不完全的、有噪声 的、模糊的数据中发现知识。
数据挖掘与传统数据分析方法区别
数据可能是非结构化的。数据挖掘不仅可以处 理结构化的数据,而且可以处理半结构化或者 非结构化的数据。事实上,基于文本的数据挖 掘甚至互联网上的数据挖掘正是数据挖掘的研 究方向之一 。
数据挖掘和数据仓库
大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖 掘库或数据集市中。 优点:数据仓库的数据清理和数据挖掘的数 据清理差不多,如果数据在导入数据仓库时已经清理过,那很可 能在做数据挖掘时就没必要再清理一次了,而且所有的数据不一 致的问题都已经被解决了。
为了数据挖掘你也不必非得建立一个数据仓库,建立一个巨大的 数据仓库,把各个不同源的数据统一在一起,解决所有的数据冲 突问题,然后把所有的数据导到一个数据仓库内,是一项巨大的 工程,可能要用几年的时间花上百万的钱才能完成。
传统的数据分析方法基于假设驱动的:一般都是先给 出一个假设然后通过数据验证。
数据挖掘在一定意义上是基于发现驱动的:模式都 是通过大量的搜索工作从数据中自动提取出来 。即 数据挖掘是要发现那些不能靠直觉发现的信息或知 识,甚至是违背直觉的信息或知识,挖掘出的信息 越是出乎意料,就可能越有价值。
数据挖掘和数据仓库
分类与估值
分类与估值(Classification and Estimation)
分类指通过分析一个类别已知的数据集的 特征来建立一组模型,该模型可用以预测类别 未知的数据项的类别。该分类模型可以表现为 多种形式:分类规则(IF-THEN),决策树或 者数学公式,乃至神经网络。
估值与分类类似,只不过它要预测的不是 类别,而是一个连续的数值。
数据挖掘5

传统数据分析工具(DSS/EIS)
数据挖掘工具
工具特点
分析重点 分析目的 数据集大小 启动方式
回顾型的、验证型的
已经发生了什么 从最近的销售文件中列出最大客户 数据维、维中属性数、维中数据均是 少量的 企业管理人员、系统分析员、管理 顾问启动与控制
预测型的、发现型的
预测未来的情况、解释发生的原因 锁定未来的可能客户,以减少 未来的销售成本 数据维、维中属性数、维中数据 均是庞大的 数据与系统启动,少量的人员指导 统计分析工具已经成熟,其他工具正在 发展中
5.2 分类与预测
分类的目的是提出一个分类函数或分类模型(即 分类器),通过分类器将数据对象映射到某一个给定 的类别中。 数据分类可以分为两步进行。
第一步建立模型,用于描述给定的数据集合。通过分析由属 性描述的数据集合来建立反映数据集合特性的模型。这一步 也称作有监督的学习,导出模型是基于训练数据集的,训练 数据集是已知类标记的数据对象。 第二步使用模型对数据对象进行分类。首先应该评估模型的 分类准确度,如果模型准确度可以接受,就可以用它来对未 知类标记的对象进行分类。
5.1.1 数据挖掘的演变
1.数据挖掘技术的发展 (1)数据挖掘产生的背景 是四个方面的原因促进了数据挖掘技术产生、发 展和应用。 A.大容量数据库的出现。 B.先进计算机技术应用。 C.现代化经营管理的需要。 D.对数据挖掘精、深能力的要求。
数据挖掘:多个学科的融合
数据库系统 统计学
(2)对数据挖掘技术的商业定义 从商业角度看,数据挖掘是新型的商业分析处理技术。 它是从大型数据库或数据仓库中发现并提取隐藏在其 中信息的一种新技术,帮助决策者寻找数据间潜在的 关联,发现被忽略的因素。 (3)数据挖掘工具与传统数据分析工具的比较 数据挖掘是一类深层次的数据分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘可以描述为:按企业既定业务目标,对大 量的企业数据进行探索和分析,揭示隐藏的、未知 的或验证己知的规律性,并进一步将其模型化的有
效方法。〔商业角度的定义〕
数据挖掘相近的同义词包括:数据融合、数据分析 和决策支持等。
数据挖掘(Data Mining)的定义
数据挖掘与其他科学的关系
支持数据挖掘技术的基础
激发了数据挖掘的开发、应用和研究的兴趣的四个主要 技术理由: 超大规模数据库的出现,例如商业数据仓库和计算 机自动收集的数据记录; 强大的多处理器计算机。例如更快和更大的计算能 力和并行体系结构; 海量数据搜索,对巨大量数据的快速访问; 数据挖掘算法。
从商业数据到商业信息的进化
(正在流 售会怎么样?为什
行) 么?”
计算机、磁带和磁盘
IBM
关系数据库(RDBMS), Oracle、Sybase、
结构化查询语言(SQL)、 Informix、IBM、
Sybase、Informix、IBM
Microsoft
联机分析处理(OLAP)、 多维数据库、数据仓库
Oracle 、IBM、 Microsoft
实施数据挖掘的目的
不再是单纯为了研究,更主要的是为商业决 策提供真正有价值的信息,进而获得利润。
所有企业面临的一个共同问题是:企业数据 量非常大,而其中真正有价值的信息却很少, 因此需要从大量的数据中经过深层分析,获 得有利于商业运作、提高竞争力的信息,就 像从矿石中淘金一样,数据挖掘也由此而得 名。
第五章 数据挖掘的概述
本章内容
5.1 数据挖掘的起源 5.2 数据挖掘的任务 5.3 医学与数据挖掘
数据挖掘的起源
网络之后的下一个技术热点 数据爆炸但知识贫乏 支持数据挖掘技术的基础 从商业数据到商业信息的进化
网络之后的下一个技术热点
网络时代面临的信息问题:
信息过量,难以消化; 信息真假难以辨识; 信息安全难以保证; 信息形式不一致,难以统一处理。
如何从一棵棵树木了解整个森林?从数据矿山中找到蕴 藏的知识金块?这是我们该考虑的问题!
啤酒尿不湿案例
著名的“啤酒尿布”案例:美国加州某个超级卖场通过数据挖掘 发现,下班后前来购买婴儿尿布的男顾客大都购买啤酒。于是经 理当机立断,重新布置货架,把啤酒类商品布置在婴儿尿布货架 附近,并在二者之间放置佐酒食品,同时还把男士日常用品就近 布置。这样,上述几种商品的销量大增。
数据有噪声的。传统数据分析方法的数据源一般都是
清洁好的、结构化的数据,数据挖掘则需要从不完全的、 有噪声的、模糊的数据中发现知识。
数据挖掘与传统数据分析方法区别
数据可能是非结构化的。数据挖掘不仅可以处 理结构化的数据,而且可以处理半结构化或者 非结构化的数据。事实上,基于文本的数据挖 掘甚至互联网上的数据挖掘正是数据挖掘的研 究方向之一 。
进化阶段
商业问题
支持技术
产品厂家
产品特点
数据搜集 “过去五年中我的总 (60年代) 收入是多少?”
数据访问 (80年代)
“在新英格兰的分部
去年三月的销售额 是多少?” “
数据仓库; 决策支持 (90年代)
在新英格兰的分部 去年三月的销售额 是多少?波士顿据 此可得出什么结
论?”
数据挖掘 “下个月波士顿的销
数据挖掘与传统数据分析方法区别
数据挖掘的数据源与以前相比有了显著的改变;
数据是海量的。数据挖掘出现的背景是“数据爆炸但知 识贫乏”,它要处理的数据量已经达到了“太”(万亿) 级以上,比传统数据分析方法所处理的数据量超出几个 乃至十几个数量级。对于如此大规模的数据量,传统的 数据分析方法可能根本不能处理,即使能够处理,效率 也是必须考虑的严重问题。因此需要对原有的数据分析 方法重新检验,加以改进。
Database Technology
Statistics
Machine Learning
Data Mining
Visualization
Information Science
Other Disciplines
数据挖掘与其他科学的关系
数据挖掘作为一门新兴的交叉学科,涉及数据库系统、 数据仓库、统计学、机器学习、可视化、信息检索和高性 能计算等诸多领域。此外,还与神经网络、模式识别、空 间数据分析、图像处理、信号处理、概率论、图论和归纳 逻辑等等领域关系密切。 近几年,人们逐渐发现数据挖掘中有许多工作都是由统 计方法来完成的。甚至有些人(尤其是统计学家)认为数 据挖掘是统计学的一个分支,当然大多数人(包括绝大多 数数据挖掘研究人员)并不这么认为。 统计学和数据挖掘的目标非常相似,而且数据挖掘中的 许多算法也源于数理统计,统计学对数据挖掘发展的贡献 功不可没。
传统的数据分析方法基于假设驱动的:一般都是先给出 一个假设然后通过数据验证。
数据挖掘在一定意义上是基于发现驱动的:模式都是通 过大量的搜索工作从数据中自动提取出来 。即数据挖 掘是要发现那些不能靠直觉发现的信息或知识,甚至是 违背直觉的信息或知识,挖掘出的信息越是出乎意料, 就可能越有价值。
数据挖掘和数据仓库
高海级量算数法据库、多处理器计算机、IBM、其他公司
提供历史性 的、静态的 数据信息 在记录级提 供历史性、 动态数据信 息
在各种层次 上提供回溯 的、动态的 数据信息
提供预测性 的信息
数据挖掘(Data Mining)的定义
数据挖掘是从大量的、不完全的、有噪声的、模糊 的、随机的实际应用数据中,提取隐含在其中的、 人们事先不知道的、但又是潜在有用的信息和知识
“要学会抛弃信息”
数据爆炸但知识贫乏
数据库的容量已达上万亿水平(T)-- 1,000,000,000,000个字节
全球信息量以惊人的速度急剧增长--据估计,每二十 个月将增加一倍。
许多组织机构的IT系统中都收Fra bibliotek了大量的数据 目前的数据库系统虽然可以高效地实现数据的录入、查
询、统计等功能,但无法发现数据中存在的关系和规则, 无法根据现有的数据预测未来的发展趋势。为了充分利 用现有信息资源,从海量数据中找出隐藏的知识,数据 挖掘技术应运而生并显示出强大的生命力。