数据仓库与数据挖掘实验一

合集下载

数据挖掘实验报告1

数据挖掘实验报告1

实验一 ID3算法实现一、实验目的通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。

加深对相关算法的理解过程。

实验类型:验证计划课间:4学时二、实验内容1、分析决策树算法的实现流程;2、分析信息增益的计算、数据子集划分、决策树的构建过程;3、根据算法描述编程实现算法,调试运行;4、对所给数据集进行验算,得到分析结果。

三、实验方法算法描述:以代表训练样本的单个结点开始建树;若样本都在同一个类,则该结点成为树叶,并用该类标记;否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性;对测试属性的每个已知值,创建一个分支,并据此划分样本;算法使用同样的过程,递归形成每个划分上的样本决策树递归划分步骤,当下列条件之一成立时停止:给定结点的所有样本属于同一类;没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行四、实验步骤1、算法实现过程中需要使用的数据结构描述:Struct{int Attrib_Col; // 当前节点对应属性int Value; // 对应边值Tree_Node* Left_Node; // 子树Tree_Node* Right_Node // 同层其他节点Boolean IsLeaf; // 是否叶子节点int ClassNo; // 对应分类标号}Tree_Node;2、整体算法流程主程序:InputData();T=Build_ID3(Data,Record_No, Num_Attrib);OutputRule(T);释放内存;3、相关子函数:3.1、 InputData(){输入属性集大小Num_Attrib;输入样本数Num_Record;分配内存Data[Num_Record][Num_Attrib];输入样本数据Data[Num_Record][Num_Attrib];获取类别数C(从最后一列中得到);}3.2、Build_ID3(Data,Record_No, Num_Attrib){Int Class_Distribute[C];If (Record_No==0) { return Null }N=new tree_node();计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0;For (i=0;i<Num_Attrib;i++)If (Data[0][i]>=0) Temp_Num_Attrib++;If Temp_Num_Attrib==0{N->ClassNo=最多的类;N->IsLeaf=TRUE;N->Left_Node=NULL;N->Right_Node=NULL;Return N;}If Class_Distribute中仅一类的分布大于0{N->ClassNo=该类;N->IsLeaf=TRUE;N->Left_Node=NULL;N->Right_Node=NULL;Return N;}InforGain=0;CurrentCol=-1;For i=0;i<Num_Attrib-1;i++){TempGain=Compute_InforGain(Data,Record_No,I,Num_Attrib); If (InforGain<TempGain){ InforGain=TempGain; CurrentCol=I;}}N->Attrib_Col=CurrentCol;//记录CurrentCol所对应的不同值放入DiferentValue[];I=0;Value_No=-1;While i<Record_No {Flag=false;For (k=0;k<Value_No;k++)if (DiferentValu[k]=Data[i][CurrentCol]) flag=true;if (flag==false){Value_No++;DiferentValue[Value_No]=Data[i][CurrentCol] } I++;}SubData=以Data大小申请内存空间;For (i=0;i<Value_No;i++){k=-1;for (j=0;j<Record_No-1;j++)if (Data[j][CurrentCol]==DiferentValu[i]){k=k++;For(int i1=0;i1<Num_Attrib;i1++)If (i1<>CurrentCol)SubData[k][i1]=Data[j][i1];Else SubData[k][i1]=-1;}N->Attrib_Col=CurrentCol;N->Value=DiferentValu[i];N->Isleaf=false;N->ClassNo=0;N->Left_Node=Build_ID3(SubData,k+1, Num_Attrib);N->Right_Node=new Tree_Node;N=N->Right_Node;}}3.3、计算信息增益Compute_InforGain(Data,Record_No, Col_No, Num_Attrib) {Int DifferentValue[MaxDifferentValue];Int Total_DifferentValue;Int s[ClassNo][MaxDifferentValue];s=0;// 数组清0;Total_DifferentValue=-1;For (i=0;i<Record_No;i++){J=GetPosition(DifferentValue,Total_DifferentValue,Data[i][Col_no]);If (j<0) {Total_DifferentValue++;DifferentValue[Total_DifferentValue]=Data[i][Col_no];J=Total_DifferentValue;}S[Data[i][Num_Attrib-1]][j]++;}Total_I=0;For (i=0;i<ClassNo;i++){Sum=0;For(j=0;j<Record_No;j++) if Data[j][Num_Attrib-1]==i sum++; Total_I=Compute_PI(Sum/Record_No);}EA=0;For (i=0;i<Total_DifferentValue;i++);{ temp=0;sj=0; //sj是数据子集中属于类j的样本个数;For (j=0;j<ClassNO;j++)sj+=s[j][i];For (j=0;j<ClassNO;j++)EA+=sj/Record_No*Compute_PI(s[j][i]/sj);}Return total_I-EA;}3.4、得到某数字在数组中的位置GetPosition(Data, DataSize,Value){For (i=0;i<DataSize;i++) if (Data[i]=value) return I;Return -1;}3.5、计算Pi*LogPiFloat Compute_PI(float pi){If pi<=0 then return 0;If pi>=1 then return 0;Return 0-pi*log2(pi);}五、实验报告要求1、用C语言实现上述相关算法(可选择利用matlab函数实现)2、实验操作步骤和实验结果,实验中出现的问题和解决方法。

数据挖掘实验指导书

数据挖掘实验指导书

《数据仓库与数据挖掘》实验指导书主编张磊审校2012-1-11目录实验报告模板 (1)实验一、SSIS教程1-3课 (3)实验二、SSAS教程1-3课 (5)实验三、数据挖掘教程 (10)实验报告模板见下页。

青岛大学实验报告年月日姓名系年级组别同组者科目题目仪器编号[注:下面空白处明确实验目的、内容和要求,简要概括实验过程,适量拷屏部分关键界面放到实验报告中,评价最终结果是否正确,记录实验过程遇到的问题及解决结果,简单总结心得体会。

必要时加页,每个实验报告1-3页篇幅为宜。

]实验一、SSIS教程1-3课实验目的:采用SQL Server 2005的Integration Service,熟悉ETL工具的功能和使用方法实验内容:结合教材的ETL知识,打开SQL Server 2005的SSIS教程,按教程步骤完成1-3课,4学时,其中第1课2学时,第2、3课2学时。

实验要求:每次实验课结束前5分钟关闭SQL Server Business Intelligence Development Studio和SQL Server Management Studio,将项目文件夹拷贝到U盘或压缩后发到自己邮箱保存起来,以便下次实验课可以继续往下做或最后上交。

每次实验课开始时先使用SQL Server Configuration Manager启动必需的SQL Server 服务。

按时完成实验内容,整理实验报告。

实验说明:注意SQL Server 2005与SQL Server 2000的差异,如“框架”,访问表时必须使用框架名来限定,如SalesOrders.Employee;注意因中文教程是由英文教程翻译而来,所以有些地方出现名称翻译不足(即软件界面上是中文而教程中是英文)或过翻译(即软件界面上是英文而教程中是中文),因为大家懂英文所以这点应该不成问题;注意因为我们安装的SQL Server不是采用默认实例名(而是DWDM),而教程中假设的是采用默认实例名,所以有些地方的配置受到影响,需要进行更改;注意解决方案、项目和项的区别:解决方案可以包含多个项目;每个项目包含一个或多个项;按下图打开SSIS教程,做的过程中,注意以下问题:(1)创建的项目放到一个方便找到的自定义文件夹中以便每次下课时可以拷贝带走(2)第1课的“添加和配置平面文件连接管理器”步骤中的“重新映射列数据类型”部分,将【但现在,请不要进行任何更改,单击“取消”返回“平面文件连接管理器编辑器”对话框的“高级”窗格,查看建议的列数据类型。

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告

一、上机目的及内容目的:1.理解数据挖掘的基本概念及其过程;2.理解数据挖掘与数据仓库、OLAP之间的关系3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。

内容:将创建一个数据挖掘模型以训练销售数据,并使用“Microsoft 决策树”算法在客户群中找出购买自行车模式。

请将要挖掘的维度(事例维度)设置为客户,再将客户的属性设置为数据挖掘算法识别模式时要使用的信息。

然后算法将使用决策树从中确定模式。

下一步需要训练模型,以便能够浏览树视图并从中读取模式。

市场部将根据这些模式选择潜在的客户发送自行车促销信息。

要求:利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的各种问题和解决的方法与过程,并根据实验案例绘出模型及操作过程。

实验完成后,应根据实验情况写出实验报告。

二、实验原理及基本技术路线图(方框原理图或程序流程图)关联分析:关联分析是从数据库中发现知识的一类重要方法。

时序模式:通过时间序列搜索出重复发生概率较高的模式。

分类:分类是在聚类的基础上对已确定的类找出该类别的概念描述,代表了这类数据的整体信息,既该类的内涵描述,一般用规则或决策树模式表示。

三、所用仪器、材料(设备名称、型号、规格等或使用软件)1台PC及Microsoft SQL Server套件四、实验方法、步骤(或:程序代码或操作过程)及实验过程原始记录( 测试数据、图表、计算等)创建 Analysis Services 项目1.打开 Business Intelligence Development Studio。

2.在“文件”菜单上,指向“新建”,然后选择“项目”。

3.确保已选中“模板”窗格中的“Analysis Services 项目”。

4.在“名称”框中,将新项目命名为 AdventureWorks。

5.单击“确定”。

更改存储数据挖掘对象的实例1.在 Business Intelligence Development Studio 的“项目”菜单中,选择“属性”。

《网络数据挖掘》实验一

《网络数据挖掘》实验一

《网络数据挖掘》实验一一、实验目的在SQL Server2005上构建数据仓库二、实验内容1.每个学生按自己的学号创建一个空的数据库。

2.将“浙江经济普查数据”目录下的11个城市的生产总值构成表导入该数据库。

要求表中列的名称为EXCEL表中抬头的名称,表的名称分别为对应的excel文件名。

往城市表中输入前面导入的11个城市名称和城市ID(注意不能重复),5.仔细阅读excel表格,分析产业结构的层次,找出产业、行业大类、行业中类的关系。

有些行业的指标值为几个子行业的累加。

比如:第一产业→农林牧渔业第二产业→工业→采矿业、制造业、电力、燃气及水的生产和供应业类ID可按顺序编写。

8.创建一个新表汇总11个城市的生产总值,表的名称为“按城市和行业分组的生产总值表”。

表中的列名和第二步导入表的列名相同,同时添加一个新列(放在第一列),列名为“城市ID”,数据类型为整型;再添加一个新列(放在第二列),列名为“行业中类ID”,数据类型为整型。

9.将11个城市的生产总值构成表导入到第6步创建的新表中,注意不同的城市,要用不同的城市ID代入,行业中类ID可暂时为空值。

10.将行业门类表中的行业中类ID值输入至表“按城市和行业分组的生产总值表”中的“行业中类ID”列上。

11.检查3个表:“按城市和行业分组的生产总值表”、“城市表”、“行业门类表”中主键和外键是否一致(可通过关联查询检查)。

12.删除“按城市和行业分组的生产总值表”中除了行业中类纪录以外的其他高层次的记录,如指标为“第一产业”的行等等(如果不删除,将在汇总中出错)。

13.删除“按城市和行业分组的生产总值表”中原有的“指标”列(由于这列在行业门类表中已存在,因此是冗余的)。

14. 建立以下查询,和原EXCEL文件中的数据对比a)查询杭州市第二产业工业大类下各行业中类的总产出、增加值、劳动者报酬、营业盈余b)分别查询11个城市的第二产业总产出汇总值c)分别查询11个城市的工业劳动者报酬汇总值d)分别查询11个城市的第三产业增加值14.使用SSIS创建一个包,来完成第9步和第10步的过程,执行包,检查数据是否一致。

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告一、实验目的和意义数据仓库和数据挖掘是现代大数据时代中关键的技术与方法,本实验旨在通过实践操作,了解数据仓库和数据挖掘的基本概念、流程和方法,并基于实验数据进行数据仓库与数据挖掘的实际应用。

二、实验内容及步骤本实验基于某电商平台的网购数据,通过数据仓库的建立和数据挖掘的过程,探索和发现隐藏在数据中的有价值信息。

具体步骤如下:1. 数据收集和预处理获取电商网购数据集,对数据进行清洗和预处理,如缺失值处理、异常值处理和数据集整合等,以保证数据的质量和可用性。

2. 数据仓库的建立基于处理后的数据,进行数据仓库的建立。

根据业务需求和分析目标,确定维度表和事实表的建模方法和关联关系,设计和构建星型或雪花模式的数据仓库。

3. 数据挖掘的实践基于已建立的数据仓库,进行数据挖掘的实践,包括关联规则挖掘、分类与预测、聚类分析、异常检测等。

通过使用数据挖掘工具,如R、Python中的Scikit-learn等,进行模型构建和算法实施,得到数据挖掘结果。

4. 结果分析与应用对数据挖掘结果进行分析和解读,发现和总结其中的规律和知识,得到业务价值和应用建议,为业务决策和目标达成提供支持和参考。

三、实验结果与分析本实验得到了以下数据挖掘结果:1. 关联规则挖掘通过关联规则挖掘的过程,发现了一些有趣和有用的关系,如购买商品A的用户有70%的概率也会购买商品B,可以利用这些关联规则进行交叉销售和推荐。

2. 分类与预测通过构建分类和预测模型,成功预测了用户的购买行为,可以预测出用户未来可能会购买的商品,为精准市场营销和库存管理提供决策支持。

3. 聚类分析通过聚类分析,将用户分为不同的群体,可以对不同群体采取不同的营销策略,提高用户满意度和购买转化率。

4. 异常检测通过异常检测,发现了一些异常行为和欺诈行为,可以及时进行监控和防范,保护用户权益和平台安全。

此外,还通过数据可视化的方式,将分析结果展示出来,如通过柱状图、折线图、散点图等方式进行可视化展示,直观地呈现数据的分布和关系。

数据仓库与数据挖掘课程实验指导书

数据仓库与数据挖掘课程实验指导书

潘怡编著《数据仓库与数据挖掘》课程实验指导书长沙学院计算机科学与技术系2009年9月前言本书是《数据仓库与数据挖掘》课程及《数据分析与挖掘》的实验指导书。

全书分为三个部分,第一部分为实验内容对每个实验的实验目的、实验类型、实验学时、实验原理及知识点、实验环境(硬件环境、软件环境)和实验内容及步骤进行简单介绍,第二部分为实验指导对每个实验的实验方法,实验步骤及补充的实验知识进行详细介绍,第三部分为实验报告。

本实践课程主要介绍数据仓库的工作机理及其构建过程,。

要求学生熟练使用数据库管理系统MS SQL Server,掌握典型的数据仓库系统及其开发工具的使用,理解数据挖掘的工作原理与流程,掌握典型数据挖掘技术及其工具的使用方法,熟悉SQL SERVER BI DE V集成挖掘环境。

要求学生实验前认真准备,实验后提供实验报告,给出详细设计方法以及设计依据。

实验报告的格式应采用统一封面,统一的实验报告纸。

封面应包括:课程名称、实验序号、名称、专业、班级、姓名、同组实验者、实验时间。

实验报告内容应包括:实验名称、目的、内容、实验步骤、实验记录、数据处理(或原理论证、或实验现象描述、或结构说明等)。

目录第一部分实验内容实验1:实践SQL Server数据多维分析环境实验2:实践关联规则挖掘方法实验3:实践决策树挖掘方法实验4:实践聚类挖掘方法实验5:实践神经网络挖掘方法第二部分实验指导实验1:实践SQL Server数据多维分析环境实验2:实践关联规则挖掘方法实验3:实践决策树挖掘方法实验4:实践聚类挖掘方法实验5:实践神经网络挖掘方法第三部分实验报告第一部分实验内容实验1:实践SQL Server数据多维分析环境一.实验目的学习和掌握Sql Server 2005 Analysis Services 工具集,包括如何在BI Development Studio 的Analysis Services 项目中定义数据源、数据源视图、维度、属性、层次结构和多维数据集,如何查看多维数据集和维度,理解并掌握OLAP分析的基本过程与方法。

数据仓库与数据挖掘技术研究与应用

数据仓库与数据挖掘技术研究与应用

数据仓库与数据挖掘技术研究与应用1. 引言数据是当今社会的核心资源之一,企业需要从海量数据中提取有价值的信息以支持业务决策和发展。

数据仓库和数据挖掘技术是处理和分析大规模企业数据的重要手段。

本文将探讨数据仓库和数据挖掘技术的研究与应用。

2. 数据仓库技术2.1 数据仓库定义和特点数据仓库是一个面向主题、集成、历史和稳定的数据存储库。

数据仓库的主要特点包括:面向主题,即聚焦于特定业务领域的数据集合;集成,即从不同数据源中提取数据,转换为一致的格式和编码;历史,即保留不同时间点的数据快照以分析趋势和历史演变;稳定,即数据仓库结构和内容相对稳定,不随源系统而改变。

2.2 数据仓库架构数据仓库架构包括数据源层、ETL层、存储层和应用层。

数据源层包括企业各个应用系统、数据文件和传感器等各种数据来源。

ETL层负责数据的提取、转换和加载,将数据转换为适合数据仓库的格式。

存储层为数据提供持久化存储,包括数据仓库、数据集市和数据清单等不同层次的存储结构。

应用层提供多种用户界面和分析工具,以供用户查询和分析数据。

2.3 数据仓库建设数据仓库建设需要遵循一些基本原则,如需求驱动、迭代开发、数据治理和数据质量保障等。

实施建设的流程包括:需求分析、设计规划、技术实现和运营管理。

在规避风险和提高效率方面,可采用敏捷开发、自动化测试和基础设施自动化等现代开发技术。

3. 数据挖掘技术3.1 数据挖掘定义和技术分类数据挖掘是指从大量数据中提取有用信息的技术。

数据挖掘技术可分为分类、聚类、关联规则和最优化等多种类型。

分类是明确将数据分为不同类别,如预测客户流失或判断股票波动等;聚类是将相似的数据分为同一类别,如在销售数据中识别消费者购买偏好;关联规则是寻找数据项之间的联系和规律,如在购物篮数据中识别购物行为模式;最优化则是寻求最佳状态或解决方案,如关于生产效率和资源利用的优化问题。

3.2 数据挖掘流程数据挖掘流程包括问题定义、数据准备、建模、评估和应用等阶段。

数据仓库与数据挖掘案例分析

数据仓库与数据挖掘案例分析

数据仓库与数据挖掘案例分析在当今数字化的时代,数据已成为企业和组织最宝贵的资产之一。

如何有效地管理和利用这些海量数据,以获取有价值的信息和洞察,成为了摆在众多企业面前的重要课题。

数据仓库和数据挖掘技术的出现,为解决这一问题提供了有力的手段。

接下来,让我们通过一些具体的案例来深入了解这两项技术的应用和价值。

一、零售行业的数据仓库与数据挖掘以一家大型连锁超市为例,该超市每天都会产生大量的销售数据,包括商品的种类、价格、销售数量、销售时间、销售地点等。

通过建立数据仓库,将这些分散在不同系统和数据库中的数据整合起来,形成一个统一的、集成的数据源。

数据挖掘技术则可以帮助超市发现隐藏在这些数据中的模式和趋势。

例如,通过关联规则挖掘,可以发现哪些商品经常被一起购买,从而优化商品的摆放和促销策略。

如果顾客经常同时购买面包和牛奶,那么将这两种商品摆放在相邻的位置,或者推出面包和牛奶的组合促销活动,可能会提高销售额。

通过聚类分析,可以将顾客分为不同的群体,根据每个群体的消费习惯和偏好,进行个性化的营销。

比如,将经常购买高端进口食品的顾客归为一类,针对他们推送相关的新品推荐和优惠信息;而对于注重性价比的顾客群体,则推送一些打折促销的商品信息。

二、金融行业的数据仓库与数据挖掘在金融领域,银行和证券公司也广泛应用数据仓库和数据挖掘技术。

一家银行拥有大量的客户数据,包括客户的基本信息、账户交易记录、信用记录等。

利用数据仓库,银行可以对这些数据进行整合和管理,实现对客户的全面了解。

数据挖掘可以帮助银行进行客户细分,识别出高价值客户和潜在的流失客户。

对于高价值客户,提供个性化的服务和专属的金融产品,提高客户的满意度和忠诚度;对于潜在的流失客户,及时采取措施进行挽留,比如提供优惠政策或者改善服务质量。

在风险管理方面,数据挖掘可以通过建立信用评估模型,预测客户的违约风险。

通过分析客户的历史交易数据、收入情况、负债情况等因素,评估客户的信用等级,为贷款审批提供决策依据,降低不良贷款率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据仓库与数据挖掘实验
实验1、数据仓库与OLAP
■ Analysis Services→Analysis Manager的安装、启动与退出
◆安装:
◆启动:
开始→程序→Microsoft SQL Server→Analysis Services→Analysis Manager
◆退出。

文件→退出
■创建和连接数据源(Windows XP
◆启动Microsoft Access→创建、添加、修改、删除数据库和数据表。

(内容自定。

◆开始→设置→控制面板
◆双击“管理工具”
◆双击“数据源(ODBC”
◆选择“系统DSN”
◆如果已经存在数据源“FoodMart
2000”,则转向(******处;或者单击“删除”,删除该数据源,然后按照下面的步骤练习如何建立数据源;
◆否则,单击“添加”
◆选择相应的驱动程序,本例选择“Microsoft Access Driver(*.mdb”→单击“完成”
◆在“数据源名(N:”处,输入:FoodMart 2000→单击“选择”
◆选择“C:\Program Files\Microsoft Analysis Services\Samples”目录中的“foodmart 2000.mdb”→单击“确定”
◆单击“确定”
◆最后单击“确定”,关闭ODBC数据源管理器。

◆(******对于已经存在数据源“FoodMart
2000”的情况,操作如下:选择“FoodMart2000”→单击“配置”
◆单击“选择”
◆选择“C:\Program Files\Microsoft Analysis Services\Samples”目录中的“foodmart 2000.mdb”→单击“确定”
◆单击“确定”
◆最后单击“确定”,关闭ODBC数据源管理器。

■创建Analysis Services数据库(Windows XP
◆启动:
开始→程序→Microsoft SQL Server→Analysis Services→Analysis Manager
→选择“新建数据库”
◆在“数据库名称(D”下,输入“Sample”→单击“确定”
◆单击“Sample”→展开数据库
■ 创建和连接Analysis Services数据源(Windows XP)
◆选择“Sample”→选择“数据源”→右击
◆选择“提供程序”选项卡→选择“Microsoft OLE DB Provider for ODBC Drivers”→选择“连接”选项卡◆在“使用数据源名称(D)”下→选择“FoodMart 2000”→单击“测试连接”→测试连接成功对话框。

◆在测试连接成功对话框中→单击“确定”。

◆在数据连接属性对话框中→单击“确定”。

成功连接后的画面如下图:。

相关文档
最新文档