生物化学
生物化学专业的详细介绍

生物化学专业的详细介绍生物化学是一门综合性学科,它结合了生物学和化学两个学科的理论与实践,研究生物体内的化学成分、化学反应以及与生命活动相关的分子机制。
生物化学专业培养具备扎实的化学基础和深入了解生物学原理的专业人才,他们在生物医药、生物工程、生物技术等领域具有广泛的应用前景。
一、专业简介生物化学专业主要研究生物体内的化学成分、化学反应以及与生命活动相关的分子机制。
通过研究生物大分子的结构、功能和代谢途径,生物化学揭示了生命的基本规律和生物体内的化学过程。
生物化学专业涉及的领域包括蛋白质化学、核酸化学、酶学、代谢途径等。
二、专业课程1. 生物化学基础课程:包括有机化学、无机化学、生物化学、分子生物学等基础课程,为学生打下坚实的化学和生物学基础。
2. 高级生物化学课程:包括蛋白质化学、核酸化学、酶学、代谢途径等高级课程,深入研究生物体内的化学反应和分子机制。
3. 实验课程:生物化学专业的实验课程非常重要,学生通过实验掌握实验操作技巧和科学研究方法,培养实验设计和数据分析的能力。
三、就业方向1. 生物医药领域:生物化学专业的毕业生可以从事药物研发、生物制药、临床检验等工作,为药物研发和临床诊断提供技术支持。
2. 生物工程领域:生物化学专业的毕业生可以从事基因工程、蛋白质工程、酶工程等工作,参与新药研发和生物工艺的优化。
3. 生物技术领域:生物化学专业的毕业生可以从事基因测序、基因编辑、生物传感器等工作,为生物技术的发展做出贡献。
四、就业前景生物化学专业毕业生具备扎实的化学和生物学知识,熟练掌握实验技术和科学研究方法,具有较强的分析和解决问题的能力。
随着生物医药、生物工程、生物技术等领域的快速发展,生物化学专业的毕业生在科研机构、医药企业、生物工程公司等单位都有很好的就业前景。
总结:生物化学专业是一门综合性学科,结合了生物学和化学的理论与实践,研究生物体内的化学成分和分子机制。
生物化学专业的毕业生在生物医药、生物工程、生物技术等领域具有广泛的应用前景。
生物化学知识点

生物化学知识点生物化学是关于生物体内各种化学反应和物质组成的研究领域。
本文将探讨生物化学的几个重要知识点,包括生物大分子、酶的功能和调控、代谢途径及其调节以及核酸的结构和功能。
一、生物大分子生物大分子是生物体内重要的有机分子,包括蛋白质、核酸、多糖和脂类。
这些分子是组成细胞和生命活动的基本单位。
1. 蛋白质蛋白质是生物体内功能最为多样和复杂的生物大分子之一。
它们由氨基酸组成,通过肽键连接成长链。
蛋白质扮演着酶、结构蛋白、激素和抗体等重要角色。
2. 核酸核酸是生物体内负责储存和传递遗传信息的分子。
DNA和RNA是两种常见的核酸。
DNA以双螺旋结构存储遗传信息,RNA则参与蛋白质的合成过程。
3. 多糖多糖是由单糖分子通过糖苷键连接而成的聚合物。
多糖包括淀粉、糖原和纤维素等,它们在生物体内具有能量储存和结构支持的功能。
4. 脂类脂类是由甘油和脂肪酸组成的生物大分子。
它们在细胞膜的构建、能量储存和信号传导中起到重要作用。
二、酶的功能和调控酶是生物体内调节化学反应速率的生物催化剂。
酶可以加速反应速率、选择性催化和在温和条件下进行反应。
1. 酶的催化机制酶通过降低反应的活化能,使反应更容易发生。
酶与底物结合形成酶底物复合物,进而发生化学反应。
最终生成产物和释放酶。
2. 酶的调控酶的活性可以通过多种机制进行调控。
常见的调控方式包括底物浓度、温度、酸碱度以及激活剂和抑制剂的作用。
三、代谢途径及其调节代谢是生物体内物质和能量的转化过程。
生物体通过代谢途径来满足对营养物质的需求,并产生能量和代谢产物。
1. 糖代谢糖代谢是生物体内获得能量的重要途径。
它包括糖原的分解和糖酵解产生乳酸或乙醇,以及细胞呼吸中糖的氧化生成ATP。
2. 脂肪代谢脂肪代谢是能量储存的主要方式。
脂肪通过脂肪酸的β氧化产生ATP,而合成脂肪酸需要NADPH和ATP的供应。
3. 蛋白质代谢蛋白质代谢包括蛋白质的降解和合成。
降解过程中,蛋白质被降解为氨基酸,供给细胞合成新的蛋白质。
生物化学概述

– 研究对象: 生物体
– 研究内容:
• 生命的物质组成和功能 • 物质代谢和能量代谢 • 遗传信息的传递与表达 • 细胞信号转导 • 分子生物学
– 研究对象:生物大分子(蛋白质、酶、核酸、多糖等)
– 研究内容:
• 生物大分子的结构与功能 • 遗传信息传递与表达 • 生物工程 • 生物化学和分子生物学是现代生物学的带头学科
二硫键是巯基的氧化形式,二硫键可加氢再还原为巯基 谷胱甘肽、巯基蛋白及巯基酶的活性基团是巯基,通过巯
基参与反应。
生物分子的常见基团
磷酸基
体内含磷酸基的化合物非常广泛 2分子磷酸可以脱水缩合为焦磷酸酐(亦称焦磷酸酯),如
ATP分子含有三个磷酸基,其中3个磷酸基之间含有2个磷酸酯 (酐)键,此键断开时可释放大量能量,因此称为高能键。 在细胞的很多代谢反应中,往往第一阶段的反应是使底物分 子活化,活化的常见反应是由ATP提供一个高能磷酸基团给被 活化的分子,如葡萄糖由ATP供能活化为葡萄糖-6-磷酸。
而特称为苷(旧称甙),淀粉、糖原等分子中的-C-O-C-称为糖苷键 苯环上连接羟基的化合物称为酚
生物分子的常见基团
醛基 酮基 羧基
羰基
>C=O称为羰基 羰基(酮基)在碳链中间的化合
物称为酮; 羰基在碳链末段,含-CHO的分子
称为醛 羰基在碳链末段,含-COOH的称
为羧酸 如果同时有2个羰基存在于苯环上
生物分子的常见基团
72
酯、Байду номын сангаас、酐
含氧酸与醇的脱水缩合产物称为酯。羧酸与-SH形成的硫酯(-SH与-OH 性质类似
含氧酸与含氧酸的脱水缩合产物称为酐
氨基中的氮原子电负性较强,可以 结合氢离子而成-NH3+、=NH2+, 因此,氨基和亚氨基是碱性基团
生物化学

名词解释:1蛋白质的一级结构2蛋白质的三级结构3结构域4蛋白质的四级结构5蛋白质的等电点6蛋白质的变性7肽单元8肽键9模体10亚基11蛋白质组12Tm值13DNA变性14核酸分子杂交15核酸酶16基因组17核小体18全酶19米氏常数Km 20酶原激活21酶的特异性22多酶体系23酶的活性中心24同工酶25必需基团26酶的化学修饰27酶的变构调节28糖酵解29糖异生30三羧酸循环31乳酸循环32糖的有氧氧化33必要脂肪酸34脂肪动员35HSL 36酮体37脂酸β-氧化38呼吸链39P/O比值40底物水平磷酸化41ATP合酶42氮平衡43腐败作用44生糖兼生酮氨基酸45必需氨基酸46一碳单位47氨基酸代谢库48联合脱氨基作用49从头合成途径50补救合成途径51物质代谢52物质代谢调节53整体水平调节54细胞水平调节55激素水平调节56酶的区域性分布57酶活性调节58酶含量调节59关键酶(调节酶)60长期饥饿61应激62基因63半保留复制64复制叉65前导链66后随连67中心法则68反转录69冈崎片段70端粒71点突变72框移突变73CDNA 74转录75结构基因76内含子77外显子78断裂基因79转录基因80Rho因子81模板链82编码连83剪接84不对称转录85翻译86遗传密码87多核糖体88摆动配对89分子伴侣90核糖体循环91框移(移码)突变92操纵子93增强子94顺式作用元件95管家基因96反式作用因子97基因表达98结构基因99CDNA文库100基因载体101回文结构102限制性核酸内切酶103基因组文库104质粒105转化106转导107PCR 108克隆109DNA重组110受体111G蛋白112第二信使113蛋白激酶114自身磷酸化115小G蛋白问答:1什么是蛋白质的二级结构?它主要有哪几种?2简述α-螺旋结构特征3简述常用的蛋白质分离纯化方法4简述谷胱甘肽的结构特点和功能5哪些因素影响蛋白质α—螺旋结构的形成或稳定6简述细胞内主要的RNA及主要功能7简述真核生物mRNA 的结构特点8简述B-DNA的结构要点9简述Chargff规则10什么是单纯酶?什么是结合酶?酶辅助因子有几类?11何为酶的特异性(专一性),举例说明酶的特异性有几种?12何为酶的活性中心,酶的必需基团?13何谓酶促反应动力学?影响酶促反应速率的因素有哪些?14什么是同工酶及同工酶的生物学意义?15试说明酶变构调节的机制及生物学意义? 16什么是酶的化学修饰调节?有何特点?17什么是酶的可逆抑制,不可逆抑制?可逆抑制有几种?各有何特点?18简述糖酵解的关键酶反应19简述磷酸戊糖途径的生理意义?20简述三羧酸循环的要点21简述三羧酸循环的生理意义22写出三羧酸循环中的脱氢酶促反应23简述糖异生的关键酶反应24简述乳酸循环形成的原因及其生理意义25简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的作用26比较糖的有氧氧化与无氧氧化的特点27 6-磷酸葡糖糖在肝脏的代谢去路有哪些?28简述酮体的生成过程29简述血浆脂蛋白的分类,来源及主要功能30简述磷脂酶的种类及其作用特点31 1分子软脂酸彻底氧化分解净生成多少分子ATP?请写出计算依据32乙酰CoA在脂类代谢中的来源与去路33简述呼吸链的组成及各复合体的主要作用34氧化磷酸化的抑制剂分哪几类?请举例分别说明其作用特点35简述NADH氧化呼吸链,如果鱼藤酮错在时其结果如何?36影响氧化磷酸化的因素有哪些,请简述其主要作用37胞浆中NADH是通过何种机制转运而进入线粒体的?以肝细胞为例,说明其转运过程38说明谷氨酸在体内转变成尿素,二氧化碳与水的主要代谢途径39说明高氨血症导致昏迷的生化基础40简述鸟氨酸循环41简述丙氨酸—葡糖糖循环的过程及生理意义42简述甲硫氨酸(蛋氨酸)循环43简述体内氨的来源和去路44核苷酸在体内有哪些生理的功能45简述PRPP在核苷酸合成中的重要作用46比较氨基甲酰磷酸合成酶Ⅰ、Ⅱ的异同47比较嘌呤核苷酸和嘧啶核苷酸从头合成的异同48体内嘌呤核苷酸和嘧啶核苷酸的合成有哪两条途径?各以什么为原料?49生物体内物质代谢调节分为几级水平?50为什么说三羧酸循环是三大物质代谢相互联系的枢纽?有何生理意义?51机体细胞水平的物质代谢有哪些主要方式?52何谓酶变构调节的主要特征、特点和生理意义是什么?53简述酶变构调节与化学修饰调节的异同点54简述短期、长期饥饿后的物质代谢改变55简述糖尿病时主要物质代谢调节紊乱56简述生物体物质代谢的特点57DNA半保留复制的方式是通过什么实验证明的?请写出实验的详细过程58原核生物DNA复制过程中都需要哪些酶的蛋白因子?并简述他们在复制过程总的功能59什么是端粒?什么是端粒酶?他们在复制过程中主要发挥什么作用60请举例说明DNA损伤突变的主要形式61DNA损伤修复的方式有哪些?人体内最主要的方式是那个?并叙述其过程62试比较复制和转录的相同点和不同点63真核生物中三种RNA聚合酶的转录产物各是什么64试比较原核生物与真核生物RNA聚合酶的特点65试比较原核生物与真核生物RNA的转录过程66试述参与RNA转录的成分及其在转录中的作用67为什么说RNA转录为不对称转录68简述RNA聚合酶、DNA聚合酶、反转录酶所催化反应的共同点69为什么说真核生物的基因是断裂基因70试述原核生物的两种终止转录方式71核酸酶与核酶有何不同72简述遗传密码的主要特点73试述参与蛋白质生物合成的物质及其作用74mRNA分子上遗传密码排列顺序翻译成多肽链的氨基酸排列顺序,保证准确翻译的关键是什么?75参与蛋白质生物合成的核酸有哪几类?它们分别起着什么作用?76蛋白质合成的翻译后加工有哪些方式?77简述基因转录激活的基本要素78试述原核生物基因表达调控的特点79简述lac的调节机制80简述顺式作用元件的结构和作用特点81简述反式作用因子的结构和作用特点82简述真核生物基因组的结构特点83基因重组与基因工程所用载体应具备哪些条件84试述重组DNA技术的基本步骤85简述DNA克隆的基本过程86请比较常用的工具酶及其功能87在真核表达体系中,常用于细胞转染的方法有哪些?88目前获取目的基因的主要途径有哪些?89简述外源性基因与载体的主要连接方式90一种可靠的DNA诊断学方法应符合哪些条件91简述基因位点特异性重组与同源重组的差别92什么是质粒?为什么质粒可作用基因载体93简述原核表达体系和真核表达体系的优缺点94已知有一mRNA分子,怎样能使它翻译出相应的蛋白质?简述其过程。
生物化学重点

生物化学重点第一章绪论1.生物化学的定义生物化学是研究生命体化学组成及化学变化规律的一门科学。
2.生物体的化学组成生物体的化学组成有水分、盐类、碳氢化合物等。
其中的碳氢化合物包括糖类、脂类、蛋白质、核酸及维生素,激素等。
3.生物化学发展经历了哪些阶段生物化学发展经历的三个阶段:1)叙述生物化学阶段,2)动态生物化学阶段,3)机能生物化学阶段。
4.我国现代生化学家最突出的贡献我国近代生物化学主要研究成果:人工合成蛋白质方面1965年,人工合成具有生物活性的蛋白质:结晶牛胰岛素。
1972年,用X光衍射法测定了猪胰岛素分子的空间结构。
1979年12月27日,人工合成酵母丙氨酸转运核糖核酸半分子。
1981年,人工合成酵母丙氨酸转运核糖核酸全分子。
第二章蛋白质构建分子—氨基酸*1.二十种蛋白质标准氨基酸【R 基决定了蛋白质的性质】七种氨基酸(Arg,Lys,His,Asp,Glu,CysandTyr)易形成离子化的侧链*2.蛋白质中的氨基酸都是L-型。
(Gly甘氨酸除外)氨基酸侧链含有.3.20种氨基酸按照酸碱性的分类。
中性氨基酸:包括8种非极性氨基酸和7种非解离的极性氨基酸,共15种。
酸性氨基酸:即天冬氨酸和谷氨酸。
解离后,分子带负电荷。
碱性氨基酸:即赖氨酸、精氨酸和组氨酸。
解离后,分子携带正电荷。
4. 氨基酸的等电点及其实际意义(用途)*等电点:当调节氨基酸溶液的pH值,使氨基酸的氨基与羧基的解离度完全相等时,则氨基酸所带净电荷为0,在电场中既不向阴极移动也不向阳极移动,此时氨基酸所处溶液的pH值称该氨基酸的等电点,即pI值。
意义:由于在等电点时,氨基酸的溶解度最小,易沉淀。
利用这一性质,可以分离制备某些氨基酸。
利用各种氨基酸的等电点不同,可通过电泳法、离子交换法等方法进行混合氨基酸的分离和制备。
实验证明在等电点时,氨基酸主要以两性离子形式存在,但也有少量的而且数量相等的正、负离子形式,还有极少量的中性分子。
生物化学的概念

二、研究内容
1、生物体的化学成份和组成 大量元素:C、H、O、N四种,
根据元素分析 微量元素:Fe、Zn、Cu、Mg等。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
2、结构和功能的关系 DNA
3、研究生物体内的代谢过程即新陈代谢 分解代谢
物质代谢: 合成代谢
汉斯·克雷勃斯(Hans A. Krebs)
1949 Pauling(美)指出 镰刀形红细胞性贫血是一 种分子病,并于1951年提 出蛋白质存在二级结构。 1954年获诺贝尔奖
李纳斯·鲍林(Linus Pauling)
1953年 Watson(美)与 Crick(英)提出DNA分子的双 螺旋结构模型,1962年共获诺贝尔奖。
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。
生物化学的概念微生物的概念及分类与生物化学有关的专业生活中的生物化学生物化学的应用有关生物化学的论文我对生物化学的认识对生物化学的认识组成生物体的化学元素生物的概念
第一章 绪 论
第一节
概述
一、生物化学的概念:
简单地讲:就是生命的化学。 即它是以生物体为研究对象,用化学的方法和理论, 从分子水平来研究生物体的化学组成和生命过程中的 化学规律的一门学科。
我国生物化学的开拓者——吴宪教授
蛋白质研究领域内国际上最具有权威性的综 述性丛书《Advances in Protein Chemistry》第47卷(1995年)发表了美国 哈佛大学教授、蛋白质研究的老前辈J. T. Eddsall的文章“吴宪与第一个蛋白质变性 理论(1931)Hsien Wu and the first Theory of Protein Denaturation(1931)”, 对吴宪教授的学术成就给予了极高的评价。 该卷还重新刊登了吴宪教授六十四年前关于 蛋白质变性的论文。一篇在1931年发表的论 文居然在1995年仍然值得在第一流的丛书上 重新全文刊登,不能不说是国际科学界的一 件极为罕见的大事。
生物化学

遗传信息的贮存、传 遗传信息的贮存、 代、表达 遗传的物质基础) (遗传的物质基础) 260nm 粘度↓ 粘度↓ Tm
α-螺旋和β-折叠结构比较 螺旋和β
区别点 形 氢 状 键 α-螺旋 螺旋状 链内,与长轴平行 链内, 较大 较大 0 .15nm 毛发角蛋白 β-折叠 锯齿状 链间,与长轴垂直 链间, 较小 较小 0.36nm 蚕丝蛋白
> 1056
个不同的氨基酸、 (* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目) 个不同的氨基酸 核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
生物信息大分子的特点: 生物信息大分子的特点:
• • 质量一般在10 之间或以上。 质量一般在 4~106之间或以上。 由特殊的亚单位( 由特殊的亚单位(subunit)按一定的顺序、首 亚单位 )按一定的顺序、 尾连接形成的多聚物( 尾连接形成的多聚物(polymer)。 )。 亚单位在多聚物中的排列是有一定顺序(称为序 亚单位在多聚物中的排列是有一定顺序(称为序 )。序列决定着生物大分子的空 列,sequence)。序列决定着生物大分子的空 )。 立体)结构形式和功能, 间(立体)结构形式和功能,决定着生物大分子 的信息内容。 的信息内容。
3、重要性质:两性解离及带电状态判定;紫外吸收;沉淀;变性 、重要性质:两性解离及带电状态判定;紫外吸收;沉淀; 4、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析;分子筛 、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析; 5、结构与功能关系(举例) 、结构与功能关系(举例)
复习思考题
1.为什么说: 蛋白质是生命的物质基础” 1.为什么说:“蛋白质是生命的物质基础”? 为什么说 2.简述蛋白质α螺旋和β折叠的结构特点。 2.简述蛋白质α螺旋和β折叠的结构特点。 简述蛋白质 3.什么是Pr的一、二、三和四级结构,分别指出 3.什么是Pr的一、 什么是Pr的一 三和四级结构, 维持它们结构的化学键。 维持它们结构的化学键。 4.举例说明Pr结构与功能的关系。 4.举例说明Pr结构与功能的关系。 举例说明Pr结构与功能的关系 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 简述Pr变性 6.Pr定量测定的方法主要有哪些? 6.Pr定量测定的方法主要有哪些? 定量测定的方法主要有哪些
生物化学

什么是生物化学生物学的分支学科。
它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。
若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。
因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。
研究各种天然物质的化学称为生物有机化学。
研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。
60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。
生物化学发展简史生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。
例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。
又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。
1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。
1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。
生物化学的发展大体可分为3个阶段。
第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。
其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。
1926年J.B.萨姆纳制得了脲酶结晶,并证明它是蛋白质。
此后四、五年间J.H.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。
通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
糖苷键:一个单糖或糖链还原端半缩醛上的羟基与另一个分子(如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛键或缩酮键。
,糖苷键是连接提供半缩醛羟基的糖(也称为糖基)和与之缩合的“非糖”部分(也称糖苷配基)的化学键。
生糖氨基酸:大多数氨基酸在满足蛋白质合成需要的条件下,可以通过分解作用产生丙酮酸,α—酮戊二酸和草酰乙酸,他们均可作为糖异体的前体分子,这些氨基酸均为生糖氨基酸。
同功tRNA:在同一生物中,携带同一种氨基酸的不同tRNA分子。
构型:一个有机分子中各原子特有的固定空间排列,这种排列不经过共价键的断裂是不会改变的。
蛋白质一级结构:指蛋白质中共价连接的氨基酸残基的排列顺序,包括二硫键的位置
调节酶:位于一个或多个代谢途径内的一个关键部位的酶,它的活性可因调节剂结合而改变。
有调节代谢反应的功能,调节酶一般可分为别构酶和共价调节酶。
乙醛酸循环:在异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程启动子:RNA聚合酶特异性识别和结合的DNA序列。
控制基因表达(转录)的起始时间和表达的程度。
1、酶的提取纯化要加入保护剂,如(巯基乙酸)的作用是什么?答加入少量金属螯合剂(EDTA,EGTA等)可避免重金属离子破坏酶活性;含有巯基的酶,要加入巯基试剂(巯基乙醇,二巯苏糖醇等),是为了保护活性中心含有巯基,防止巯基被氧化
2、tRNA的结构
一级结构:线性二级结构:三叶草型三级结构:倒L型
四臂:(1)受体臂:其3’—端有共同的CCA—OH结构,可以接受活化的氨基酸;5’—端多为PG,少数为PC,有不变的核苷酸,对维持tRNA的高级结构和实现生物功能有重要作用
(2)D臂(3)反密码子臂(4)TΨC型臂
四环:(1)D环(2)TΨC环(3)可变环(4)反密码子环:识别mRNA上的密码子
3、由于丙二酸与琥珀酸结构类似可以与酶结合并导致酶失活,两者为竞争性抑制
4、果糖激酶的磷酸化和去磷酸化是共价修饰调节
4、蛋白质变性的实质是分子中氢键等次级键断裂,是蛋白质分子空间结构遭到破坏,因此生物活性也必然丧失
5、作为羧化酶的辅酶是生物素,磷酸吡哆醛和磷酸吡哆胺,是转氨酶的辅酶
6、ATP是磷酸果糖激酶的变构抑制剂
7、按照催化反应的类型分类有:(1)氧化还原酶(2)转移酶类(3)水解酶类(4)裂合酶类(5)异构酶类(6)合成酶类
8、大部分双底物酶催化的反应可能有三种反应机理:(1)依次反应(2)随机反应(3)乒乓反应
9、转录后RNA的加工:(1)剪切与剪接(2)末端添加核苷酸(3)修饰(4)RNA编辑
10、呼吸链电子传递载体:NADH脱氢酶,琥珀酸脱氢酶,细胞色素还原酶,细胞色素氧化酶,辅酶Q,细胞色素C
12.DNA是半保留双向进行复制,C与G含量越高越稳定。
螺旋表面有一大沟和小沟,大沟深而宽,小沟浅而窄,这些结构与DNA和蛋白质识别和结合有关。
DNA聚合酶Ⅰ。
Ⅱ。
Ⅲ都为多功能酶,其中DNA聚合酶Ⅲ负责合成新链的复制作用。
DNA聚合酶Ⅰ负责损伤修复。
13.酮体的在肝脏中合成,肝脏中没有利用酮体的酶。
14.DNA指导下的RNA聚合酶,其全酶含有五个亚基,其中与转录有关的基因是σ亚基。
15.试述mRNA.tRNA.rRNA在蛋白质合成中的作用。
①mRNA是遗传信息的传递者,是蛋白质生物合成过程中的直接指令氨基酸渗入的范本。
②
tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
③rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所
16.在厌氧条件下,哺乳动物的肌肉中积累的物质是乳酸
17.蛋白质典型а螺旋特点为多为右手螺旋3.6 Aa; 0.54 nm(螺距); 0.15 nm;形成链内氢
键;氢键与中心轴平行;侧链伸向外侧。
18.在葡萄糖的有氧分解产物中,即脱氢有脱羟的是丙酮酸
19.酶促反应的特点①具有极高的催化效率②高度的专一性③具有高度的底物特异性④酶的催化活性是可以调节⑤酶的活性具有不稳定性⑥可以加速反应的进行,但不能使动力学中不能发生的反应发生
20.关于三羧酸循环,下列叙述哪条不正确(D)A产生NADH+H和FADH2 B有GTP 生成C氧化乙酰COA D提供草酰乙酸净合成
21在细胞溶浆内可进行下列代谢反应,但应除外(C)A糖酵解B磷酸戊糖途径C 脂肪酸β-氧化D脂肪酸合成
22.在脂肪合成中,将乙酰COA从线粒体内转移到细胞质中的化合物(C)A乙酰COA B 草酰乙酸C柠檬酸D琥珀酸
23.DNA复制时,下列哪一种是不需要的(D)ADNA指导的DNA聚合酶BDNA连接酶C拓扑异构酶D限制性内切酶
24.脂肪酸两种合成方式1.从头合成2.延伸合成
三.简答题
1.什么是遗传密码的摆动性?答密码子第一位,第二位碱基配对是严格的,第三位碱基可以有一定的变动,tRNA上反密码子的第一位碱基与mRNA密码子的第三位碱基配对时,
可以在一定范围内变动,即并不严格遵循配对规律。
T,tRNA反密码子的第一位Ⅰ可与mRNA 第三位U,A,C,配对。
2.肽键共振的结果答1、限制绕肽键的只有旋转2、形成酰胺平面3、产生键的平均化4、肽键呈反式构型
3.蛋白质的一级结构测定的步骤是什么?答1、首先要确定蛋白质分子中多肽链的数目2、对于寡聚蛋白质,要拆分蛋白质的多肽链3、断开多肽链的二硫键4、分析每一条多肽链的氨基酸组成5、鉴定多肽链的N-末端和C-末端的氨基酸残基6、将各多肽链裂解成较小的肽链7、对各肽段的氨基酸序列进行测定8、重构完整的多肽链一级结构9、确定多肽链或链内的二硫键的位置
4苯丙酮尿症产生的原因及其危害
原因:在苯丙氨酸代谢中由于缺乏苯丙氨酸羟化酶,体内苯丙氨酸蓄积转变成苯丙酮酸,造成尿中出现大量苯丙酮酸等代谢产物,导致产生苯丙酮尿症。
危害:缺陷导致苯丙氨酸转化为苯丙酮酸,排在尿中形成苯丙酮尿症,体内苯丙酮酸堆积,可导致幼儿智力缺陷
5磷酸戊糖途径其生物学意义何在?答1、PPP中产生的NADPH供给组织中合成代谢的需要,NADPH是合成脂肪酸,胆固醇等的供H体,也是NO2和NO3还原NH3同化等反应所需的供H体—为细胞的各种合成提供主要的还原力2、PPP途径的中间物是各种生成的原料3、在植物中,己糖再生阶段的一系列中间产物与酶同光合作用中卡尔文循环中的大部分和酶相同,因此,PPP可与光合作用联系起来,实现某些单糖间的互变4、NADPH 有时也可经呼吸链氧化功能
6为什么说三羧酸循环是糖,脂肪和蛋白质三大物质代谢的主要作用
1、三羧酸循环是乙酰CoA最终氧化为H2O和CO2的途径
2、糖代谢产生的碳骨架最终进入三羧酸循环氧化
3、脂肪分解产生的甘油可通过糖有氧氧化进入三羧酸循环氧化,脂肪酸
经β-氧化产生乙酰CoA进入三羧酸循环氧化4蛋白质分解产生的氨基酸脱氨后碳骨架进入三羧酸循环氧化,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接收氨基后合成非必须氨基酸。
所以三羧酸循环是三大营养物质代谢共同通路
7为什么细胞在紫外线照射后暴漏在可见光下比保持在黑暗状态下容易修复DNA 答紫外线可以通过引起T残基的二聚化而破换DNA,修复T二聚体的一种机制是由酶催化的光反应。
该反应由光复活酶催化的,该酶利用来自可见光的能量切断该二聚体并修复该DNA,所以细胞在紫外线照射后暴露于可见光下比保持在黑暗状态下容易修复DNA。
8糖原的合成答葡萄糖合成糖原的过程中称糖原的生成作用。
G-I-P在UDPG焦磷酸化酶催化下形成UDPG。
在糖原合成酶催化下,UDPG将葡萄糖残基加到糖原引物非还原形成a-1,4糖苷键。
由分支酶催化,将a-1,4糖苷键转化为a-1,6糖苷键,形成有分支的糖原
9分别概述酶的调解方式
1..别构调节:某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构象发生改变,从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称变构调节。
变构调节的特点:
(1)酶活性的改变通过酶分子构象的改变而实现(2)、酶的变构仅涉及非共价键的变化(3)、调节酶活性的因素为代谢产物(40、为非一耗能过程(5)、无放大效应
2..共价修饰调解:酶蛋白分子中的某些集团可以在其他酶的催化下发生共价修饰,从而导致酶活性的改变,称为共价修饰的调节共价修饰调节的特点:
(1)酶以两种不同修饰和不同活性的形式存在(2)、有共价键的变化(3)、受其他因素(如激素)的影响(4)、一般为耗能过程5、存在放大效应。