ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例 cn

合集下载

ASTM-G154加速老化试验

ASTM-G154加速老化试验

4.Summary of Practice4.1Specimens are exposed to repetitive cycles of light and moisture under controlled environmental conditions.4.1.1Moisture is usually produced by condensation of water vapor onto the test specimen or by spraying the speci-mens with demineralized/deionized water.4.2The exposure condition may be varied by selection of: 4.2.1Thefluorescent lamp,4.2.2The lamp’s irradiance level,4.2.3The type of moisture exposure,4.2.4The timing of the light and moisture exposure,4.2.5The temperature of light exposure,and4.2.6The temperature of moisture exposure,and4.2.7The timing of a light/dark cycle.4.3Comparison of results obtained from specimens exposed in same model of apparatus should not be made unless reproducibility has been established among devices for the material to be tested.4.4Comparison of results obtained from specimens exposed in different models of apparatus should not be made unless correlation has been established among devices for the material to be tested.5.Significance and Use5.1The use of this apparatus is intended to induce property changes associated with the end use conditions,including the effects of the UV portion of sunlight,moisture,and heat.These exposures may include a means to introduce moisture to the test specimen.Exposures are not intended to simulate the deterioration caused by localized weather phenomena,such as atmospheric pollution,biological attack,and saltwater expo-sure.Alternatively,the exposure may simulate the effects of sunlight through window glass.Typically,these exposures would include moisture in the form of condensing humidity. N OTE2—Caution:Refer to Practice G151for full cautionary guidance applicable to all laboratory weathering devices.5.2Variation in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore,no reference shall be made to results from the use of this practice unless accompanied by a report detailing the specific operating conditions in conformance with the Section 10.5.2.1It is recommended that a similar material of known performance(a control)be exposed simultaneously with the test specimen to provide a standard for comparative purposes. It is recommended that at least three replicates of each material evaluated be exposed in each test to allow for statistical evaluation of results.6.Apparatus6.1Laboratory Light Source—The light source shall be fluorescent UV lamps.A variety offluorescent UV lamps can be used for this procedure.Differences in lamp intensity or spectrum may cause significant differences in test results.A detailed description of the type(s)of lamp(s)used should be stated in detail in the test report.The particular testing application determines which lamp should be used.See Ap-pendix X1for lamp application guidelines.N OTE3—Do not mix different types of lamps.Mixing different types of lamps in afluorescent UV light apparatus may produce major inconsis-tencies in the light falling on the samples,unless the apparatus has been specifically designed to ensure a uniform spectral distribution.N OTE4—Manyfluorescent lamps age significantly with extended use. Follow the apparatus manufacturer’s instructions on the procedure neces-sary to maintain desired irradiance(1,2).6.1.1Actual irradiance levels at the test specimen surface may vary due to the type or manufacturer of the lamp used,or both,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber and the ambient laboratory temperature.Consequently,the use of a radiometer to monitor and control the radiant energy is recommended.6.1.2Several factors can affect the spectral power distribu-tion offluorescent UV lamps:6.1.2.1Aging of the glass used in some types of lamps can result in changes in transmission.Aging of glass can result in a significant reduction in the short wavelength UV emission of some lamp types,6.1.2.2Accumulation of dirt or other residue on lamps can affect irradiance,6.1.2.3Thickness of glass used for lamp tube can have large effects on the amount of short wavelength UV radiation transmitted,and6.1.2.4Uniformity and durability of phosphor coating. 6.1.3Spectral Irradiance:N OTE5—Fluorescent UV A lamps are available with a choice of spectral power distributions that vary significantly.The more common may be identified as UV A-340and UV A-351.These numbers represent the characteristic nominal wavelength(in nm)of peak emission for each of these lamp types.The actual peak emissions are at343and350nm, respectively.6.1.3.1Spectral Irradiance of UVA-340Lamps for Daylight UV—The spectral power distribution of UV A-340fluorescent lamps shall comply with the requirements specified in Table1. N OTE6—The main application for UV A-340lamps is for simulation of the short and middle UV wavelength region of daylight.6.1.3.2Spectral Irradiance of UVA-351Lamps for Daylight UV Behind Window Glass—The spectral power distribution of UV A-351lamp for Daylight UV behind Window Glass shall comply with the requirements specified in Table2.N OTE7—The main application for UV A-351lamps is for simulation of the short and middle UV wavelength region of daylight which has been filtered through window glass(3).6.1.3.3Spectral Irradiance of UVB-313Lamps—The spec-tral power distribution of UVB-313fluorescent lamps shall comply with the requirements specified in Table2.N OTE8—Fluorescent UVB lamps have the spectral distribution of radiation peaking near the313-nm mercury line.They emit significant amounts of radiation below300nm,the nominal cut on wavelength of global solar radiation,that may result in aging processes not occurring e of this lamp is not recommended for sunlight simulation. See Table3.6.2Test Chamber—The design of the test chamber may vary,but it should be constructed from corrosion resistant material and,in addition to the radiant source,may provide for means of controlling temperature and relative humidity.When required,provision shall be made for the spraying of wateronthe test specimen for the formation of condensate on the exposed face of the specimen or for the immersion of the test specimen in water.6.2.1The radiant source(s)shall be located with respect tothe specimens such that the uniformity of irradiance at the specimen face complies with the requirements in Practice G151.6.2.2Lamp replacement,lamp rotation,and specimen repo-sitioning may be required to obtain uniform exposure of all specimens to UV radiation and temperature.Follow manufac-turer’s recommendation for lamp replacement and rotation.6.3Instrument Calibration—To ensure standardization and accuracy,the instruments associated with the exposure appa-ratus(for example,timers,thermometers,wet bulb sensors,dry bulb sensors,humidity sensors,UV sensors,and radiometers) require periodic calibration to ensure repeatability of test results.Whenever possible,calibration should be traceable to national or international standards.Calibration schedule and procedure should be in accordance with manufacturer’s in-structions.6.4Radiometer—The use of a radiometer to monitor and control the amount of radiant energy received at the sample is recommended.If a radiometer is used,it shall comply with the requirements in Practice G151.6.5Thermometer—Either insulated or un-insulated black or white panel thermometers may be used.The un-insulated thermometers may be made of either steel or aluminum.Thermometers shall conform to the descriptions found in Practice G151.6.5.1The thermometer shall be mounted on the specimen rack so that its surface is in the same relative position and subjected to the same influences as the test specimens.6.5.2Some specifications may require chamber air tempera-ture control.Positioning and calibration of chamber air tem-perature sensors shall be in accordance with the descriptions found in Practice G151.N OTE9—Typically,these devices control by black panel temperature only.6.6Moisture—The test specimens may be exposed to mois-ture in the form of water spray,condensation,or high humidity.6.6.1Water Spray—The test chamber may be equipped witha means to introduce intermittent water spray onto the test specimens under specified conditions.The spray shall be uniformly distributed over the samples.The spray system shall be made from corrosion resistant materials that do not con-taminate the water used.6.6.1.1Spray Water Quality—Spray water shall have a conductivity below5µS/cm,contain less than1-ppm solids, and leave no observable stains or deposits on the specimens.TABLE1Relative Spectral Power Distribution Specification forUVA-340Lamps for Daylight UVBandpass,nm Fluorescent UVA-340Lamp A Sunlight B Ultraviolet Wavelength RegionIrradiance as a percentage of total irradiance from260to400nm260–2700.0%0271–2800.0%0281–2900.0%0291–300<0.2%0301–320 6.2–8.6% 5.6%321–34027.1–30.7%18.5%341–36034.2–35.4%21.7%361–38019.5–23.7%26.6%381–400 6.6–7.8%27.6% Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from300to800nm C300–40087.3%D11%E401–70012.7%D72%EA UVA-340data—The ranges given are based on spectral power distribution measurements made for lamps of different ages and operating at different levels of controlled irradiance.The ranges given are based on three sigma limits from the averages of this data.B Sunlight data—The sunlight data is for global irradiance on a horizontal surface with a air mass of1.2,column ozone0.294atm cm,30%relative humidity,altitude 2100m(atmopsheric pressure of787.8mb),and an aerosol represented by an optical thickness of0.81at300nm and0.62at400nm.C Data from701to800nm is not shown.D UVA-340data—Because the primary emission offluorescent UV lamps is concentrated in the300-to400-nm bandpass,there are limited data available for visible light emissions offluorescent UV lamps.Therefore,the data in this table are based on very few measurements and are representative only.E Sunlight data—The sunlight data is from Table4of CIE Publication Number85, global solar irradiance on a horizontal surface with an air mass of1.0,column ozone of0.34atm cm, 1.42-cm precipitable water vapor,and an aerosol represented by an optical thickness of0.1at500nm.TABLE2Relative Spectral Power Distribution Specification for UVA-351Lamps for Daylight UV Behind Window GlassBandpass,nm Fluorescent UVA-351Lamp AEstimated Window GlassFiltered Sunlight BUltraviolet Wavelength RegionIrradiance as a percentage of total irradiance from260to400nm260–2700.0%0%271–2800.0%0%281–2900.0%0%290–300<0.1%0%301–3200.9–3.3%0.1–1.5%321–34018.3–22.7%9.4–14.8%341–36042.7–44.5%23.2–23.5%361–38024.8–28.2%29.6–32.5%381–400 5.8–7.6%30.9–34.5%Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from300to800nm C 300–40090.1%D9.0–11.1%E401–7009.9%D71.3–73.1%EA UVA-351data—The ranges given are based on spectral power distribution measurements made for lamps of different ages and operating at different levels of controlled irradiance.The ranges given are based on three sigma limits from the averages of this data.B Sunlight data—The sunlight data is for global irradiance on a horizontal surface with an air mass of1.2,column ozone0.294atm cm,30%relative humidity, altitude2100m(atmospheric pressure of787.8mb),and an aerosol represented by an optical thickness of0.081at300nm and0.62at400nm.The range is determined by multiplying solar irradiance by the upper and lower limits for transmission of single strength window glass samples used for studies conducted by ASTM Subcommittee G03.02.C Data from701to800nm is not shown.D UVA-351data—Because the primary emission offluorescent UV lamps is concentrated in the300-to400-nm bandpass,there are limited data available for visible light emissions offluorescent UV lamps.Therefore,the data in this table are based on very few measurements and are representative only.E Sunlight data—The sunlight data is from Table4of CIE Publication Number85, global solar irradiance on a horizontal surface with an air mass of1.0,column ozone of0.34atm cm, 1.42-cm precipitable water vapor,and an aerosol represented by an optical thickness of0.1at500nm.The range is determined by multiplying solar irradiance by the upper and lower limits for transmission of single strength window glass samples used for studies conducted by ASTM Subcommit-teeG03.02.Very low levels of silica in spray water can cause significantdeposits on the surface of test specimens.Care should be takento keep silica levels below 0.1ppm.In addition to distillation,a combination of deionization and reverse osmosis can effec-tively produce water of the required quality.The pH of thewater used should be reported.See Practice G 151for detailedwater quality instructions.6.6.2Condensation —The test chamber may be equippedwith a means to cause condensation to form on the exposedface of the test specimen.Typically,water vapor shall begenerated by heating water and filling the chamber with hotvapor,which then is made to condense on the test specimens.6.6.3Relative Humidity —The test chamber may beequipped with a means to measure and control the relativehumidity.Such instruments shall be shielded from the lampradiation.6.7Specimen Holders —Holders for test specimens shall bemade from corrosion resistant materials that will not affect thetest results.Corrosion resistant alloys of aluminium or stainlesssteel have been found acceptable.Brass,steel,or copper shallnot be used in the vicinity of the test specimens.6.8Apparatus to Assess Changes in Properties —The nec-essary apparatus required by ASTM or ISO relating to thedetermination of the properties chosen for monitoring shall beused (see also ISO 4582).7.Test Specimen 7.1Refer to Practice G 151.8.Test Conditions 8.1Any exposure conditions may be used as long as the exact conditions are detailed in the report.Appendix X2shows some representative exposure conditions.These are not neces-sarily preferred and no recommendation is implied.These conditions are provided for reference only.9.Procedure 9.1Identify each test specimen by suitable indelible mark-ing,but not on areas used in testing.9.2Determine which property of the test specimens will be evaluated.Prior to exposing the specimens,quantify the appropriate properties in accordance with recognized ASTM or international standards.If required (for example,destructive testing),use unexposed file specimens to quantify the property.See ISO 4582for detailed guidance.9.3Mounting of Test Specimens —Attach the specimens to the specimen holders in the equipment in such a manner that the specimens are not subject to any applied stress.To assure uniform exposure conditions,fill all of the spaces,using blank panels of corrosion resistant material if necessary.N OTE 10—Evaluation of color and appearance changes of exposed materials shall be made based on comparisons to unexposed specimens of the same material which have been stored in the dark.Masking or shielding the face of test specimens with an opaque cover for the purpose of showing the effects of exposure on one panel is not recommended.Misleading results may be obtained by this method,since the masked portion of the specimen is still exposed to temperature and humidity that in many cases will affect results.9.4Exposure to Test Conditions —Program the selected test conditions to operate continuously throughout the required number of repetitive cycles.Maintain these conditions throughout the exposure.Interruptions to service the apparatus and to inspect specimens shall be minimized.9.5Specimen Repositioning —Periodic repositioning of the specimens during exposure is not necessary if the irradiance at the positions farthest from the center of the specimen area is at least 90%of that measured at the center of the exposure area.Irradiance uniformity shall be determined in accordance with Practice G 151.9.5.1If irradiance at positions farther from the center of the exposure area is between 70and 90%of that measured at the center,one of the following three techniques shall be used for specimen placement.9.5.1.1Periodically reposition specimens during the expo-sure period to ensure that each receives an equal amount of radiant exposure.The repositioning schedule shall be agreed upon by all interested parties.9.5.1.2Place specimens only in the exposure area where the irradiance is at least 90%of the maximum irradiance.9.5.1.3To compensate for test variability randomly position replicate specimens within the exposure area which meets the irradiance uniformity requirements as defined in 9.5.1.9.6Inspection —If it is necessary to remove a test specimen for periodic inspection,take care not to handle or disturb the test surface.After inspection,the test specimen shall beTABLE 3Relative Spectral Power Distribution Specification forUVB-313LampsBandpass,nm Fluorescent UVB-313Lamp AB Sunlight CUltraviolet Wavelength Region AIrradiance as a percentage of total irradiance from 260to 400nm260–270<0.1%0271–2800.1–0.7%0281–290 3.2–4.4%0291–30010.7–13.7%0301–32038.0–44.6% 5.6%321–34025.5–30.9%18.5%341–3607.7–10.7%21.7%361–380 2.5–5.5%26.6%381–4000.0–1.5%27.6%Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from 300to 800nm D300–40088.5%E 11%F401–70011.5%E 72%FA UVB-313data—Some UVB lamps have measurable emittance at the 254-nmmercury line.This may affect test results for some materials.B UVB-313data—The ranges given are based on spectral power distributionmeasurements made for lamps of a different ages and operating at different levelsof controlled irradiance.The ranges given are based on three sigma limits from theaverages of this mps that meet this specification are available fromdifferent manufacturers.These lamps may have significantly different irradiancelevels (that is,total light output),but still have the same relative spectral powerdistribution.C Sunlight data—The sunlight data in for global irradiance on a horizontal surfacewith a air mass of 1.2,column ozone 0.294atm cm,30%relative humidity,altitude2100m (atmospheric pressure of 787.8mb),and an aerosol represented by anoptical thickness of 0.081to 300nm and 0.62at 400nm.D Data from 701to 800nm is not shown.E UVB-313data—Because the primary emission of fluorescent UV lamps isconcentrated in the 300-to 400-nm bandpass,there is limited data available forvisible light emissions of fluorescent UV lamps.Therefore,the data in this table arebased on very low measurements and are representative only.F Sunlight data—The sunlight data is from Table 4of CIE Publication Number 85,global solar irradiance on a horizontal surface with an air mass of 1.0,columnozone of 0.34atm cm, 1.42-cm precipitable water vapor,and an aerosolrepresented by an optical thickness of 0.1at 500nm.returned to the test chamber with its test surface in the same orientation as previously tested.9.7Apparatus Maintenance—The test apparatus requires periodic maintenance to maintain uniform exposure conditions. Perform required maintenance and calibration in accordance with manufacturer’s instructions.9.8Expose the test specimens for the specified period of exposure.See Practice G151for further guidance.9.9At the end of the exposure,quantify the appropriate properties in accordance with recognized ASTM or interna-tional standards and report the results in conformance with Practice G151.N OTE11—Periods of exposure and evaluation of test results are addressed in Practice G151.10.Report10.1The test report shall conform to Practice G151.11.Precision and Bias11.1Precision:11.1.1The repeatability and reproducibility of results ob-tained in exposures conducted according to this practice will vary with the materials being tested,the material property being measured,and the specific test conditions and cycles that are used.In round-robin studies conducted by Subcommittee G03.03,the60°gloss values of replicate PVC tape specimens exposed in different laboratories using identical test devices and exposure cycles showed significant variability(3).The variability shown in these round-robin studies restricts the use of“absolute specifications”such as requiring a specific prop-erty level after a specific exposure period(4,5).11.1.2If a standard or specification for general use requiresa definite property level after a specific time or radiant exposure in an exposure test conducted according to this practice,the specified property level shall be based on results obtained in a round-robin that takes into consideration the variability due to the exposure and the test method used to measure the property of interest.The round-robin shall be conducted according to Practice E691or Practice D3980and shall include a statistically representative sample of all labo-ratories or organizations that would normally conduct the exposure and property measurement.11.1.3If a standard or specification for use between two or three parties requires a definite property level after a specific time or radiant exposure in an exposure test conducted accord-ing to this practice,the specified property level shall be based on statistical analysis of results from at least two separate, independent exposures in each laboratory.The design of the experiment used to determine the specification shall take into consideration the variability due to the exposure and the test method used to measure the property of interest.11.1.4The round-robin studies cited in11.1.1demonstrated that the gloss values for a series of materials could be ranked with a high level of reproducibility between laboratories.When reproducibility in results from an exposure test conducted according to this practice have not been established through round-robin testing,performance requirements for materials shall be specified in terms of comparison(ranked)to a control material.The control specimens shall be exposed simulta-neously with the test specimen(s)in the same device.The specific control material used shall be agreed upon by the concerned parties.Expose replicates of the test specimen and the control specimen so that statistically significant perfor-mance differences can be determined.11.2Bias—Bias can not be determined because no accept-able standard weathering reference materials are available. 12.Keywords12.1accelerated;accelerated weathering;durability;expo-sure;fluorescent UV lamps;laboratory weathering;light; lightfastness;non-metallic materials;temperature;ultraviolet; weatheringAPPENDIXES(Nonmandatory Information)X1.APPLICATION GUIDELINES FOR TYPICAL FLUORESCENT UV LAMPSX1.1GeneralX1.1.1A variety offluorescent UV lamps may be used in this practice.The lamps shown in this section are representa-tive of their type.Other lamps,or combinations of lamps,may be used.The particular application determines which lamp should be used.The lamps discussed in this Appendix differ in the total amount of UV energy emitted and their wavelength spectrum.Differences in lamp energy or spectrum may cause significant differences in test results.A detailed description of the type(s)of lamp(s)used shall be stated in detail in the test report.X1.1.2All spectral power distributions(SPDs)shown in this section are representative only and are not meant to be used to calculate or estimate total radiant exposure for tests in fluorescent UV devices.Actual irradiance levels at the test specimen surface will vary due to the type and/or manufacturer of the lamp used,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber.N OTE X1.1—All SPDs in this appendix were measured using a spec-troradiometer with a double grating monochromator(1-nm band pass) with a quartz cosine receptor.Thefluorescent UV SPDs were measured at the sample plane in the center of the allowed sample area.SPDs for sunlight were measured in Phoenix,AZ at solar noon at the summer solstice with a clear sky,with the spectroradiometer on an equatorial follow-the-sum mount.X1.2Simulations of Direct Solar UV Radiation Exposures X1.2.1UVA-340Lamps—For simulations of directsolarUV radiation the UV A-340lamp is recommended.BecauseUV A-340lamps typically have little or no UV output below300nm (that is considered the “cut-on”wavelength forterrestrial sunlight),they usually do not degrade materials asrapidly as UVB lamps,but they may allow enhanced correla-tion with actual outdoor weathering.Tests using UV A-340lamps have been found useful for comparing different nonme-tallic materials such as polymers,textiles,and UV stabilizers.Fig.X1.1illustrates the SPD of the UV A-340lamp comparedto noon,summer sunlight.X1.2.2UVB-313Lamps —The UVB region (280to 315nm)includes the shortest wavelengths found in sunlight at theearth’s surface and is responsible for considerable polymerdamage.There are two commonly available types of UVB-313lamps that meet the requirements of this document.These areknown commercially as the UVB-313and the FS-40.Theselamps emit different amounts of total energy,but both peak at313nm and produce the same UV wavelengths in the samerelative proportions.In tests using the same cycles and tem-peratures,shorter times to failure are typically observed whenthe lamp with higher UV irradiance is used.Furthermore,testsusing the same cycles and temperatures with these two lampsmay exhibit differences in ranking of materials due to differ-ence in the proportion of UV to moisture and temperature.N OTE X1.2—The Fig.X1.2illustrates the difference between the lamps.X1.2.2.1All UVB-313lamps emit UV below the normalsunlight cut-on.This short wavelength UV can produce rapidpolymer degradation and often causes degradation by mecha-nisms that do not occur when materials are exposed to sunlight.This may lead to anomalous results.Fig.X1.2shows thespectral power distribution (SPD)of typical UVB-313lampscompared to the SPD of noon,summer sunlight.X1.3Simulations of Exposures to Solar UV RadiationThrough Window GlassX1.3.1Filtering Effect of GlassGlass of any type acts as a filter on the sunlight spectrum(see Fig.X1.3).Ordinary glass is essentially transparent tolight above about 370nm.However,the filtering effectbecomes more pronounced with decreasing wavelength.The shorter,more damaging UVB wavelengths are the most greatly affected.Window glass filters out most of the wavelengths below about 310nm.For purposes of illustration,only one type of window glass is used in the accompanying graphs.Note that glass transmission characteristics will vary due to manufac-turer,production lot,thickness,or other factors.X1.3.2UVA-351Lamps For simulations of sunlight through window glass,UV A-351lamps are recommended.The UV A-351is used for these applications because the low end cut-on of this lamp is similar to that of direct sunlight which has been filtered through window glass (Fig.X1.4).N OTE X1.3—UVB-313lamps are not recommended for simulations of sunlight through window glass.Most of the emission of UVB-313lamps is in the short wavelength UV that is filtered very efficiently by glass.Because of this,very little energy from this short wavelength region will reach materials in “behind glass”applications.This is because window glass filters out about 80%of the energy from UVB-313lamps,as shown in Fig.X1.5.As a result of filtering out these short wavelengths,its total effective energy is very limited.Further,because there is little longer wavelength energy,the glass-filtered UVB-313is actually less severe than a UV ALamp.FIG.X1.1Spectral Power Distributions of UVA-340Lamp andSunlight FIG.X1.2Spectral Power Distributions of UVB Lamps andSunlight FIG.X1.3Direct Sunlight and Sunlight Through WindowGlass。

油漆检测标准

油漆检测标准

性能检测标准1 附着力"漆膜附着力测定法"〔GB/T 1720-1979 〔1989 〕〕"色漆和清漆拉开法附着力试验"〔GB/T 5210-2006 〕〔ISO 4624:2002 〕"色漆和清漆漆膜的划格试验"〔GB/T 9286-1998 〕"用胶带试验测定附着力"〔ASTM D3359-2008 〕2 外观和透明度"清漆、清油及稀释剂外观和透明度测定法"〔GB/T 1721-2008 〕3 颜色"清漆、清油及稀释剂颜色测定法" 〔GB/T 1722-1992 〕"透明液体加氏颜色等级评定颜色第1 局部:目视法"〔GB/T 9281.1-2008 〕/ (ISO 4630-1:2004)"透明液体以铂- 钴等级评定颜色第1 局部:目视法"〔GB/T 9282.1-2008 〕/ (ISO 6271-1:2004)"透明液体的颜色〔铂钴法〕"〔ASTM D1209-2005 〕4 粘度"涂料粘度测定法"〔GB/T 1723-1993 〕"胶粘剂粘度的测定"〔GB/T 2794-1995 〕" 涂料黏度的测定斯托默黏度计法"〔GB/T 9269-2009 〕5 流出时间"色漆和清漆用流出杯测定流出时间"〔GB/T 6753.4-1998 〕6 细度"涂料细度测定法"〔GB/T 1724-1979 〔1989 〕〕"色漆、清漆和印刷油墨研磨细度的测定" 〔GB/T 6753.1-2007 〕〔ISO 1524:2000 〕7 不挥发物含量"色漆、清漆和塑料不挥发物含量的测定" 〔GB/T 1725-2007 〕/ 〔ISO 3251:2008 〕"胶粘剂不挥发物含量的测定"〔GB/T 2793-1995 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中5 〕8 遮盖力"涂料遮盖力测定法"〔GB/T 1726-1979 〔1989 〕〕9 枯燥时间"漆膜、腻子膜枯燥时间测定法"〔GB/T 1728-1979 〔1989 〕〕"涂料外表枯燥试验小玻璃球法"〔GB/T 6753.2-1986 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中16 〕10 摆杆硬度"色漆和清漆摆杆阻尼试验" 〔GB/T 1730-2007 〕"色漆和清漆摆杆阻尼试验"〔ISO 1522:2006 〕11 柔韧性"漆膜柔韧性测定法"〔GB/T 1731-1993 〕12 耐冲击性"漆膜耐冲击性测定法"〔GB/T 1732-1993 〕"色漆和清漆—快速变形( 耐冲击性试验) 第1 局部:落锤试验( 大面积冲头) "〔GB/T 20624.1-2006 〕/ "色漆和清漆快速变形〔耐冲击性〕试验第1 局部:落锤试验〔大面积冲头〕"〔ISO 6272-1:2002 〕"色漆和清漆—快速变形( 耐冲击性试验) 第2 局部:落锤试验( 小面积冲头) "〔GB/T 20624.2-2006 〕/ "色漆和清漆快速变形〔耐冲击性〕试验第2 局部:落锤试验〔小面积冲头〕"〔ISO 6272-2:2002 〕"有机涂层抗快速变形〔冲击〕的试验"〔ASTMD2794-1993(2004) 〕13 耐水性"漆膜耐水性测定法"〔GB/T 1733-1993 〕"色漆和清漆耐水性的测定浸水法"〔GB/T 5209-1985 〕14 耐热性"色漆和清漆耐热性的测定"〔GB/T 1735-2009 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中6 〕15耐湿热性"漆膜耐湿热性测定法"〔GB/T 1740-2007 〕16 灰分"色漆和清漆颜料含量的测定第2 局部:灰化法"〔GB/T 1747.2-2008 〕(ISO 14680-2:2000)17 腻子膜柔韧性"腻子膜柔韧性测定法"〔GB/T 1748-1979 〔1989 〕〕18 稠度"厚漆、腻子稠度测定法"〔GB/T 1749-1979 〔1989 〕〕19 回粘性"漆膜回粘性测定法"〔GB/T 1762-1980 〔1989 〕〕20 耐磨性"色漆和清漆—耐磨性的测定—旋转橡胶砂轮法"〔GB/T 1768-2006 〕〔ISO 7784-2:1997 〕"涂料耐磨性测定落砂法"〔GB/T 23988-2009 〕"落砂法测定有机涂层耐磨性"〔ASTM D 968-2005 〕21 打磨性"涂膜、腻子膜打磨性测定法"〔GB/T 1770-2008 〕22 耐盐雾性"色漆和清漆耐中性盐雾性能的测定" 〔GB/T 1771-2007 〕〔ASTM B117-2007 〕23人工老化" 色漆和清漆人工气候老化和人工辐射曝露滤过的氙弧辐射"〔GB/T 1865-2009 〕"色漆和清漆涂层的人工气候老化曝露曝露于荧光紫外线和水"〔GB/T 23987-2009 〕"机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法"〔GB/T 14522-2008 〕"塑料实验室光源暴露试验方法第三局部:荧光紫外灯"〔GB/T 16422.3-1997 〕"硫化橡胶人工气候老化〔荧光紫外灯〕试验方法"〔GB/T 16585-1996 〕"建筑防水材料老化试验方法"〔GB/T 18244-2000 〕"塑料实验室光源暴露方法——第三部:荧光UV 灯"〔ISO 4892-3:2006 〕"色漆和清漆涂层的人工老化——暴露于荧光紫外线和水"〔ISO 11507:2007 〕"非金属材料暴露用紫外荧光设备的操作"〔ASTM G154-2006 〕"汽车外饰材料加速暴露用紫外荧光凝露设备"〔SAE J2020-2003 〕24 邵氏硬度"塑料和硬橡胶使用硬度计测定压痕硬度( 邵氏硬度) "〔GB/T 2411-2008 〕25 耐干热性"家具外表漆膜耐干热性测定法"〔GB/T 4893.3-2005 〕26 闪点"闪点的测定快速平衡闭杯法" 〔GB/T 5208-2008 〕(ISO 3679:2004)27 耐砂浆性"铝合金建筑型材第5 局部氟碳漆喷涂型材"〔GB 5237.5-2008 中5.4.10 〕28 铅笔硬度"色漆和清漆铅笔法测定漆膜硬度" 〔GB/T 6739-2006 〕〔ISO 15184:1998 〕"用铅笔试验测定漆膜硬度"〔ASTM D3363-2005 〕29 弯曲试验"色漆和清漆弯曲试验〔圆柱轴〕" 〔GB/T 6742-2007 〕〔ISO 1519:2002 〕" 色漆和清漆弯曲试验( 锥形轴) "〔GB/T 11185-2009 〕30酸值"塑料用聚酯树脂、色漆和清漆用漆基局部酸值和总酸值的测定"〔GB/T 6743-2008 〕〔ISO 2114:2000 〕31 漆基皂化值"色漆和清漆用漆基皂化值的测定滴定法" 〔GB/T 6744-2008 〕〔ISO 3681:1996 〕32 密度"色漆和清漆密度的测定比重瓶法" 〔GB/T 6750-2007 〕〔ISO 2811-1:1997 〕密度"液态胶粘剂密度的测定方法重量杯法"〔GB/T 13354-1992 〕密度"建筑密封材料试验方法第2 局部:密度的测定"〔GB/T 13477.2-2002 〕33 贮存稳定性"涂料贮存稳定性试验方法"〔GB/T 6753.3-1986 〕34 涂刷性"涂料产品的大面积刷涂试验"〔GB/T 6753.6-1986 〕35 全锌含量"锌粉"〔GB/T 6890-2000 中附录A 〕36 金属锌含量"锌粉"〔GB/T 6890-2000 中附录B 〕不挥发分中金属锌含量HG/T 3668-2000 "富锌底漆"中5.13 、"锌粉颜料和富锌涂料干漆膜中金属锌的含量的测定"〔ASTM D6580-2000 〕37 流挂性"色漆流挂性的测定"〔GB/T 9264-1988 〕38 耐洗刷性" 建筑涂料涂层耐洗刷性的测定"〔GB/T 9266-2009 〕39 最低成膜温度"涂料用乳液和涂料、塑料用聚合物分散体白点温度和最低成膜温度的测定"〔GB/T 9267-2008 〕/ "塑料聚合物分散体白点温度和最低成膜温度的测定" (ISO 2115 ∶1996)40 乳胶漆耐冻融性"乳胶漆耐冻融性的测定"〔GB/T 9268-2008 〕41 体积固体含量" 色漆和清漆通过测量干涂层密度来测定涂料的不挥发物体积百分率"〔GB/T 9272-2007 〕〔ISO 3233:1998 〕42 漆膜无印痕试验"漆膜无印痕试验"〔GB/T 9273-1988 〕43 耐冷液性"家具外表耐冷液测定法"〔GB/T 4893.1-2005 〕44 耐液体介质性"色漆和清漆耐液体介质的测定"〔GB/T 9274-1988 〕45 耐碱性" 建筑涂料涂层耐碱性的测定"〔GB/T 9265-2009 〕"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.1 〕46 耐油性"漆膜耐油性测定法"〔HG/T 3343-1985 〕47 绝缘漆耐油性"绝缘漆漆膜耐油性测定法"〔HG/T 3857-2006 〕48 巴克霍尔兹压痕试验"色漆和清漆巴克霍尔兹压痕试验"〔GB/T 9275-2008 〕/ 〔ISO 2815:2003 〕49 耐划痕性"色漆和清漆划痕试验" 〔GB/T 9279-2007 〕/ 〔ISO 1518:1992 〕50 耐码垛性"色漆和清漆耐码垛性试验" 〔GB/T 9280-2008 〕/ 〔ISO 4622:1992 〕51 漆基软化点"色漆和清漆用漆基软化点的测定环球法"〔GB/T 9284-1988 〕52 杯突试验"色漆和清漆杯突试验" 〔GB/T 9753-2007 〕/ 〔ISO 1520:2006 〕53 光泽"色漆和清漆不含金属颜料的色漆漆膜之20 °、60 °85 °镜面光泽的测定" 〔GB/T 9754-2007 〕/ 〔ISO 2813:1994 〕54 铅含量"色漆和清漆"可溶性金属含量的测定〞第1 局部:铅含量的测定火焰原子吸取光谱法和双硫腙分光光度法"〔GB/T 9758.1-1988 〕"锌粉"〔GB/T 6890-2000 中附录C 〕55 镉含量"色漆和清漆"可溶性金属含量的测定〞第4 局部:镉含量的测定火焰原子吸取光谱法和极谱法"〔GB/T 9758.4-1988 〕"锌粉"〔GB/T 6890-2000 中附录E 〕56 六价铬含量"色漆和清漆"可溶性〞金属含量的测定第五局部:液体色漆的颜料局部或粉末状色漆中六价铬含量的测定二苯卡巴肼分光光度法"〔GB/T 9758.5-1988 〕"色漆和清漆"可溶性〞金属含量的测定第五局部:液体色漆的颜料局部或粉末状色漆中六价铬含量的测定二苯卡巴肼分光光度法"〔ISO 3856.5:1984 〕57 铬含量"色漆和清漆"可溶性金属含量的测定〞第6 局部:色漆的液体局部中铬总含量的测定火焰原子吸取光谱法"〔GB/T 9758.6-1988 〕58 汞含量"色漆和清漆"可溶性金属含量的测定〞第7 局部:色漆的颜料局部和水可稀释漆的液体局部的汞含量的测定火焰原子吸取光谱法"〔GB/T 9758.7-1988 〕59 铁含量"锌粉"〔GB/T 6890-2000 中附录D 〕60 耐沾污性"建筑涂料涂层耐沾污性试验方法"〔GB/T 9780-2005 〕61 酸性盐雾试验"人造气氛腐蚀试验盐雾试验"〔GB/T 10125-1997 〕"人造环境中的腐蚀试验盐雾试验"〔ISO 9227:2006 〕62 船舶漆耐盐水性"船舶漆耐盐水性的测定盐水和热盐水浸泡法"〔GB/T 10834-2008 〕63 漆膜颜色"涂膜颜色的测量方法第一局部:原理"〔GB/T 11186.1-1989 〕、"涂膜颜色的测量方法第二局部:颜色测量"〔GB/T 11186.2-1989 〕、"涂膜颜色的测量方法第三局部:色差计算"〔GB/T 11186.3-1989 〕"色漆和清漆色漆的目视比色"〔GB/T 9761-2008 〕/ "色漆和清漆色漆的目视比色" (ISO 3668:1998)64 总铅含量"色漆和清漆总铅含量的测定火焰原子吸收光谱法"〔GB/T 13452.1-1992 〕65 漆膜厚度"色漆和清漆漆膜厚度的测定" 〔GB/T 13452.2-2008 〕/ (ISO 2808:2007)66 丝状腐蚀试验"色漆和清漆钢铁外表上涂膜的耐丝状腐蚀试验"〔GB/T 13452.4-2008 〕"色漆和清漆耐丝状腐蚀的测定第1 局部: 钢构造" (ISO 4623-1:2000)67 粉末涂料烘烤时质量损失"粉末涂料第7 局部:烘烤时质量损失的测定法"〔GB/T 21782.7-2008 〕/ 〔ISO 8130-7:1992 〕68 拉伸性能"硫化橡胶或热塑性橡胶拉伸应力应变性能的测定"〔GB/T 528-1998 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中9 〕69 粘结强度"建筑防水涂料试验方法"〔GB/T 16777-2008 中7 、8 〕"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.3 〕70 撕裂强度"建筑防水涂料试验方法"〔GB/T 16777-2008 中10 〕71 定伸时老化"建筑防水涂料试验方法"〔GB/T 16777-2008 中11 〕72 加热伸缩率"建筑防水涂料试验方法"〔GB/T 16777-2008 中12 〕73 低温柔性"建筑防水涂料试验方法"〔GB/T 16777-2008 中13 〕74 低温弯折性"建筑防水涂料试验方法"〔GB/T 16777-2008 中14 〕75 不透水性"建筑防水涂料试验方法"〔GB/T 16777-2008 中15 〕76 电阻率"石油罐导静电涂料电阻率测定法"〔GB/T 16906-1997 〕77 胶化时间"热固性粉末涂料在给定温度下胶化时间的测定"〔GB/T 16995-1997 〕78 二异氰酸酯单体含量" 色漆和清漆用漆基异氰酸酯树脂中二异氰酸酯单体的测定"〔GB/T 18446-2009 〕79 玻璃化温度"塑料差示扫描量热法(DSC) —第2 局部:玻璃化转变温度的测定"〔GB/T 19466.2-2004 〕/ "塑料—差示扫描量热法(DSC) —第 2 局部:玻璃化转变温度的测定"〔ISO 11357-2:1999 〕"色漆和清漆用漆基—玻璃化转变温度的测定"〔ISO 16805:2003 〕80 异氰酸酯基含量"聚氨酯预聚体中异氰酸酯基含量的测定"〔HG/T 2409-1992 〕81 脱漆剂脱漆效率"脱漆剂脱漆效率测定法"〔HG/T 2881-1997 〕82 催干剂催干性能"催干剂催干性能测定法" 〔HG/T 2882-1997 〕83 击穿强度"绝缘漆漆膜击穿强度测定法"〔HG/T 3330-1980 〔1985 〕〕84 体积电阻、外表电阻"绝缘漆漆膜体积电阻系数和外表电阻系数测定法"〔HG/T 3331-1978 〕85 电泳漆电导率"电泳漆电导率测定法"〔HG/T 3335-1977 〔1985 〕〕86 电泳漆泳透力"电泳漆泳透力测定法"〔HG/T 3336-1977 〔1985 〕〕"电泳漆泳透力测定法〔钢管法〕"〔HG/T 3339-1979 〔1985 〕〕87 吸水率"漆膜吸水率测定法"〔HG/T 3344-1985 〕88 绝缘漆吸水率"绝缘漆漆膜吸水率测定法"〔HG/T 3856-2006 〕89 水分"稀释剂、防潮剂水分测定法"〔HG/T 3858-2006 〕90 白化性"稀释剂、防潮剂白化性测定法"〔HG/T 3859-2006 〕91 挥发性"稀释剂、防潮剂挥发性测定法"〔HG/T 3860-2006 〕92 胶凝数"稀释剂、防潮剂胶凝数测定法"〔HG/T 3861-2006 〕93 涂层耐冻融循环性"建筑涂料涂层耐冻融循环性测定法"〔JG/T 25-1999 〕94 抗氯离子渗透性"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.2 〕95 粒度分布"粉末涂料第13 局部:激光衍射法分析粒径分布"〔ISO 8130-13:2001 〕〔GB/T 21782.13-2009 〕96 流动性"粉末涂料第5 局部: 粉末/ 空气混合物流动特性的测定" (ISO 8130-5:1992)97 异氰酸酯单体含量"色漆和清漆用漆基—异氰酸酯树脂中单体二异氰酸酯的测定"〔ISO 10283:2007 〕98 VOC 含量"化学试剂气相色谱法通那么"〔GB/T 9722-2006 〕"色漆和清漆挥发性有机化合物(VOC) 含量的测定差值法"〔GB/T 23985-2009 〕(ISO 11890-1:2007)"色漆和清漆挥发性有机化合物(VOC) 含量的测定气相色谱法"〔GB/T 23986-2009 〕(ISO 11890-2:2006)"色漆和清漆低VOC 乳胶漆中挥发性有机化合物( 罐VOC) 含量的测定"〔GB/T 23984-2009 〕〔ISO 17895:2005 〕99 分子量及分子量分布"色漆和清漆用漆基—凝胶渗透色谱(GPC) —第1 局部:四氢呋喃(THF) 作为洗脱剂"〔ISO 13885-1:2008 〕100 MEQ 值"色漆、清漆和清基水性涂料和漆基MEQ( 毫克当量) 值的测定"〔ISO 15880:2000 〕101 含水量"气相色谱法测水稀释性涂料含水量"〔ASTM D3792-2005 〕102 耐溶剂擦拭性"用溶剂擦拭法测定硅酸乙酯〔无机〕富锌底漆的耐MEK 擦拭性"〔ASTM D4752-2003 〕"采用溶剂擦拭法测定有机涂料耐溶剂擦拭性"〔ASTM D5402-2006 〕"涂料耐溶剂擦拭性测定法"〔GB/T 23989-2009 〕103 残留单体含量"毛细柱气相色谱法测定〔苯丙〕乳液中残留单体的含量"〔ASTM D4827-2003 〕104 T 弯"预涂漆试板涂层弯曲试验方法"〔ASTM D4145-83 〔2002 〕〕"卷材涂料试验方法第7 局部:弯曲时涂层抗开裂试验〔T 弯试验〕"〔DIN EN 13523-7-2001 〕105 抗石击性"试验方法标准涂层抗石击性"〔ASTM D 3170-03 〕" Erichsen 抗石击性测试仪规"〔VDA 621427 〕"外表涂层耐石击性试验"〔SAE J400-2002 〕106 涂料鉴定"红外光谱分析方法通那么"〔GB/T 6040-2002 〕107 金属元素含量"化学试剂火焰原子吸收光谱法通那么"〔GB/T 9723-2007 〕108 化学元素含量"原子吸收光谱分析法通那么"〔GB/T 15337-2008 〕109 比照率"白色和浅色漆比照率的测定"〔GB/T 23981-2009 〕110 抗粘连性"木器涂料抗粘连性测定法"〔GB/T 23982-2009 〕111 耐黄变性"木器涂料耐黄变性测定法"〔GB/T 23983-2009 〕112 苯、甲苯、乙苯和二甲苯含量"涂料中苯、甲苯、乙苯和二甲苯含量的测定气相色谱法"〔GB/T 23990-2009 〕113 可溶性有害元素含量"涂料中可溶性有害元素含量的测定"〔GB/T 23991-2009 〕114 氯代烃含量"涂料中氯代烃含量的测定气相色谱法"〔GB/T 23992-2009 〕115 甲醛含量"水性涂料中甲醛含量的测定乙酰丙酮分光光度法"〔GB/T 23993-2009 〕116 施工性( 重涂适应性) GB/T 6748-2008 中5.14 ;GB/T 9755-2001 中5.4 ;HG/T 2592-94 中6.3 ;JG/T 3049-1998 中5.5 HG/T 3346-1999 中4.9117 初期枯燥抗裂性GB/T 9779-2005 中5.6 ;JG/T 24-2000 中6.8118 容器中状态GB 9755-2001 中5.3 ;HG/T 2594-94 中6.1 ;JG/T 3049-1998 中5.4 119 鲜映性GB/T 13492-92 中5.15 120 渗色性( 耐硝基漆性)GB/T 13493-92 中4.18 ;HG/T 2009-91 中4.9 ;HG/T 2576-94 中附录C ;HG/T 2594-94 中6.8 ;HG 2239-91 中4.11 ;HG/T 3354-1987 中3.9121 筛余物HG/T 2006-2006 中5.5122 溶剂可溶物中硝基HG/T 2277-92 中4.14 ;HG/T 2592-94 中6.12123 溶剂可溶物组成HG/T 2594-94 中附录C124 适用期HG/T 2661-95 中4.16 ;HG/T 2884-1997 中4.9 ;HG/T 3668-2000 中5.9 125 白度JC/T 423-91 中5.8126 耐干擦性JC/T 423-91 中5.12127 溶解性HG/T 3380-1987 中3.3128 混合性HG/T 2884-1997 中4.5129 透水性GB/T 9779-2005 中5.9130 苯酐含量HG/T 2453-93 中6.14 ;HG/T 2576-94 中附录D131 不粘胎枯燥时间GA/T 298-2001 中6.1.5132 玻璃珠撒布试验GA/T 298-2001 中6.1.13133 玻璃珠结实附着率GA/T 298-2001 中6.1.14134 环氧树脂检验HG/T 2884-1997 中4.13 ;HG/T 3668-2000 中5.14135 耐砂浆性HG/T 3792-2005 中5.19136 溶剂可溶物氟含量HG/T 3792-2005 中附录B137 树脂中PVDF 树脂含量HG/T 3793-2005 中附录A138 动态抗开裂性JG/T 157-2004 中附录B139 泳透力HG/T 3952-2007 中5.4.2.7140 L- 效果HG/T 3952-2007 中5.4.2.8141 Gel 分率HG/T 3952-2007 中5.4.3.12142 热稳定性"颜料在烘干型漆料中热稳定性的比较"〔GB/T 1711-1989 〕143 密度"颜料密度的测定比重瓶法"〔GB/T 1713-2008 〕/ " 颜料和体质颜料通用试验方法第10 局部:密度的测定比重瓶法" (ISO 787-10:1993)144 水悬浮液pH 值"颜料水悬浮液pH 值的测定"〔GB/T 1717-1986 〕145 颜色"颜料颜色的比较"〔GB/T 1864-1989 〕146 水溶物"颜料水溶物测定冷萃取法"〔GB/T 5211.1-2003 〕"颜料水溶物测定热萃取法"〔GB/T 5211.2-2003 〕147 105 ℃挥发物"颜料在105 ℃挥发物的测定"〔GB/T 5211.3-1985 〕148 装填体积和表观密度"颜料装填体积和表观密度的测定"〔GB/T 5211.4-1985 〕149 颜料耐性"颜料耐性测定法"〔GB/T 5211.5-2008 〕150 水溶硫酸盐、氯化物和硝酸盐"颜料水溶硫酸盐、氯化物和硝酸盐的测定"〔GB/T 5211.11-2008 〕(ISO 787-13:2002) 151 水萃取液电阻率"颜料水萃取液电阻率的测定"〔GB/T 5211.12-2007 〕152 水萃取液酸碱度"颜料水萃取液酸碱度的测定"〔GB/T 5211.13-1986 〕153 筛余物"颜料筛余物的测定机械冲洗法"〔GB/T 5211.14-1988 〕"颜料筛余物的测定水法手工操作"〔GB/T 5211.18-1988 〕"颜料筛余物测定法"〔HG/T 3852-2006 〕154 吸油量"颜料吸油量的测定"〔GB/T 5211.15-1988 〕155 消色力"白色颜料消色力的比较"〔GB/T 5211.16-2007 〕〔ISO 787-17:2002 〕156 白色颜料比照率"白色颜料比照率〔遮盖力〕的比较"〔GB/T 5211.17-1988 〕157 遮盖力"颜料遮盖力测定法"〔HG/T 3851-2006 〕158 相对着色力和冲淡后颜色"着色颜料的相对着色力和冲淡色的测定目视比较法"〔GB/T 5211.19-1988 〕159 易分散程度"颜料易分散程度的比较振荡法"〔GB/T 9287-1988 〕160 相对着色力、相对散射力"着色颜料相对着色力和白色颜料相对散射力的测定光度计法"〔GB/T 13451.2-1992 〕161 干粉耐热性"颜料干粉耐热性测定法"〔HG/T 3853-2006 〕162 流动度"颜料流动度测定法"〔HG/T 3854-2006 〕163 二氧化钛含量GB/T 1706-2006 中7.1164 硫酸钡和总锌量GB/T 1707-1995 中5.1165 氧化锌含量GB/T 1707-1995 中5.2 、GB/T 3185-92 中5.1166 总铁含量GB/T 1863-2008 中8.1167 铬酸铅GB/T 1863-2008 中8.7168 总钙量GB/T 1863-2008 中8.8169 有机着色物存在GB/T 1863-2008 中8.9170 总铅含量GB/T 3184-2008 中6171 金属物含量GB/T 3185-92 中5.2172 氧化铅含量GB/T 3185-92 中5.3.1173 锰的氧化物含量GB/T 3185-92 中5.4.1174 氧化铜含量GB/T 3185-92 中5.5.1175 二氧化硅含量HG/T 3007-1999(2007) 中5.3 ;HG/T 3006-86(2007) 中2.2176 氧化钡含量HG/T 3007-1999(2007) 中5.1177 三氧化二硼含量HG/T 3007-1999(2007) 中5.2178 水可溶分HG/T 3007-1999(2007) 中5.4179 盐酸不溶物含量GB/T 3185-92 中5.6180 灼烧减量GB/T 3185-92 中5.7 ;HG/T 2248-91 中5.5 181 干粉白度182 油膜白度。

常见荧光紫外灯测试标准

常见荧光紫外灯测试标准
常见荧光紫外老化测试标准
2016-7-28
常用紫外老化的标准
1:ASTM G154-06非金属材料荧光紫外灯暴
露试验操作 2:ASTM D4329-05塑料的荧光紫外线暴露 试验 3:ISO 4892-3:2006 塑料实验室光源暴露荧光紫外灯 4:GB/T 16422.3-1997塑料实验室光源暴露荧光紫外灯
标准中的测试测试条件 Nhomakorabea1:ASTM G154-06非金属材料荧光紫外灯暴露试验操作中关于测试周期描述,我们的材料 应该使用循环1,见红色的部分显示 。

2:ASTM D4329-05塑料的荧光紫外线暴露试 验中关于测试周期描述

3:GB/T 16422.3-1997塑料实验室光源暴露-荧 光紫外灯关于测试周期描述

4:ISO 4892-3:2006 塑料实验室光源暴露-荧光紫外灯中关于测试周期描述,其实 GB/T 14622.3-1997和此标准是一样的。
关于老化后的判断:
1:外观的评价如:
a:色差(ASTMD2244 E313) b:灰色等级(ISO105-A02) c:光泽度(ASTM D523)等方面。
2:物理性能方面:
a:拉伸强度(ASTM D638) b:断裂伸长率(ASTM D638) c:硬度,弯曲强度等方面

光老化试验方法及结果判定

光老化试验方法及结果判定

结果评估方法—灰卡评级
PV1303标准,1000h耐候试验前后
灰标等级为2级
结果评估方法—灰卡评级
ASTM G154标准,360h耐候试验前后
灰标等级:3级
灰标等级:3-4级
结果评估方法—光泽度
◆光泽度:样品的光泽相对于标准板的程度
常用的角度:20°、60°和85°
便携式光泽度计
光泽度测试原理示意图
氙灯老化
一个完整的氙灯测试条件包括哪些?
应包括:滤镜类型(filter type)、辐照强度、非光照类型 (冷凝和喷淋)、光照和非光照时的温度(黑板或黑标温 度,箱体温度)、光照和非光照的时间、测试总时间或测 试循环次数。
氙灯设备只存在一种氙弧灯光源,通过添加不同滤镜从而 得到不同波长段下的光。
光老化原理
染料的光化学反应
在光的作用下,分子吸收光子而成激化态,后 者发生化学变化就构成一个光化学反应。

D(染料分子)

D*(激发态) → 反应产物
染料的光化学反应大致可分为:分解、异构、 还原-氧化、光敏等几大类。 在光化学变化过程中,染料分子的发色体系发 生变化或遭到破坏,便产生变色或褪色的现象。
......ຫໍສະໝຸດ 内容介绍 第一部分:光老化原理 第二部分:氙灯老化与紫外老化 第三部分:结果评估仪器与方法
结果评估方法—颜色与外观性能
◆标准光源Standard light resource
• A • • • • :卤钨灯,同色异谱测试的典型白炽灯, 色温2856K D65:国际标准人工日光Artificial Daylight, 色温6500K F02,即CWF:美国冷白商店光源Cool White Fluorescent,色温4150K F11,即TL84光源:欧洲、日本、中国商店光 源,色温4100K UV:紫外灯光源Ultra-Violet,波长365nm

非金属材料紫外光老化试验方法与标准研究

非金属材料紫外光老化试验方法与标准研究

非金属材料紫外光老化试验方法与标准研究张洪彬;刘雅智;蔡汝山;高军【摘要】紫外光老化试验作为一种可以快速地评价非金属材料耐老化性能的方法被广泛地应用.首先,介绍了紫外光老化试验方法及其相关标准;然后,探讨了试验条件的确定方法;最后,指出了国内紫外光老化试验及其标准的不足和发展方向.【期刊名称】《电子产品可靠性与环境试验》【年(卷),期】2016(034)001【总页数】5页(P6-10)【关键词】非金属材料;紫外光老化试验;试验方法;试验标准【作者】张洪彬;刘雅智;蔡汝山;高军【作者单位】工业和信息化部电子第五研究所,广东广州 510610;工业和信息化部电子第五研究所,广东广州 510610;工业和信息化部电子第五研究所,广东广州510610;广州韵脉质量技术服务有限公司,广东广州 510610【正文语种】中文【中图分类】TH145;TB24塑料、橡胶和涂料等非金属材料在使用的过程中常常会受到温度、湿度和光照等气候环境因素的影响,从而使得其外观及机械性能下降,最终影响产品的使用寿命[1]。

所以,在使用各类非金属材料前,常常需要开展实验室人工老化试验对其进行优选。

目前常用的人工老化试验方法包括氙灯老化、紫外光老化和碳弧灯老化等,其中,紫外光老化试验模拟了太阳光中的能量最强的紫外光部分,以“抓主要矛盾”的方式快速地评价非金属材料的耐候性,并得到了广泛的应用。

紫外光老化试验可模拟紫外光照、温度、淋雨、凝露、黑暗和干湿交替等诸多户外环境条件,可在保证加速性的基础上,提高试验结果与实际使用环境的相关性,而加速性和相关性的好坏往往取决于试验条件的确定是否合理。

紫外光老化试验条件由光源类型、循环过程、紫外辐照度、温度和试验时间等多个因素组成,用户在试验条件确定及相关标准引用方面常常存在困惑。

因此,本文对紫外光老化试验的主要方法及引用标准进行了评述,并初步拟定了试验条件的确定原则和过程,以期为相关人员今后开展紫外光老化试验提供一定的指导。

材料老化测试

材料老化测试
的量、样品的温度和环境的温湿度。
盐雾试验〔Salt Spray Test〕

盐雾测试需要哪些条件

哪种盐雾,试验箱温度,溶液浓度,
测试时间,样品大小,测试中摆放状态是
否有特殊要求,是否需要断定等级。

盐雾测试样品的存放要求

防止磕碰,损伤样品外表镀层或涂层
等。防止用手直接接触样品,最好戴手套,
以免汗液腐蚀样品。存放环境要求在标准
温度

2)℃

(95±6 (20±10)
湿度 (50±5)%
)%
%
常见缺陷
1、起泡:外表封闭的突起区域;
2、变色:材料外表颜色随时间变化二变弱或变浅;
3、裂化或裂纹:材料外表可见的微裂或暴露出原底层的碎裂;
4、瑕疵:降解导致的材料外表或内部的不规那么现象;
5、白化:外表的一种老化现象,表现为全部或部分变白。
过高温区与常温区的风门,低温区与常温区的
风门的开关来到达冷热冲击的效果。目前,可
靠性实验室现有的设备即为三箱式,转换时间
3-5min。

两厢式冷热冲击〔气态〕:试验设备有两个箱
体,样品放在一个吊篮中,通过吊篮在高温区
内容介绍
第一部分:光照老化
第二部分:温度老化
第三部分:盐雾测试
第四部分:机械振动
恒定湿热试验 Constant temperature and
humidity test
交变湿热试验 Alternating temperature
and humidity test
冷热冲击、快速温变

什么是温度变化速率〔Temperature
change rate〕?

ASTM G154-00a 非金属材料荧光紫外曝露设备的操作标准

ASTM G154-00a 非金属材料荧光紫外曝露设备的操作标准

ASTM G 154-00a 非金属材料荧光紫外曝露设备的操作标准1. 范围1.1 本标准的内容包括紫外荧光试验的基本原理和操作程序。

试验利用紫外荧光和水来模拟一种老化效果,即材料在实际使用中曝露于太阳光(直接照射或透过玻璃)和潮气(雨或露)时所发生的老化现象。

本标准仅限于曝露条件的实现、测量和控制。

附件中给出了一些曝露程序,但是,并没有给出最适用于被检测材料的曝露条件。

注1——G 151给出了所有使用实验室光源的曝露设备需要满足的性能要求。

这一标准代替了G 53,G 53对用作紫外荧光曝露设备的装置进行了非常详细的描述。

本标准涵盖了G 53中的内容。

1.2 样品曝露于环境条件得到控制的荧光紫外灯下。

本标准中给出了不同类型的紫外荧光光源。

1.3 样品的制备和结果的评价在具体材料对应的ASTM标准和规范中给出。

一般性的导则见标准G 151和ISO 4892-1。

更多的关于曝露后性能变化的试验方法和报告的具体信息见ISO 4582。

1.4 数值以SI单位制表示。

1.5 安全警告1.6 本标准在技术上与ISO 4892-3和ISO DIS 11507相近。

2. 引用文件3. 术语3.1 定义——术语G 113中给出的定义适用于本标准。

3.2 本标准中的定义——本标准中的“太阳光”等同于“日光”和“太阳辐照”,“全球”的定义同术语G 113中给出的。

4. 方法概述4.1 在受控的环境条件下,将样品曝露于光照和潮湿的重复循环作用下。

4.1.1 潮湿通常通过水蒸气在样品表面冷凝或向样品表面喷洒软化去离子水实现。

4.2 曝露条件可能会因以下因素的不同而不同:4.2.1 紫外灯4.2.2 紫外灯的辐照水平4.2.3 提供潮湿的方式4.2.4 曝露于光照和潮湿的时间4.2.5 光照时的温度4.2.6 潮湿时的温度4.2.7 光照/黑暗周期进行的周期数4.3 同一型号试验设备得出的试验结果不宜进行比较,除非针对被测材料进行了设备间重现性验证试验。

ASTM G154-00a 非金属材料荧光紫外曝露设备的操作标准

ASTM G154-00a 非金属材料荧光紫外曝露设备的操作标准

ASTM G 154-00a 非金属材料荧光紫外曝露设备的操作标准1. 范围1.1 本标准的内容包括紫外荧光试验的基本原理和操作程序。

试验利用紫外荧光和水来模拟一种老化效果,即材料在实际使用中曝露于太阳光(直接照射或透过玻璃)和潮气(雨或露)时所发生的老化现象。

本标准仅限于曝露条件的实现、测量和控制。

附件中给出了一些曝露程序,但是,并没有给出最适用于被检测材料的曝露条件。

注1——G 151给出了所有使用实验室光源的曝露设备需要满足的性能要求。

这一标准代替了G 53,G 53对用作紫外荧光曝露设备的装置进行了非常详细的描述。

本标准涵盖了G 53中的内容。

1.2 样品曝露于环境条件得到控制的荧光紫外灯下。

本标准中给出了不同类型的紫外荧光光源。

1.3 样品的制备和结果的评价在具体材料对应的ASTM标准和规范中给出。

一般性的导则见标准G 151和ISO 4892-1。

更多的关于曝露后性能变化的试验方法和报告的具体信息见ISO 4582。

1.4 数值以SI单位制表示。

1.5 安全警告1.6 本标准在技术上与ISO 4892-3和ISO DIS 11507相近。

2. 引用文件3. 术语3.1 定义——术语G 113中给出的定义适用于本标准。

3.2 本标准中的定义——本标准中的“太阳光”等同于“日光”和“太阳辐照”,“全球”的定义同术语G 113中给出的。

4. 方法概述4.1 在受控的环境条件下,将样品曝露于光照和潮湿的重复循环作用下。

4.1.1 潮湿通常通过水蒸气在样品表面冷凝或向样品表面喷洒软化去离子水实现。

4.2 曝露条件可能会因以下因素的不同而不同:4.2.1 紫外灯4.2.2 紫外灯的辐照水平4.2.3 提供潮湿的方式4.2.4 曝露于光照和潮湿的时间4.2.5 光照时的温度4.2.6 潮湿时的温度4.2.7 光照/黑暗周期进行的周期数4.3 同一型号试验设备得出的试验结果不宜进行比较,除非针对被测材料进行了设备间重现性验证试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非金属材料放在UV仪下的操作标准(ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例)(ASTM G154-2006 非金属材料荧光紫外线曝露设备的操作标准)该标准是在固定设计G154下出版的,它的数据是紧随原版的设计或就修订而言的,最后的修订。

A number in parentheses the year of last reapproval .A superscript epsilon indicates an editorial change since the last revision or reapproval.注:脚注在函数X2.1,表X2.3都加上胃肯新注释X2.8以及日期在2006年6月5日。

1.范围1.1该标准涵盖了用UV仪的基本规则肯操作程序以及水仪器能够重演(模拟)环境影响因素。

该环境因素是当材料被放在太阳下以及潮湿的环境就像下雨或露水在实际的应用中。

/本标准涉及实际使用的材料在用荧光紫外线-冷凝型曝晒仪模拟由阳光和雨、露等自然气候条件下引起的劣化的基本原则和操作过程。

该标准受获得,测量和控制暴露条件胡程序限制。

许多暴露条件在附录中例举出来了,该标准不能详细说明最合适测试材料的暴露条件/本标准限于获取、测量和控制曝晒条件的过程方法,并未规定最适合待测材料的曝晒条件,曝晒条件过程方法参考附录。

注:1-标准G151描述执行标准适合于所有用实验室光源胡暴露设施,它取代了标准G53,它描述了用于UV荧光暴露胡特定设施。

在G53标准中描述胡仪器在G151标准中取代了。

注:1-标准G151规定的操作过程方法适用于所有采用实验光源的曝露设备,本标准取代了有描述具体设计用于佛罗里达州的荧光紫外线曝露设备的G53标准。

本标准包含了在G53标准中规定的仪器设备。

1.2 测试样本放在可控环境条件下胡UV仪下。

不同类型的UV光源可以被描述。

在可控环境条件下试样用佛罗里达州的荧光紫外线进行曝露测试,规定了不同类型的佛罗里达州的荧光紫外线光源。

1.3 样本的处理和结果的评价在ASTM标准或具体产品胡说明书中有提到。

在标准G151肯ISO-4852-1中亦一般指导(描述)。

在ISO4582中描述性质在暴露后改变的决定方法晃报道结果。

ASTM试验方法或特殊材料的特定规范中规定了试样的制备和试验结果的评定,标准G151和ISO-4852-1提供了一般指引,ISO 4582提供了测量曝露试验后特性变化的方法和报告试验结果的更多详细信息。

1.4 在S1章节中陈述的重要性被认为是标准。

以国际单位表明的数值视为标准。

1.5 该标准的目的并不是描述所有与安全相关的东西,如果有的话,也是和应用相联系的。

这个标准的使用者的责任是建立合适胡安全的健康的标准以及在应用之前决定限制规章的应用。

本标准没有说明所有有关使用的安全问题,即使有,也是和使用相关联,本标准的使用者有责任在使用前建立适宜的安全、卫生规程及确定规章适用(的可控的使用)范围。

1.6 该标准说ISO4892-3和ISODIS11507的技术相似。

2 参考文件2.1 ASTM标准D3980标准油漆和相关材料胡多个实验室的试验,E691标准是指导学习决定实验方法胡精确度。

G53标准是。

G113术语与在自然和人工天气测试非金属材料相关的。

G151标准是非金属材料在加速试验设施用的是实验室光源暴露2.2 CIE 标准3术语3.1 定义-在术语G113中提到胡定义应用于该标准。

3.2 该标准的具体的专业术语的定义-像在标准中用到的,术语太阳光说日光和太阳照射,全球的就像它们在术语中被限制(定义)。

4 实践目录4.1样本在受控制胡环境条件重复(循环)胡阳光和潮湿的条件下暴露4.1.1 温度通常用蒸汽水的在实验样本上的凝结或用去离子水喷在样本上。

4.2 以下选项可以改变曝光条件4.2.1 荧光灯4.2.2 灯的发光水平4.2.3潮湿的曝光类型4.2.4 光照及潮湿的曝光时间4.2.5 曝光的温度4.2.6 潮湿曝光的温度4.2.7 光照/黑暗循环时间4.3 不应该把试样曝光在仪器的相同模式下,得到对比结果。

除非在仪器上对材料的测试建立了重复性。

4.4 不应该把样本曝光在仪器的不同模式下比较结果。

对材料测试来说除非设备之间建立了联系。

5 意义及应用5.1该仪器的使用打算是引起与最后使用条件胡性质变化,包括太阳光,潮湿和加热对UV部分的影响。

该曝光可能包括介绍实验样本的潮湿方法。

曝光并不打算模拟由定点天气现象,例如空气污染、生物攻击、盐雾暴露造成的恶化(损害)。

作为选择,该曝光可能模拟通过窗户射进来的阳光。

典型的是该曝光将包括以压缩的湿气来表示湿度注: 注意关于标准G151所有的注意指导适用于所有的实验室天气的设备。

5.2 结果的变化在所难免,当操作条件在标准可以接受的范围内被改变。

因此没有使用的参考书关于这标准除非与一个详细的具体的操作条件与第10章相一致的。

5.2.1 据推荐当一个相似的可知的材料和测试样本同时放在一起为了提供一个标准对比目的,据推荐。

6.仪器6.1 实验室光源-该光源应是紫外线荧光灯。

多种荧光灯可以适用于该程序。

灯的焦距或范围的不同可能造成结果的很大不同。

灯的类型的描述在实验报告中详细的陈述。

不同的测试用不同的灯。

目录X1是灯的应用指导。

注;3-不要混用不同类型的灯,混用了不同类型的灯可能导致光落到样品上不一致,除非仪器已经被设置好了去确认一个标准的分布。

注:4-许多荧光的寿命与广泛的使用有重大的关系。

紧随仪器生产商在必需的程序的指导去维护理想的非发射。

6.1.1 由于灯的使用类型和生产厂商的原因,在测试样本表面的实际发射水平可能发生变化,或者灯的寿命,灯排列的距离及烘箱的温度,ambient实验室的温度。

因此推荐检测器的radiometer及控制发射能量。

6.1.2 几种影响UV灯的波谱能量分布6.1.2.1 用在同一类型灯上的玻璃的寿命能造成发射的改变。

玻璃的寿命可以导致一些类型灯的短波长UV的大量减少。

6.1.2.2 灰尘的积累及其它残留物在灯上能影响发光6.1.2.3 灯管的玻璃厚度对短波长的UV光的发射有很大影响6.1.2.4 磷粉漆的一致性和耐久性6.1.3 发射光谱注;5-UVA荧光灯通过光谱能量的分布来改变影响(重要性)。

UVA-340和UVA-351被认为更普通。

这些数字代表了不同类型灯的名义特性波长。

该实际的发射峰是343纳米和350纳米。

6.1.3.1 UVA-340灯的光谱是日光紫外线---UVA-340荧光灯的光谱能量分布应该服从表1的具体要求。

注:6-UVA-340的主要应用是模拟日光中的短和中长范围的紫外光波长。

6.1.3.2 UVA-351灯的光谱是在窗户玻璃后的日光紫外---该紫外光光谱能量分布应该服从表2中的具体要求。

注-7:UVA-351灯主要应用于模拟已经被窗户玻璃过滤的短和中长范围的紫外光波长。

6.1.3.3 UVB-313灯的光谱-该UVB-313荧光灯的光谱能量分布应该满足表3中的具体要求。

注8:UVB荧光灯的发射谱峰接近313纳米的水银线。

她发射许多在300纳米以下的光,该灯除去在全部太阳发射光中能导致寿命过程的波长。

该灯不推荐用于太阳光的模拟,见表3.6.2实验室应该可以变化,但它应用防腐材料,除了提供发光源外还要能提供控制温度及湿度的方法。

当需要时还能提供暴露的样本上喷水或让测试样本浸泡。

6.2.1 发光源的位置应该随样本而定,例如发光源的一致性应服从标准G151的要求。

6.2.2 为了获得统一的曝光条件(紫外光发射及湿度)要有代替灯,旋转灯改变样本位置的设施,听从生产商对代替灯及旋转灯的建议。

6.3 仪器标准为了确保标准化晃精确度与曝光仪器相连的仪器例如时间表,温度计,湿度感应器,干燥感应器,湿度计,紫外光感应器,radiometers需要同期性校准以确保实验结果的重复性。

不管怎么样标准应该追随国家或国际标准校准日程及程度应与生产说明书保持一致。

6.4辐射计辐射计的使用是用来检测和控制在样本上发射出来的能量的数量。

如辐射计的使用应与标准G151的需求相一致。

6.5温度计温度计或者绝缘的或非绝缘的,黑色的或白色的温度计表盘。

这个非绝缘的温度计可能由钢或铅制得。

温度计应服从标准G151的描述。

6.5.1 温度计应被绑在样本架上,以致于它的表面在相同的对位子并且与实验样本有相同影响因素。

6.5.2 一些特殊性需要控制实验室空气温度。

实验室的空气温度感应器定位和校准应与标准G151描述的保持一致。

注:9--典型的这些设施应由黑色温度计控制。

6.6湿度实验样本被暴露在一下湿度条件下以喷洒或缩合或高湿度形式下存在的水。

6.6.1 喷水实验室应装备有一种方法去间歇地在试验样本上在特定地条件下。

喷涂应均匀。

喷洒系统应该是由防腐材料制造的,这样就能不污染用过的水了。

6.6.1.1 喷水的质量喷水有个指导在5us/cm以下,固含量在1-ppm以下,并且不留有可见的污点,或者残留物在样本上。

很低的二氧化硅在喷水中能对实验样本表面的残留物造成重大影响。

注意应使二氧化硅的含量在0.1ppm以下。

除了蒸馏之外,。

能够生产出所需质量的水。

使用水的pH应报告(记录)。

标准G151就有详细的水质量说明书。

6.6.2 缩合实验室应装备有一种方法能使在实验样本被曝光的表面缩合。

典型地,蒸馏水由热水形成并且用热蒸汽装入实验室,这样凝结在实验样本上。

6.6.3 相对湿度实验室应装有一种方法去测量控制相对湿度。

这种仪器应受灯发射线的保护(能抵抗住)。

6.7样本架样本架应由防腐材料做成,这样不会影响到测量结果。

防腐的铝合金或不锈钢就可以。

黄铜、钢、铜不能用在实验样本附近。

6.8 评估性能的仪器用ASTM要求的仪器或其它标准他能描述性能的决定性或性能被监视。

7实验样本7.1 参考标准G1518实验条件8.1 任何曝光条件能够被用只要在报告中详细记录条件。

附录X2展示了一些代表性的曝光条件。

这些没必要完美并且没有推荐。

这些条件仅供参考。

9 程序9.1 识别每个实验样本用适合的不可磨灭的标记,但并不是用在测试的区域。

9.2 决定哪个实验样本的性能将被评价。

在样本曝光之前,定量合适的性能要与可知的ASTM或国际标准一致。

如果需要的话(例如破坏实验),用不被暴露的文件样本去定量性能。

见ISO4582详细指导。

9.3 实验样本的安装把样本与样本架连到设备上(以下面方式),样本不能承受任何压力。

为确定统一的曝光时间,充满整个空间,必要的话可用空的防腐材料的表盘。

注:10---被曝光材料的颜色评价和外光的改变应该与储存在黑暗条件下未曝光的样本作对比。

不推荐使用不透光的盖子来挡住这实验样本来显示曝光的影响因素在仪表盘上。

相关文档
最新文档