山东省泰安市宁阳县2017-2018学年九年级上学期期末质量检测数学试题(原卷版)
山东省泰安市宁阳县2017-2018学年九年级上学期期末质量检测数学试题(解析版)

2017-2018九年级上学期质量检测试题一、选择题1. 如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A. 3:4B. 9:16C. 9:1D. 3:1【答案】B【解析】试题解析:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.考点:1.平行四边形的性质;2.相似三角形的判定和性质.视频2. 如图,在△ABC中,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为()A. 6B. 8C. 10D. 12【答案】C【解析】试题分析:由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC-BF=DE=6,即可求出DE的长度.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB=AD:(AD+BD)=5:8,∴BC=DE,∴CF=BC−BF=DE=6,∴DE=10.故选C.3. 如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A. 18B.C.D.【答案】B【解析】试题解析:∵四边形ABCD是正方形,即解得:即解得:故选B.4. 在△ABC中,AC=6,BC=5,sinA=,∠A、∠B为锐角,则tanB=A. B. C. D.【答案】D【解析】过点C作CD⊥AB与点D,如图所示:∵AC=6,sinA=,∴CD=4.在Rt△BCD中,∠BDC=90°,BC=5,CD=3,∴BD==3,∴tanB==.故选:.5. 如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC= .A. 40°B. 50°C. 60°D. 70°【答案】B【解析】连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°-80°)÷2=50°,故选:B.6. 如图,直线x=2与反比例函数y=、y=的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB 的面积是()A. B. 1 C. D. 2【答案】C【解析】连接PA,PB,∵一次函数x=2与反比例函数y=和y=−的图象分别交于A、B两点∴点A的坐标为:(2,1),点B的坐标为:(2,−),∴AB=1−(−)=,∵P是y轴上任意一点,∴P到直线AB的距离为2,∴S△PAB=××2=.故选:C.7. 如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x 轴上,点D在y轴上.已知平行四边形ABCD的面积为6,则k的值为()A. 6B. 3C. ﹣6D. ﹣3【答案】C【解析】作AE⊥BC于E,如图:∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=6,而k<0,即k<0,∴k=−6.故选:C.8. 已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. k≤4且k≠3B. k<4且k≠3C. k<4D. k≤4【答案】D【解析】(1)当k=3时,函数y=2x+1是一次函数,∵一次函数y=2x+1与x轴有一个交点,∴k=3;(2)当k≠3时,y=(k-3)x2+2x+1是二次函数,∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴b2-4ac≥0,∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0,∴k≤4且k≠3,综合(1)(2)可知,k的取值范围是k≤4,故选D.【点睛】本题考查的是抛物线与x轴的交点及根的判别式,解答此题时要注意分类讨论,不要漏解.9. 如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3,其中正确的有()个.A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:根据图像可得:二次函数与x轴有两个交点,则,故①错误;根据函数的对称性可知:当x=1时,y0,即a+b+c0,故②错误;根据题意可知:函数的对称轴为直线x=-1,即,则2a-b=0,则③正确;当x=-1时,y=3,则a-b+c=3,根据③可知b=2a,则a-b+c=a-2a+c=c-a=3,故④正确;故本题选B.点睛:本题注意考查的就是二次函数图像与各系数之间的关系,属于中等难度题型.a的符号要看函数的开口方向,如果开口向上,则,如果开口向下,则;b的符号要看对称轴的位置,如果对称轴在y轴的左边,则b的符号与a的符号相同,如果对称轴在y轴的右边,则b的符号与a的符号相反;c的符号看图像与y轴的交点,交于正半轴,则,交于负半轴,则;2a+b或2a-b看对称轴与1或-1的大小;a+b+c就是看当x=1时的函数值;a-b+c就是看当x=-1时的函数值;看函数与x轴的交点个数,如果有两个交点则,一个交点时,没有交点时.10. 如图,点I是△ABC的内心,∠BIC=126°,则∠BAC= .A. 54°B. 63°C. 70°D. 72°【答案】D【解析】∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=126°,∴∠IBC+∠ICB=180°−∠CIB=54°,∴∠ABC+∠ACB=2×54°=108°,∴∠BAC=180°−(∠ACB+∠ABC)=72°.故选:D.11. 如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,则∠A的正弦值为()A. B. C. D.【答案】D【解析】在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC==5,∴sin∠A==,故选:D.12. 如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.A. 5B. 6C. 7D. 8【答案】A【解析】连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故选:A.点睛:本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.二、填空题(每题3分,5小题共15分)13. 在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为_____________.【答案】(4,6)或(﹣4,﹣6)【解析】已知点D(1,0),点D的对应点B在x轴上,且OB=2,所以位似比为2,即可得点A的坐标为(2×2,3×2)或[2×(-2),3×(-2)],即点A的坐标为(4,6)或(-4,-6).14. 如图,已知⊙O内切于△ABC,切点分别为D、E、F,若∠A=50°,则∠EDF=________.【答案】65°【解析】连接OE、OF,∵⊙O内切于△ABC,∴∠OEA=∠OFA=90°,∴∠EOF=180°﹣∠A=130°,由圆周角定理得,∠EDF=∠EOF=65°.15. 一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为_______.【答案】y=﹣2(x+1)2+3 或y=-2x2-4x+1【解析】由题意可知:该抛物线的解析式为y=−2(x−h)2+k,又∵顶点坐标(−1,3),∴y=−2(x+1)2+3=-2x2-4x+1,故答案为:y=﹣2(x+1)2+3 或y=-2x2-4x+1.16. 如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是_________.【答案】x<﹣1或x>4【解析】观察函数图象可知:当x<-1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<-1或x>4.故答案为x<-1或x>4.17. 如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为_______.【答案】(4,1)【解析】试题分析:∵点A(2,2)在函数(x>0)的图象上,∴2=,得k=4,∵在Rt△ABC中,AC∥x轴,AC=2,∴点B的横坐标是4,∴y==1,∴点B的坐标为(4,1),故答案为:(4,1).考点:反比例函数图象上点的坐标特征.18. 若∠A为锐角,当tanA=时,cosA=__.【答案】【解析】∵∠A为锐角,tanA=,∴∠A=30°,则cosA=cos30°=.故答案为:.三、解答题(7小题,共66分)19. 选用适当的方法,解下列方程:(1)2x(x﹣2)=x﹣3;(2)(x﹣2)2=3x﹣6【答案】(1) x=1或x=(2) x1=2,x2=5.【解析】试题分析:(1)先化为一般式,再分解因式即可求解;(2)先移项后,提取公因式分解因式,即可求解.试题解析:(1)2x(x﹣2)=x﹣3,2x2﹣5x+3=0,(x-1)(2x-3)=0,x-1=0或2x-3=0,x=1或x=;(2)(x﹣2)2=3x﹣6,(x﹣2)2-3(x﹣2)=0,(x﹣2)(x﹣2-3)=0,x﹣2=0或x﹣5=0,x1=2,x2=5.20. 已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【答案】(1)m<6且m≠2;(2)x1=﹣,x2=﹣2.【解析】试题分析:(1)∵方程有两个不相等的实数2m根.∴=b2-4ac=(2m)2-4(m-2)( m+3)>0∴m<6且m≠2(2)∵m取满足条件的最大整数∴m=5把m=5代入原方程得:3x2+ 10x + 8= 0解得:考点:一元二次方程的判别式点评:本题考查一元二次方程的判别式,掌握一元二次方程的判别式与根的情况是解本题的关键21. 如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.(1)求证:BE2=EG•EA;(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)由四边形ABCD是矩形,得到∠ABC=90°,得到∠ABC=∠BGE=90°,根据相似三角形的性质即可得到结论;(2)由(1)证得BE²=EG•EA,推出△CEG∽△AEC,根据相似三角形的性质即可得到结论.本题解析:(1)证明:四边形ABCD是矩形,∴∠ABC=90°,∵AE⊥BD,∴∠ABC=∠BGE=90°,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴,∴BE²=EG⋅EA;(2)由(1)证得BE²=EG⋅EA,∵BE=CE,∴CE²=EG⋅EA,∴,∵∠CEG=∠AE C,∴△CEG∽△AEC,∴∠ECG=∠EAC.22. 如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC是一条蜜糖线,一只蚂蚁从A沿着圆锥表面最少需要爬多远才能吃到蜜糖?【答案】(1)S阴= 4π﹣8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬2个单位长度才能吃到蜜糖.【解析】试题分析:(1)如图2中,作SE⊥AF交弧AF于C.设图2中的扇形的圆心角为n°,由题意=2π•1,求出n即可解决问题;(2)在图2中,根据垂线段最短求出AE,即为最短的长度.试题解析:(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°,由题意=2π•1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴ S△SAF= ×4×4=8又S扇形S﹣AF=,∴S阴=S扇形S﹣AF﹣S△SAF=﹣8=4π﹣8.在图2中,∵SC是一条蜜糖线,AE⊥SC, AF=,AE=2,∴一只蚂蚁从A沿着圆锥表面最少需要爬2个单位长度才能吃到蜜糖.23. 如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C 处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).【答案】(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,∴,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.24. 如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.【答案】(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2【解析】试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4,可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式;②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.试题解析:(1)过点A作AP⊥x轴于点P,则AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函数y=(x>0)的图象经过的B,∴4=,∴k=8.∴反比例函数的关系式为y=;(2)①由点A(2,1)可得直线OA的解析式为y=x.解方程组,得,.∵点D在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),过点D分别作x轴的垂线,垂足分别为G,则G(4,0),由勾股定理可得:ED=.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.25. 如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.【答案】(1)抛物线的解析式为:y=x2﹣x﹣2;(2)PN的最大值是;(3)PM的最大值是.【解析】试题分析:(1)把B(3,0),C(0,-2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m,m2-m-2),得到N(m,-m-),根据二次函数的性质即可得到结论;............ .....................试题解析:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c,得:,∴,∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PN∥y轴,N在直线AD上,∴N(m,﹣m﹣),∴PN=﹣m﹣﹣m2+m+2=﹣m2+m+,∴当m=时,PN的最大值是;(3)设P(m,m2﹣m﹣2),∵PM∥x轴,M在直线AD上,M与P纵坐标相同,把y=m2﹣m﹣2,代入y=﹣x﹣中,得x=﹣m2+2m+2,∴M(﹣m2+2m+2,m2﹣m﹣2),∴PM=﹣m2+2m+2 -m= ﹣m2+m+2∴当m=时,PM的最大值是.点睛:本题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确理解题意是解题的关键.。
2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。
2017-2018学年上期期末考试九年级数学试题含答案

2017-2018学年上期期末考试九年级数学试题一.选择题(每小题3分,共24分)1.在1-,0,2这四个数中,最大的数是( ) A.-1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1064.如图,能判定ECAB 的条件是()A .B ACE ∠=∠ B .A ECD ∠=∠C .B ACB ∠=∠D .A ACE ∠=∠5.下列计算正确的是( ) A.32a a a ÷= B.()32628xx -= C.22423a a a += D.()222a b a b -=-6.在下列调查中,适宜采用调查的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .检测一批电灯泡的使用寿命D .调查郑州电视台《郑州大民生》栏目的收视率7.抛物线()212y x =-+的顶点坐标是( ) A.()1,2- B.()1,2-- C.()1,2- D.()1,28.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时.ABF △和DCE △全等.A .1B .1或3C .1或7D .3或7二.填空题(每小题3分,共21分) 9.计算:2=-__________.10.已知四条线段a ,b ,c ,d 是成比例线段,即ac b d=,其中3cm,2cm,6cm a b c ===,则11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋子中搅匀,如果不放回的从中随机连续抽取两个,则这个两个球上的数字之和为偶数的概率是__________.12.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x⊥轴,AC y ⊥轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =_____________.13如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b ->+的解集是_____________.14.如图,如果圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且40E ∠=,60F ∠=,那么A ∠=____________.15.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点'B 处,两条折痕与斜边AB 分别交于点E 、F ,则线段'B F 的长为___________.三.解答题(本大题共8个小题,共75分)16.(本题8分) 先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中x 是方程220x x +=的解。
2017-2018学年第一学期九年级数学期末检测卷

2017-2018学年第一学期九年级期末检测卷数学试卷A 卷一.选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列各组线段能成比例的是 ( )A 、0.2cm 0.1m 0.4cm 0.2cmB 、1cm 2cm 3cm 4cmC 、4cm 6cm 8cm 3cmD 、2cm 6cm 8cm 7cm2、下列根式是最简二次根式的是 ( )A .20B .5.0C .5D .503、计算:18÷43×34的结果是 ( )A 、0B 、24C 、22D 、32 4、已知关于x 的一元二次方程()043222=-++-k x x k 有一个解为0,则k 的值为( )A 、±2B 、2C 、-2D 、任意实数 5、已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196. 用配方法解方程0342=--x x ,下列配方结果正确的是 ( )A.19)4(2=-xB.7)2(2=+xC.19)4(2=+xD.7)2(2=-x7. 已知35a b b -=,则b a的值为( ).A .52B .25C .58D . 548、如图,AB 是斜靠在墙壁上的长梯,梯脚B 与墙的距离为1.6m ,梯子上点D 与墙的距离为1.4m ,BD 长0.55m ,则梯子的长为( ) A . 3.85m B. 4.00m C. 4.40m D. 4.50m9、代数式342+-x x 的最小值是( )A 、3B 、2C 、1D 、-110.如图,平行四边形 ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC=60°,AB=2BC ,连接OE .下列结论:①∠ACD=30°;②S 平行四边形ABCD =AC ·BC ;③OE:AC=:6;④S △OCF =2S △OEF成立的个数有( )第10题A .1个B .2个C .3个D .4个二、填空题:(每小题4分,共32分)11、计算:2(6)= 。
2017-2018学年第一学期教学质量检测九年级数学试题卷及答案

2017-2018学年第一学期教学质量检测九年级数学试题卷及答案注意事项:1. 本试卷分试题卷和答题卷两部分,试题卷共4页,三大题,满分120分,考试时间100分钟.2. 略一.选择题(每小题3分,共30分)1. 下列美丽的图案,不是中心对称图形的是 【 】2. 下列事件中,是必然事件的是 【 】A. 通常温度降到0℃以下,纯净的水结冰B. 购买一张彩票,中奖C. 经过有交通信号灯的路口,遇到红灯D.明天一定 是晴天3. 如图AB 是⊙O 的直径,CD 是弦,∠BAD=48°,则∠DCA 的大小为( ) A. 48° B. 42°C. 45° D. 24°4. 如图 DE 是△ABC 的中位线,则△ADE 与四边形BCED 的面积的比是 ( ) A. 1 :5 B. 1:4 C. 1:3 D. 1:25. 如图圆锥的底面半径为2,母线长为6,则侧面积为 ( ) A. 4π B. 6π C. 12π D. 16π6. 设A (-2,1y ),B (-1,2y ) ,C (2,3y )是抛物线()k k x y (+--=212为常数)上三点,则321,,y y y 的大小关系为( )123 .y y y A >> 321 .y y y B >> 213 .y y y C >> 132 .y y y D >>7.反比例函数)0(≠=k xky 的图象在第一象限内的一支如图所示,P 是该图象上 一点,A 是x 轴上一点,PO=PA,POA S ∆=4,则k 的值是( ) A. 8 B. 4 C. 2 D. 168.若关于x 的方程03492=--k x x 有实数根,则实数k 的取值范围是( ) A. 0=k B. 1-≥k C. 1->k D.01-≠≥k k ,且9.在半径为5的⊙O 中,AB,CD 互相垂直的两条弦,垂足为P ,且AB=CD=4,则OP 的长为( ) A.1 B.2 C. 2 D. 2210. 二次函数c bx ax y ++=2()0≠a 的图象如图所示,对称轴是直线x=1,下列结论: ①0<ab ;②ac b 42>; ③02<++c b a ;④024>++c b a .其中正确的是( ) A. ①④ B. ②④ C. ①②③ D. ①②③④ 二.填空题(每小题3分,共15分)11.已知x=1是方程032=+-m x x 的一个解,则m= . 12.在一个不透明的布袋中装有红球6个,白球3个,黑球1个, 这些球除颜色外没有任何区别,从中任意取出一球为红球的概率是 .13.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1:2,点A 的坐标为(0,1),则点E 的坐标是 .14.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕点A 逆时针旋转30°后得到△ADE , 点B 经过的路径为弧BD ,则图中阴影部分的 面积为 (结果保留π).15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为/B ,折痕为EF ,已知 AB=AC=6,BC=8,若以点/B ,F,C 为顶点的三 角形与△ABC 相似,那么BF 的长度是 . 三、解答题(共8小题,满分75分) 16.(5分)解方程:0432=--x x17.(9分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (-4,3),B (-1,2),C (-2,1).(1)画出△ABC 关于原点O 对称的△111C B A ,并写出点111C B A ,,的坐标. (2)△ABC 绕原点O 顺时针方向选择90°得到△222C B A ,直接写出点2A 的坐标.18.(9分)小王,小李玩摸球游戏,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王胜,否则就是小李胜. (1)用树状图或列表法求出小王胜的概率;(2)小李说:“这种规则不公平,”你认同他的说法吗?请说明理由. 19.(10分)如图所示,一次函数b kx y +=与反比例函数xmy =的图象交于A (2,4),B (-4,n )两点. (1)分别求出一次函数与反比例函数的表达式;(2)过点B 作BC ⊥x 轴,垂足为C ,连接AC ,求△ACB 的面积.20.(10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠BCD=∠A. (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,CD=4,求BD 的长.21.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m ).另外三边利用学校现有总长38m 的铁栏围成. (1)若围成的面积为1802m ,试求出自行车车棚的长和宽.(2)能围成的面积为2002m 自行车车棚吗?如果能,请你给出设计方案:如果不能,请说明理由.22.(11分)如图1,在Rt △ABC 中,∠C=90°,AC=BC=2, 点D,E 分别在边AC,AB 上,AD=DE=21AB,连接DE, 将△ADE 绕点A 逆时针方向旋转,记旋转角为θ. (1)问题发现 ①当θ=0°时,=CD BE ;②当θ=180°时,=CDBE. (2)拓展研究试判断:当0°≤θ<360°时,CDBE的大小有无变化? 请仅就图2的情形给出证明; (3)问题解决①在旋转过程中,BE 的最大值为 ;②当△ADE 旋转至B 、D 、E 三点共线时,线段CD 的长为 .23. (11分)如图1.抛物线c bx x y ++-=2的图象与x 轴交于A (-5,0),B (1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D. (1)求抛物线的函数表达式;(2)若点(x,y )为抛物线上一点(图1),且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x轴于点H ,得到矩形EHDF,求矩形EHDF 周长的最大值;(3)如图2,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2017-2018学年第一学期教学质量检测九年级数学试题卷及答案二、填空题:11. 2 ;12. 0.6 ; 13. ()22, ;14.1225π;15.724或4 16. 1,421-=x x17. 图略:),(3-41A ;1B (1,-2)1C (2,-1) (2)图略),(432A 18.19.(1)解:∵点A,B 是一次函数和反比例函数的交点, ∴m=8,n=-2把A (2,4)B (-4,-2)分别代入b kx y +=得:⎩⎨⎧=+=+-2b 4k -4b k 2解得:⎩⎨⎧==21b k ∴一次函数解析式是y=x+2,反比例函数解析式是:xy 8=(2)把y=0代入y=x+2得,x=-2,∴直线y=x+2与x 轴的交点是(-2,0) ∴42212221⨯⨯+⨯⨯=ABC S △=6 20.2017-2018学年第一学期教学质量检测九年级数学试题卷及答案。
初中数学2017-2018第一学期期末九数答案

2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。
2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。
∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。
A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。
2017学年第一学期期末教学质量监测九年级数学试卷及详细解答

2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018九年级上学期质量检测试题
一、选择题
1. 如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()
A. 3:4
B. 9:16
C. 9:1
D. 3:1
2. 如图,在△ABC中,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为()
...
A. 6
B. 8
C. 10
D. 12
3. 如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()
A. 18
B.
C.
D.
4. 在△ABC中,AC=6,BC=5,sinA=,∠A、∠B为锐角,则tanB=
A. B. C. D.
5. 如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC= .
A. 40°
B. 50°
C. 60°
D. 70°
6. 如图,直线x=2与反比例函数y=、y=的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB 的面积是()
A. B. 1 C. D. 2
7. 如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x 轴上,点D在y轴上.已知平行四边形ABCD的面积为6,则k的值为()
A. 6
B. 3
C. ﹣6
D. ﹣3
8. 已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()
A. k≤4且k≠3
B. k<4且k≠3
C. k<4
D. k≤4
9. 如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3,其中正确的有()个.
A. 1
B. 2
C. 3
D. 4
10. 如图,点I是△ABC的内心,∠BIC=126°,则∠BAC= .
A. 54°
B. 63°
C. 70°
D. 72°
11. 如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,则∠A的正弦值为()
A. B. C. D.
12. 如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.
A. 5
B. 6
C. 7
D. 8
二、填空题(每题3分,5小题共15分)
13. 在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为_____________.14. 如图,已知⊙O内切于△ABC,切点分别为D、E、F,若∠A=50°,则∠EDF=________.
15. 一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为_______.
16. 如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是_________.
17. 如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为_______.
18. 若∠A为锐角,当tanA=时,cosA=__.
三、解答题(7小题,共66分)
19. 选用适当的方法,解下列方程:(1)2x(x﹣2)=x﹣3;(2)(x﹣2)2=3x﹣6
20. 已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.
(1)求m的取值范围;
(2)当m取满足条件的最大整数时,求方程的根.
21. 如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.
(1)求证:BE2=EG•EA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.
22. 如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.
(1)求阴影部分面积(π可作为最后结果);
(2)母线SC是一条蜜糖线,一只蚂蚁从A沿着圆锥表面最少需要爬多远才能吃到蜜糖?
23. 如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C 处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;
(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
24. 如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过点B.
(1)求点B的坐标和反比例函数的关系式;
(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.
25. 如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).
(1)求抛物线的解析式;
(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.
(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.。