甲醇合成的基础知识

合集下载

甲醇合成基础知识问答

甲醇合成基础知识问答

甲醇合成1.合成工段的主要任务是什么?答:合成工段是将转化来的含H2、CO、CO2的原料气(3.45Mpa、40℃、81252.26Nm3/h),在一定压力(5.9 Mpa)、温度(220~260℃)、触媒(NC306)作用下,合成粗甲醇,并利用其反应热副产2.1~3.9 Mpa的中压蒸汽,减压至0.7Mpa并入蒸汽管网。

2.合成甲醇的主要反应式及影响因素?答:(1)CO+2H2 =CH3OH+Q(2)CO2+3H2 =CH3OH+H2O+Q影响因素:操作温度,操作压力,催化剂性能,空速,原料气的氢碳比。

3.合成反应的特点:答:(1)体积缩小的反应;(2)放热反应;(3)可逆反应;(4)气、固相催化反应;(5)伴有多种副反应发生。

4.合成工段的主要控制点有那些?答:(1)合成塔进出口温度;(2)汽包液位;(3)汽包压力;(4)分离器入口温度;(5)分离器液位;(6)系统压力;(7)原料气氢碳比;(8)膨胀槽压力;(9)弛放气压力。

5.压缩机循环段的作用是什么?答:合成塔内是个体积缩小的反应,加上甲醇的冷凝分离和系统阻力,反应后的压力要下降,为了保证系统压力稳定不变,除了补充新鲜气外,还要利用循环段将反应后剩余的气体加压,然后送往合成塔循环利用,以提高气体总转化率。

6.空速的定义及空速对甲醇合成的影响?答:空速:单位时间内,单位体积催化剂所通过的气体流量。

提高空速,单程转化率下降,减缓催化反应,有利于保护触媒和提高产量。

但提高空速,循环段能耗增加,如果空速过高,反应温度下降明显,有时温度难以维持,产量下降。

7.压力对甲醇生产的影响是什么?压力的选择原则是什么?答:甲醇反应是分子数减少的反应,增加压力对正反应有利。

如果压力升高,组分的分压提高,因此触媒的生产强度也随之提高。

对于合成塔的操作,压力的控制是根据触媒不同时期,不同的催化活性,做适当的调整,当催化剂使用初期,活性好,操作压力可较低;催化剂使用后期,活性降低,往往采用较高的操作压力,以保持一定的生产强度。

甲醇精馏基础知识

甲醇精馏基础知识

甲醇精馏根底学问一、粗甲醇精馏的意义:在甲醇合成时,因合成条件如压力、温度、合成气组成及催化剂性能等因素的影响,在产生甲醇反响的同时,还伴随着一系列副反响。

所得产品除甲醇外,还有水、醚、醛、酮、酯、烷烃、有机酸、有机胺、高级醇、硫醇、甲基硫醇和羰基铁等几十种有机杂物。

甲醇作为有机化工的根底原料,用它加工的产品种类很多,因此对甲醇的纯度均有肯定的要求。

粗甲醇通过精馏,可依据不同要求,制得不同纯度的精甲醇,使各类杂物降至规定指标以下,从而确保精甲醇的质量。

二、有关根本概念1.什么是精馏?精馏的原理是什么?把液体混合物进展屡次局部汽化,同时又把产生的蒸汽屡次局部冷凝,使混合物分别为所要求组分的操作过程称为精馏。

为什么把液体混合物进展屡次局部汽化,同时又屡次局部冷凝,就能分别为纯或比较纯的组分呢?对于一次汽化、冷凝来说,由于液体混合物中所含组分的沸点不同,当其在肯定温度下局部汽化时,因低沸点物易于汽化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。

这就转变了气液两相的组分。

当对局部汽化所得蒸气进展局部冷凝是,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而未冷凝气中低沸点物的浓度较液相高。

这样经过一次局部汽化和局部冷凝,使混合液通过各组分浓度的转变得到初步分别。

假设屡次地这样进展下去,将最终在液相中留下根本上是高沸点的组分,在气相中留下根本上是低沸点的组分。

由此可见,局部汽化和局部冷凝,都使气液相的组成发生变化,屡次局部汽化和局部冷凝同时进展,就可以将混合物分别为纯的或比较纯的组分。

液体汽化要吸取热量,气体冷凝要放出热量。

为了合理利用热量,我们可以把气体冷凝时放出的热量供给液体汽化时使用,也就是使气液两相直接接触,在传热的同时进展传质。

为满足这一要求,在实践中,这种屡次局部汽化伴随局部冷凝的过程是在逆流作用的塔式设备中进展。

所谓逆流,就是因液体受热而产生的温度较高的气体,自下而上地同塔顶因冷凝而产生的温度较低的回流液体〔富含低沸点组分〕作逆向流淌,即回流液自上而下与上升蒸气相遇,塔内发生传质、传热过程如下:〔1〕气液两相进展热的交换——利用局部汽化所得气体混合物中的热来加热局部冷凝所得液体混合物;〔2〕气液两相在热交换过程中同时进展质的交换。

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺
一、甲醇合成原理
甲醇合成的机理简单概括为:催化剂起作用于乙烯,使它在氢气的作
用下发生氢化反应,从而形成甲醇的反应过程。

甲醇合成的反应分为三步:乙烯氢化合成乙醇,乙醇的氢化反应形成乙醇的氢化物,最后由乙醇氢化
物再次氢化反应,形成甲醇。

甲醇合成的主要反应过程为:
1、乙烯氢化反应:乙烯+H2→乙醇
2、乙醇氢化反应:乙醇+H2→乙醇的氢化物+H2O
3、乙醇的氢化物氢化反应:乙醇氢化物+H2→甲醇
二、甲醇合成工艺
1、反应器
甲醇合成反应器主要由容积箱、催化剂填料、表内管、安全阀、加料口、进料口、流量计、温度计等组成。

容积箱用于容纳催化剂和乙烯,表
内管用于分离氢气和乙烯,安定器可以确保反应器的安全,加料口用于进
行乙烯和氢气的进料,进料口用于将反应产物进行收集,流量计可以确定
矿物质的流量,温度计可以控制反应温度和防止温度过高等。

2、催化剂
甲醇合成工艺中使用的催化剂一般是活性碳粉末或负活性氧化铝粉末等。

甲醇基础知识2

甲醇基础知识2

甲醇的化学性质




(2)酯化反应 甲醇可与多种无机酸和有机酸发生酯化反应。甲醇和 硫酸发生酯化反应生成硫酸氢甲酯,硫酸氢甲酯经加 热减压蒸馏生成重要的甲基化试剂硫酸二甲酯: CH3OH+H2SO4→CH3OSO2OH+H2O CH3OSO2OH→CH3OSO2OCH3+H2SO4 甲醇和硝酸作用生成硝酸甲酯: CH3OH+HNO3→CH3NO3+H2O 甲醇和甲酸反应生成甲酸甲酯: CH3OH+HCOOH→HCOOCH3+H2O
CO
+ 2H2 = CH3OH + Q CO2 +3 H2 = CH3OH+ H2O + Q

2CO + 4H2 = CH3OCH3 + Q CO + 3H2 = CH4 + H2O + Q 4CO + 8H2 = C4H9OH + 3H2O + Q CO2 + H2 = CO + H2O – Q nCO + 2nH2 = (CH2)n + nH2O + Q
甲醇的化学性质



甲醇在0.1~0.5MPa,350~500℃条件下,在硅铝磷 酸盐分子筛(SAPO-34)催化作用下生成低碳烯烃: CH3OH→CH2=CH2+H2O CH3OH→CH2=CH2一CH3+H2O+H2 750℃下,甲醇在Ag/ZSM-5催化剂作用下生成芳烃 CH3OH→C6H6+H2O+H2 240~300℃,0.1~1.8MPa下,甲醇和乙醇在Cu/Zn /Al/Zr催化作用下生成乙酸甲酯: CH3OH+CH3CH2OH→CH3COOCH3+H2 220℃,20MPa下,甲醇在钴催化剂的作用下发生同 系化反应生成乙醇:CH3OH+CO+H2→CH3CH2OH+H2O

甲醇合成的基础知识2

甲醇合成的基础知识2

甲醇合成的基础知识一、合成甲醇的化学反应:(1)主反应:CO+2H2=CH3OH+102.5kJ/molCO2+3H2=CH3OH+H2O+Q kJ/mol(2)副反应:2 CO+4H2=CH3OCH3+H2O+200.2 kJ/molCO+3H2=CH4+H2O+115.6 kJ/mol4CO+8H2=C4H9OH +3H2O+49.62 kJ/molCO+H2=CO+H2O-42.9 kJ/molnCO+2nH2=(CH2)n+nH2O+Q kJ/mol二、一氧化碳与氢气合成甲醇反应热的计算:一氧化碳与氢气合成甲醇是一个放热反应,在25℃时,反应热为90.8 kJ/mol。

一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压表示的平衡常数可用下面公式表示:k p=p CH3OH /p CO·p H22式中k p——甲醇的平衡常数p CH3OH、p CO、p H2——分别表示甲醇、一氧化碳、氢气的平衡分压。

反应温度也是影响平衡的一个重要因素,下面公式用温度来表示合成甲醇的平衡常数:lgKa=3921/T-7.9711lg T+0.002499 T-2.953×10-7T2+10.20式中Ka——用温度表示的平衡常数;T——反应温度,K。

四、温度对甲醇合成反应的影响:甲醇的合成反应是一个可逆放热反应。

从化学平衡考虑,随着温度的提高,甲醇平衡常数数值将为降低。

但从反应速度的观点来看,提高反应温度,反应速度加快。

因而,存在一个最佳温度范围。

对不同的催化剂,使用温度范围是不同的。

C307型合成甲醇催化剂的操作温度:190~300 ℃,而最佳温度:210~260 ℃。

实际生产中,为保证催化剂有较长的使用寿命和尽量减少副反应,应在确保甲醇产量的前提下,根据催化剂的性能,尽可能在较低温度下操作,(在催化剂使用初期,反应温度宜维持较低的数值,随着使用时间增长,逐步提高反应温度)。

甲醇合成的基础知识.doc

甲醇合成的基础知识.doc

甲醇合成的基础知识一、合成甲醇的化学反应:(1)主反应:CO+2H2 二CH3OH+ 102.5kJ/molCO2+3H2二CH3OH+H2O+Q kJ/mol(2)副反应:2 CO+4H2二CH3OCH3+H2O+2OO.2 kJ/mol CO+3H2CH4+H2O+II5.6 kJ/mol4CO+8H2二C4H9OH +3H2O+49.62kJ/mol CO+H2=CO+H2O-42.9 kJ/molnCO+2nH2= (CH2)n+nHgO+Q kJ/mol二、一氧化碳与氢气合忑甲醉反应热的计算:一氧化碳与氢气合成甲醇是一个放热反应,在25C时,反应热为90. 8 kJ/moL 反应热Q T(kJ/mol)与温度的关系式为:Q T二一74893. 6-64. 77T+47. 78 X 10~3T2-112. 926X 10_3T3 式中T为绝对温度(K)不同温度下甲醇合成反应热见下表三、合成卬醇的平衡常数:一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压爱表示的平衡常数可用下面公式表示:k P=p CH3OH /p co • p H22式中kp—甲醇的平衡常数PCHQH、PCO、PH2——分别表示甲醇、一氧化碳、氮气的平衡分压。

反应温度也是影响平衡的一个重耍因素,卜•面公式用温度來表示合成甲醇的平衡常数:lgKa=3921/T-7. 97111g T+0.002499 T-2. 953X 10"7T2+10. 20式屮Ka——用温度表示的平衡常数;T——反应温度,Ko用公式计算的反应平衡常数见卜•表由表可知,平衡常数随着温度的上升而很快减小。

四、温度对甲醉合成反应的影响:甲醇的合成反应是一个可逆放热反应。

从化学平衡考虑,随着温度的提高,甲醇平衡常数数值将为降低。

但从反应速度的观点來看,提高反应温度,反应速度加快。

因而, 存在一个最佳温度范围。

对不同的催化剂,使用温度范围是不同的。

甲醇的上下游基础知识

甲醇的上下游基础知识

甲醇的上下游基础知识
甲醇(Methanol)一种有机化合物,也常被称为甲醚,英文名称为石油酒精,分子式为CH 3 OH,它是一种优质、易生成的无色可燃性液体,具有明显的甲醛气味。

一、甲醇的生产
1. 甲醇的生产主要通过两种方式:甲醇水解和油醇重整。

2. 甲醇水解是用天然气(或煤气)直接加热氧化而成,并将氢和氧作
为副产物。

3. 油醇重整是用低碳烃重新分配氢原子,以达到芳香性碳氢化合物为
甲醇的目的。

二、甲醇的用途
1. 甲醇可直接用作工业燃料,常用于燃料电池和汽摩燃料中。

2. 甲醇也是工业醇酮的重要原料,可以用于制造合成染料、玻璃、医药、涂料、塑料等,用于农业的植物生长调节剂、除草剂等。

3. 甲醇还可以用作畜禽饲料的溶解剂,也可以在医药领域用作分析标
准仪器清洗剂。

三、甲醇的上游原料
1. 通常,甲醇的上游原料都是天然气或煤炭。

2. 天然气甲醇法可以提供纯度大于99.9%的甲醇,还可以得到高纯氢
气、高纯二氧化碳等,也是无机碳源和有机碳源的优良来源。

3. 煤炭甲醇法技术需要经过精细处理,但最终也可以产生高质量的甲醇。

四、甲醇的下游行业
1. 汽车:甲醇可以用作燃料电池的燃料,可以替代传统的燃料,减少
汽车的污染。

2. 化工:甲醇可以用作化学反应的原料或催化剂,用于制备合成染料、玻璃、医药和橡胶等产品。

3. 生物质能:甲醇可以被用作生物燃料,取代柴油、煤油等传统能源,减少温室气体的排放。

甲醇合成的基础知识

甲醇合成的基础知识

甲醇合成的基础知识化学世界 2009-04-05 20:41阅读45 评论0字号:大中小甲醇合成的基础知识一、合成甲醇的化学反应:主反应:CO+2H2=CH3OH+102.5kJ/molCO2+3H2=CH3OH+H2O+Q kJ/mol副反应:2 CO+4H2=CH3OCH3+H2O+200.2 kJ/molCO+3H2=CH4+H2O+115.6 kJ/mol4CO+8H2=C4H9OH +3H2O+49.62 kJ/molCO+H2=CO+H2O-42.9 kJ/molnCO+2nH2=(CH2)n+nH2O+Q kJ/mol二、一氧化碳与氢气合成甲醇反应热的计算:一氧化碳与氢气合成甲醇是一个放热反应,在25℃时,反应热为90.8 kJ/mol。

反应热QT(kJ/mol)与温度的关系式为:QT=-74893.6-64.77T+47.78×10-3T2-112.926×10-3T3式中T为绝对温度(K)不同温度下甲醇合成反应热见下表反应温度(℃)反应热(kJ/mol)反应温度(℃)反应热(kJ/mol)100200250 93303.297068.897926.52 300350 99370.0102298.8三、合成甲醇的平衡常数:一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压表示的平衡常数可用下面公式表示:kp=p CH3OH /p CO·p H22式中kp——甲醇的平衡常数p CH3OH 、p CO、p H2——分别表示甲醇、一氧化碳、氢气的平衡分压。

反应温度也是影响平衡的一个重要因素,下面公式用温度来表示合成甲醇的平衡常数:lgKa=3921/T-7.9711lg T+0.002499 T-2.953×10-7T2+10.20式中Ka——用温度表示的平衡常数;T——反应温度,K。

用公式计算的反应平衡常数见下表反应温度(℃)平衡常数(Ka)反应温度(℃)平衡常数(Ka)100200 667.3012.921.909×10-2 300400 2.42×10-41.079×10-5由表可知,平衡常数随着温度的上升而很快减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲醇合成的基础知识一、合成甲醇的化学反应:主反应:CO+2H2=CH3OH+102.5kJ/molCO2+3H2=CH3OH+H2O+Q kJ/mol副反应:2 CO+4H2=CH3OCH3+H2O+200.2 kJ/molCO+3H2=CH4+H2O+115.6 kJ/mol4CO+8H2=C4H9OH +3H2O+49.62 kJ/molCO+H2=CO+H2O-42.9 kJ/molnCO+2nH2=(CH2)n+nH2O+Q kJ/mol二、一氧化碳与氢气合成甲醇反应热的计算:一氧化碳与氢气合成甲醇是一个放热反应,在25℃时,反应热为90.8 kJ/mol。

反应热QT(kJ/mol)与温度的关系式为:QT=-74893.6-64.77T+47.78×10-3T2-112.926×10-3T3式中T为绝对温度(K)不同温度下甲醇合成反应热见下表反应温度(℃)反应热(kJ/mol)反应温度(℃)反应热(kJ/mol)100 93303.2 300 99370.0200 97068.8 350 102298.8250 97926.52三、合成甲醇的平衡常数:一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压表示的平衡常数可用下面公式表示:kp=p CH3OH /p CO· p H22式中kp——甲醇的平衡常数p CH3OH 、p CO、 p H2——分别表示甲醇、一氧化碳、氢气的平衡分压。

反应温度也是影响平衡的一个重要因素,下面公式用温度来表示合成甲醇的平衡常数:lgKa=3921/T-7.9711lg T+0.002499 T-2.953×10-7T2+10.20式中Ka——用温度表示的平衡常数;T——反应温度,K。

用公式计算的反应平衡常数见下表反应温度(℃)平衡常数(Ka)反应温度(℃)平衡常数(Ka)100200 667.3012.921.909×10-2 300400 2.42×10-41.079×10-5由表可知,平衡常数随着温度的上升而很快减小。

四、温度对甲醇合成反应的影响:甲醇的合成反应是一个可逆放热反应。

从化学平衡考虑,随着温度的提高,甲醇平衡常数数值将为降低。

但从反应速度的观点来看,提高反应温度,反应速度加快。

因而,存在一个最佳温度范围。

对不同的催化剂,使用温度范围是不同的。

C307型合成甲醇催化剂的操作温度:190~300 ℃,而最佳温度:2 10~260 ℃。

实际生产中,为保证催化剂有较长的使用寿命和尽量减少副反应,应在确保甲醇产量的前提下,根据催化剂的性能,尽可能在较低温度下操作,(在催化剂使用初期,反应温度宜维持较低的数值,随着使用时间增长,逐步提高反应温度)。

另外,甲醇合成反应温度越高,则副反应增多,生成的粗甲醇中有机杂质等组分的含量也增多,给后期粗甲醇的精馏加工带来困难。

五、压力对甲醇合成反应的影响:甲醇的合成反应是一个体积收缩的反应,增加压力,反应向生成甲醇的方向移动;从动力学考虑,增加压力,提高了反应物分压,加快了反应的进行;另外,提高压力也对抑制副反应,提高甲醇质量有利。

所以,提高压力对反应是有利的。

但是,压力也不宜过高,否则,不仅增加动力消耗,而且对设备和材料的要求也相应提高 ,投资费用增大.C307型合成甲醇催化剂的操作压力:3~15 MPa。

六、空速对甲醇合成反应的影响:气体与催化剂接触时间的长短,通常以空速来表示,即单位时间内,每单位体积催化剂所通过的气体量。

其单位是m3(标)/( m3催化剂·h),简写为h-1。

空速是调节甲醇合成塔温度及产醇量的重要手段。

在甲醇生产中,气体一次通过合成塔仅能得到3%~6%的甲醇,新鲜气的甲醇合成率不高,因此,新鲜气必须循环使用。

在一定条件下,空速增加,气体与催化剂接触时间减少,出塔气体中甲醇含量降低。

但由于空速的增加,单位时间内通过催化剂的气体量增加,所以甲醇实际产量是增加的。

当空速增大到一定范围时,甲醇产量的增加就不明显了。

同时由于空速的增加,消耗的能量也随之加大,气体带走的热量也增加。

当气体带走的热量大于反应热时,床层温度会难于维持。

甲醇合成的空速受到系统压力、气量、气体组成和催化剂性能等诸多因素影响。

C307型合成甲醇催化剂的操作空速:4000~20000 h-1。

七、碳氢比的控制对甲醇合成反应的影响:甲醇由一氧化碳、二氧化碳与氢反应生成,反应式如下:CO+2H2≒CH3OHCO2+3H2≒CH3OH+H2O从反应式可以看出,氢与一氧化碳合成甲醇的物质的量比为2,与二氧化碳合成甲醇的物质的量比为3,当一氧化碳与二氧化碳都有时,对原料气中碳氢比(f或M值)有以下两种表达方式:f =(H2-CO2)/(CO+ CO2)=2.05~2.15或M= H2 /(CO+1.5 CO2)=2.0~2.05不同原料采用不同工艺所制得的原料气组成往往偏离上述f值或M值。

生产中合理的碳氢比应比化学计量比略高些,按化学计量比值,f值或M值约为2,实际控制得略高于2,即通常保持略高的氢含量。

过量的氢对减少羰基铁的生成与高级醇的生成及延长催化剂寿命起着有益的作用。

八、惰性气体含量对甲醇合成反应的影响:甲醇系统的惰性气体是指氮、甲烷、氩气及其他不凝性的有机化合物。

系统中惰性气含量高,相应地降低了CO、CO2、H2的有效分压,对合成甲醇反应不利,动力消耗也增加。

惰性气体来源于原料气及合成甲醇过程的副反应。

对于甲醇生产厂家,循环气中惰性气含量会不断累积,需要经常排放一部分气体来维持惰性气的一定含量。

一般控制原则:在催化剂使用初期活性较好,或者是合成塔的负荷较轻、操作压力较低时,可将循环气中惰性气含量控制在20%~25%;反之,控制在15%~20%左右。

控制循环气中惰性气含量的主要方法是排放粗甲醇分离器后气体。

排放气量的计算公式如下:V放空≈(V新鲜×I新鲜)÷I放空式中V放空——放空气体的体积,m3(标)/ h;V新鲜——新鲜气体的体积,m3(标)/ h;I放空——放空气体中惰性气含量,%;I新鲜——新鲜气体中惰性气含量,%;九、二氧化碳含量对甲醇合成反应的影响:二氧化碳也能参加合成甲醇的反应,对于铜系催化剂,二氧化碳的作用比较复杂,既有动力学方面的作用,还可能具有化学助剂的作用,归纳起来,其有利的方面为:①含有一定量的CO2可促进甲醇产率的提高;②提高催化剂的选择性,可降低醚类等副反应的发生;③ 可更有利于调节温度,防止超温,延长催化剂的寿命;④防止催化剂积炭。

其不利方面为:与CO合成甲醇相比,每生成1kg甲醇多消耗0.7m3的H2;使粗醇中水含量增加,甲醇浓度降低。

总之,在选择操作条件时,应权衡CO2的利弊。

通常,在使用初期,催化剂活性较好时,应适当提高原料气中CO2的浓度,使合成甲醇的反应不致过分剧烈,以利于床层温度的控制;在使用后期,可应适当降低原料气中CO2的浓度,促进合成甲醇反应的进行,控制与稳定床层温度。

在采用铜基催化剂是,原料气中CO2的含量通常在6%(体积)左右,最大允许CO2含量为12%~1 5%。

一般初期控制在4~6%,中后期控制在2~4%。

十、入塔甲醇含量对甲醇合成反应的影响:入塔甲醇含量越低,越有利于甲醇合成反应的进行,也可减少高级醇等副产物的生成。

为此,应尽可能降低水冷却器温度,努力提高甲醇分离器效率,使循环气和入甲醇塔的气体中甲醇含量降到最低限。

采用低压合成甲醇时,要求冷却分离后气体中的甲醇含量为0.6%左右。

一般控制水冷却器后的气体温度在20~40 ℃。

十一、水碳比对甲醇合成反应的影响:从化学平衡的角度考虑,提高水碳比有利于甲烷转化,而且对抑制积炭也是有利的。

但水炭比提高,会引起水蒸气耗能增加,炉管热负荷加大,炉管内气流阻力增加。

因此,在满足工艺要求的前提下,要尽可能降低水碳比。

实际生产中以天然气为原料制甲醇时,水碳比约为3.5。

十二、氨进入甲醇合成系统的危害:氨进入甲醇合成塔,将会影响催化剂的活性、寿命及粗甲醇的质量。

有关试验表明,当原料气中含氨(50~100)×10-6时,其活性较无氨时(假定不大于1×10-6)将下降10%~20%。

另据有关技术资料报道,即使当甲醇合成气含有20×10-6的微量氨存在时,在甲醇合成的条件下,化学反应过程中就伴随有一甲胺、二甲胺及三甲胺的生成,其化学反应式如下:CH3OH+NH3 →NH2CH3+H2O+20.75 kJ/molCH3OH+NH3 →NH(CH3)2+2H2O+60.88kJ/molCH3OH+NH3 →NH(CH3)3+3H2O+407.55kJ/mol由于上述混胺反应结果,生产出的粗醇夹带有鱼腥味;另一方面,混胺类增多,碱值高,氨化值低,有利于杂醇副反应生成,增加了粗醇精馏过程的难度,既影响精甲醇产品质量,又增加各项物料的消耗。

十三、石蜡类烷烃的生成与危害:甲醇生产过程中石蜡类烷烃的生成原因是:① 合成反应温度过高,副反应加快,烷烃生成量增加;② 新鲜气中CO过高,合成空速大,使气体在催化剂上接触时间太短。

达到一定程度,烷烃生成量就有明显增加;③ 开停车处理不当,催化剂在210℃以下与原料气接触时,将使石蜡类烷烃的生成显著增加;④ 生产中少量有机酸对设备的腐蚀,进而生成羰基铁积累在铜催化剂表面上,导致其活性下降,促使烷烃的生成,出现明显结蜡现象;⑤ 催化剂制造、贮运、充装过程,使铁、钴、镍等混入催化剂中,生产过程可使CO发生解离吸附而促进烷烃的生成;⑥ 当催化剂中含有SiO2或其他酸性氧化物时,则会促进石蜡的生成;⑦ 原料气中存在水蒸汽时,在含有铁的催化剂上与一氧化碳可发生如下反应:CO+H2O → (-CH2-)+ CO2⑧ 入塔气中若乙烯含量较高或混入压缩机的润滑油等,则会有石蜡生成。

石蜡类烷烃的主要危害是:将造成甲醇合成系统水冷却器、甲醇分离器等设备及管线堵塞,系统压差变大,严重时将被迫停产清蜡。

另外,C16以上烷烃在常温下不溶于甲醇和水,会在液体中析出结晶或使溶液变浑浊,使甲醇质量下降,造成精甲醇消耗增大、收率下降。

十四、甲醇合成催化剂对原料气净化的要求如何?为了延长甲醇合成催化剂的使用寿命,提高粗甲醇的质量,必须对原料气进行净化处理,净化的任务是清除油、水、尘粒、羰基铁、氯化物及硫化物等等,其中特别重要的是清除硫化物。

原料气中的硫化物能使催化剂中毒,使用铜基催化剂时硫化物与铜生成硫化铜使催化剂丧失活性。

铜基催化剂对硫的要求很高,原料气中的硫含量应小于0.1mL/m3;原料气中夹带油污进入甲醇合成塔对催化剂影响很大,油在高温下分解形成碳和高碳胶质体,沉积于催化剂表面,堵塞催化剂内孔隙,减少表面活性,使催化剂活性降低,而且油中含有硫、磷、砷等会使催化剂发生化学中毒。

相关文档
最新文档