Human Data Interaction in IoT-The ownership aspect
以空间设计促进人与智能机器的和谐共存

空间承载的是生产和社会关系,所以新的生产关系必将生产出新的空间 [1]。
从原始社会到农业社会、工业社会,人类一直在利用并改造空间,这种关系在智能城市1中会进一步突显。
因为不同于之前农业社会千年、工业社会百年的变化过程,智能技术的进化速度几乎是以月甚至周计的。
与之矛盾的是,空间是一个相对稳定的存在,如何提前布局应对快速的外界变化,对空间设计者提出了更高的要求。
首先,未来空间的设计者需要了解智能技术及其发展逻辑。
智能城市可见的一个趋势就是机器设备的智能化,正如现代建筑一定会预留水、电、光纤的布设位置,未来的城市和建筑空间设计中还要考虑机器人、智能设备的空间使用。
类似汽车参与到日常生活中需要停车空间、加油站、道路,未来的空间同样要考虑机器人和移动设备或独立或与人伴随的移动空间、停留空间及充电(能源补充)空间设计等。
阿西莫夫在他的科幻小说房间中为机器人设计了一个专用的壁龛,其实现在的扫地机器人在我们的居住空间中已经逐渐有了这样的一个“壁龛”。
我在本学期给城市规划专业同学开设的《城市信息技术前沿》课程中提纲挈领地介绍了前沿技术,课程作业则让学生们充分发挥了对未来城市的想象。
不少同学对已经开始落地的自动驾驶可能引发的空间重构都有了回应,参考谷歌Sidewalk 实验室在多伦多Waterfront 的设计,对让渡出核心区的行驶和停车空间给慢行和公共活动等进行了有了进一步的思考。
除此之外,同学们还将城市中的绿化带替换成为立体农业种植,并畅想通过自动驾驶车辆的感知设备给作物浇水施肥;设想了综合性交通枢纽,以同时服务空中、地面、地下以及管道物流的垂直复合交通系统;甚至构想了实现自动驾驶后车辆内部空间的功能拓展,如设计成为“剧院车”、“健身房车”等具备某种特征功能的移动“盒子”。
只要对技术逻辑有所了解,未来空间的设计者可以复用很多现有的空间设计逻辑并进行提升。
技术总是具有双面性的,人工智能技术的快速发展已经引起社会的关注和焦虑,好的空间设计是否可以作为这种焦虑乃至矛盾的协调或缓冲器?这需要深刻理解人与机器的伦理关系——从机器服务人类的角度,同时又不能完全以人为中心,以免催生惰性和交往剥夺 [2]。
机器人技术研究员与创新者:梅琳达·汉(Melinda Han)人物简介

• 为机器人技术领域的创新和发展
等智能技术
域提供新的解决方案
做出贡献
02
梅琳达·汉的机器人技术研究成果
梅琳达·汉在机器人感知与认知领域的研究
01
研究机器人的视觉感知技术
• 开发了一种基于深度学习的视觉感知算法
• 提高机器人在复杂环境中的感知能力
02
研究机器人的听觉感知技术
• 开发了一种基于声音信号处理的听觉感知算法
梅琳达·汉在机器人技术领域的创新突破
在机器人感知与认知领域取得重要突破
• 提出了一种基于多模态感知的机器人认知模型
• 为机器人技术领域提供新的研究方向
在机器人学习与规划领域取得重要突破
• 提出了一种基于自适应学习的机器人规划算法
• 为机器人技术领域提供新的解决方案
⌛️
在机器人交互与控制领域取得重要突破
• 负责多个研发项目的管理和组织实施
• 为机器人技术领域的创新和发展做出贡献
• 为机器人技术领域的创新和发展做出贡献
梅琳达·汉的未来研究方向与产业发展前景
未来研究方向:机器人技术领域的深度学习、强化
学习等前沿技术
产业发展前景:机器人技术领域的无人
驾驶、智能家居等应用领域
• 为机器人技术领域的创新和发展做出
• 为机器人技术领域的创新和发展做出贡献
参与多个机器人技术领域的国际标准制定
• 为机器人技术领域的国际交流与合作提供支持
• 提高机器人技术领域的国际地位
⌛️
04
梅琳达·汉的荣誉与奖项
梅琳达·汉获得的学术荣誉与奖项
获得多项机器人技术领域的学术奖项
获得多项国际学术会议的杰出论文奖
人工智能和生物信息学构建化学计量学领域

人工智能和生物信息学构建化学计量学领域随着科学技术的飞速发展,人们对于科学领域的研究也越来越深入。
在这其中,人工智能和生物信息学这两个领域的快速发展引起了人们的广泛关注。
而在化学计量学领域,也正是这两个领域的结合给这个领域的发展带来了重要的推动。
本文将探讨人工智能和生物信息学在化学计量学领域的应用,以及其所带来的影响。
一、化学计量学领域的研究现状化学计量学是一门综合性的学科,涉及到数据处理、数据分析、化学计量方法以及化学计量软件等领域。
它在化学实验、制药、材料科学等领域都具有着广泛的应用。
但是,在化学计量学领域中,人们需要研究大量的数据,进行数据整理,建立化学计量模型,分析模型结果,并利用模型来预测实验的结果。
这个过程需要大量的时间和人力,也容易发生人为错误。
因此,如何提高数据处理的效率和精度,促进化学计量学领域的进步和发展,就成为了化学计量学研究人员面临的一大问题。
二、人工智能在化学计量学领域中的应用人工智能技术和方法的发展,为化学计量学领域的研究提供了新的方法和思路。
人工智能可以通过分析大量的数据,发现数据之间的关系,进而建立出符合实际的预测模型。
在化学计量学领域中,人工智能可以通过分析实验数据,预测变量之间的关系,并建立出符合实际的计量模型,进而为实验研究提供有力的指导。
例如,在化学品的开发和研究过程中,人工智能可以通过分析化学品的物化性质,从而预测新的化学品的性质,如熔点、密度、热值等等。
此外,人工智能还可以通过分析化学品的用途、下游产品特性等方面的数据,预测实验结果,从而对实验流程进行优化和改进。
此外,人工智能还可以通过机器学习等技术挖掘大规模数据,建立出更为精准的化学计量模型。
例如,某研究小组在研究铜合金的电极化学特性时,采用人工智能方法,对万花筒式电化学数据进行了建模。
研究人员将训练数据用于支持向量机进行拟合,得到了一组高效而精确的电解质介电常数、电子传导率、污染等参数的预测结果。
digital human的介绍及引用

digital human的介绍及引用Digital Human的介绍及引用引言:"数字人类"是指使用计算机技术和人工智能技术创建的仿真人类,他们具有逼真的外貌、动作和语音,可以与人类进行交互。
数字人类的出现标志着人工智能技术的飞速发展,给我们的生活带来了许多新的可能性。
一、数字人类的定义和特点数字人类是一种基于计算机技术和人工智能技术创建的虚拟人类。
他们可以通过图像、声音和文字等形式与人类进行交互,具有逼真的外貌、动作和语音。
数字人类不仅可以模拟人类的外貌特征,还可以模拟人类的情感、思维和行为。
数字人类的特点主要有以下几个方面:1. 逼真的外貌:数字人类的外貌经过精心设计和制作,可以与真实人类难以区分。
2. 流畅的动作:数字人类可以模拟人类的各种动作,包括走路、跑步、跳舞等,动作流畅自然。
3. 自然的语音:数字人类可以通过语音合成技术生成自然流畅的语音,并与人类进行对话。
4. 情感表达:数字人类可以模拟人类的情感,包括愤怒、快乐、悲伤等,通过面部表情和语音表达出来。
5. 学习能力:数字人类可以通过机器学习和深度学习等技术不断提高自己的智能水平,逐渐融入人类社会。
二、数字人类的应用领域数字人类在各个领域都有广泛的应用,下面列举几个典型的应用领域:1. 娱乐产业:数字人类可以在电影、电视剧、游戏等娱乐作品中扮演角色,与真实演员互动,增强观众的身临其境感。
2. 教育培训:数字人类可以作为教师的助手,与学生进行互动,提供个性化的教学服务。
3. 健康医疗:数字人类可以作为医疗机器人,为患者提供护理和康复训练等服务。
4. 客户服务:数字人类可以作为虚拟助手,为客户提供咨询、推荐和解决问题的服务。
5. 社交媒体:数字人类可以作为虚拟主播,在社交媒体平台上与用户进行互动,提供娱乐和信息服务。
三、数字人类的前景和挑战数字人类的出现给我们的生活带来了许多便利和乐趣,但也面临着一些挑战:1. 隐私和安全:数字人类需要大量的个人数据作为输入,这涉及到个人隐私和数据安全的问题,需要加强相关法律和技术的保护。
人机结合的空间认知

4 2/2021 新建筑 | 数据时代的建筑与城市研究[作者单位] 清华大学建筑学院(北京,100084)人机结合的空间认知Human-computer Integrated Spatial Cognition摘 要 建筑的设计和空间的使用是建筑全生命周期中最为复杂和动态的两个环节,而其关键都是人的认知——设计过程中的设计认知和空间使用中的空间认知。
研究用大数据方法研究人的环境行为,也将数据分析与人工智能用于对设计行为的分析和设计生成;尝试在广义的“空间认知”概念的基础上提出“人机结合的空间认知”方向,希望使用先进的计算机技术探索研究中的分析方法及实践中的生成方法,推动算法在理解空间、设计创新、空间体验等方面生成与人的认知结合的创新模式。
关键词 设计认知 环境行为学 人工智能 大数据分析 生成式设计 人机交互ABSTRACT The most complex and dynamic phases of the life-cycle of architecture are the two phases related to human, the design and occupation of architectural space. These phases are both about cognition, i.e. the design cognition and the space cognition. In the research of the past years, we applied big data method in architectural environmental behavior analysis. We also used design cognition and artificial intelligence methods in design behavior studies and design generation. Based on these explorations, the research direction of Human-computer Integrated Spatial Cognition was proposed, in which the advanced computation technologies were used for studying the fundamental problems of architecture. The computation technologies provided both analyzing methods in research and generating methods in practice. It is expected the computation technologies will help people in understanding, creation and appreciation of space, and new models and efficient methods in spatial cognition would emerge.KEY WORDS design cognition, environmental behavior, artificial intelligence, big data analysis, generative design, human-computer interaction DOI 10.12069/j.na.202102004中图分类号 TU201.4 文献标志码 A 文章编号 1000-3959(2021)02-0004-07基金项目 国家自然科学基金面上项目(51578299)黄蔚欣 杨丽婧 苏夏HUANG Weixin YANG Lijing SU Xia一 空间认知与设计认知的基本概念建筑和城市是人类为自身的活动创造的人工环境。
生成式人工智能教育创新应用的人本主义追求——对UNESCO《教育与研究领域生成式人工智能指南》的解读

生成式人工智能教育创新应用的人本主义追求——对UNESCO《教育与研究领域生成式人工智能指南》的解读王炜;赵帅;黄慕雄【期刊名称】《现代远程教育研究》【年(卷),期】2024(36)1【摘要】2023年9月,联合国教科文组织发布《教育与研究领域生成式人工智能指南》。
该指南特别强调将人本主义作为生成式人工智能(GenAI)的价值旨归,可以视为GenAI在教育领域创新应用的有益探索和先声回应。
《指南》包括的6部分内容从风险与挑战、策略与调控、突破与尝试三个维度展开,依次系统分析了GenAI在教育及科研环境中的潜在风险与挑战,设计了全面的治理策略与政策调控方案,并探索了GenAI的教育创新应用。
纵览该指南发现,无论是从教育理念到具体实践,抑或是从社会责任到人的发展,GenAI与教育的深度耦合均以“人本”为最终旨归与核心要义。
该指南对我国教育数字化转型具有四重启示:理念层面上,GenAI 应促进以人为本的教育发展,确保其先进技术的红利能够普惠所有学习者;实践层面上,GenAI应更加贴合人的自然认知和发展规律,确保其服务于教育的核心价值;社会层面上,GenAI应逐步完善伦理准则和法律框架,应对其带来的社会责任与伦理挑战;人本层面上,GenAI应凸显人的主体角色,确保其有助于培养学生的批判性思考能力,并尊重文化和个性的多样性。
【总页数】9页(P3-11)【作者】王炜;赵帅;黄慕雄【作者单位】广东第二师范学院教育数字化研究院;广东第二师范学院教师教育学院;新疆师范大学教育科学学院;广东第二师范学院【正文语种】中文【中图分类】G434【相关文献】1.生成式人工智能在教育领域的应用、问题与展望2.生成式人工智能介入教育领域的机遇、风险与规避进路——基于ChatGPT的讨论与分析3.面向中小学的生成式人工智能教育政策制定路向——基于日本《中小学生成式人工智能教育应用指南》的分析4.生成式人工智能教育:关键争议、促进方法与未来议题——UNESCO《生成式人工智能教育和研究应用指南》报告要点与思考因版权原因,仅展示原文概要,查看原文内容请购买。
生物医学和生命科学中的数据可视化和人机交互

生物医学和生命科学中的数据可视化和人机交互随着现代科技的不断发展和互联网应用的蓬勃发展,数据可视化和人机交互已经成为了生物医学和生命科学中非常重要的研究方向之一。
如何利用先进的技术手段将大规模的生命科学数据进行描述、分析和处理,并提供便捷易用的人机交互界面,已经成为了当前研究的重要课题。
下面我们将从三个方面来介绍生物医学和生命科学中的数据可视化和人机交互的应用情况。
一、生物医学中的数据可视化生物医学中涉及的数据种类非常丰富,包括基因组、蛋白质组、代谢组、膜组等各种组学数据,其规模和复杂性也相当惊人。
来自不同来源的生物医学数据需要被整合、分析和展示,它们也需要与其他数据类型进行交互和比较。
因此,数据可视化技术的应用对于生物医学研究来说具有很大的价值。
在生物医学领域中,数据可视化的应用通常涉及到许多不同的技术和方法。
例如,可以使用图形、图形设计和可视化编程来处理和展示生物医学数据。
生物医学的一些特殊的可视化技术可以帮助研究人员进行标志定位、模拟和预测。
二、生命科学中的数据可视化在生命科学领域中,数据可视化同样是一个非常重要的研究方向。
生命科学中的数据种类也非常丰富,包括生物文献、基因信息、生命过程中的物理和化学事件等。
这些数据需要被方便地进行探索和查询,以便研究人员能够从中获得有益的信息。
数据可视化技术在生命科学中的应用范围非常广泛,例如,在癌症研究中,研究人员可以使用基因组数据进行肿瘤分析和分类。
另外,在生命科学和神经科学中,也可以使用可视化工具来研究神经网络和生物化学反应的动态行为。
三、生物医学和生命科学中的人机交互人机交互是指人们与计算机系统进行交互并进行交流的方式。
在生物医学和生命科学领域中,人机交互是一个重要的研究方向。
例如,在生物医学图像处理和分析中,研究人员可以使用人机交互技术对医学图像进行评估和分析。
另外,在生命科学研究中,研究人员也可以使用人机交互技术来探索基因元数据和生物文献。
这些工具可以帮助生命科学研究人员更加高效地进行研究和发现。
新概念英语三经典句子

新概念英语三经典句子1、Pumas are large ,cat-like animals which are found in America.美洲狮是一种体形似猫的大动物,产于美洲。
★本句话亮点:当前一句末尾的一个名词和后一句开头的名词或者代词重合时,可以用定语从句巧妙的将两个分散的句子合二为一。
Pandas are large, bear-like animals which are found in China.Dragons are mysterious, snake-like animals which are described in Chinese legend.2、When London Zoo received reports which said that a wild puma had been spotted forty-five miles south of London ,they were not taken seriously.当伦敦动物园接到报告说,在伦敦以南45英里处发现一只美洲狮时,这些报告并没有受到重视。
★本句亮点:西方的文化精神一直表现为对“客观性”的重视。
义物本为主体,以自然为本位。
而中国文化则以人为中心,认为世界一切皆因人的活动。
因此,讲地道的英语句子第一步就是改变“人”作主语的习惯,学会直接用“物”作主语。
The news came to me that he was down with pneumonia.The advertisement entitle “Tide’s in ,Dirt’s out” suddenly caught our eyes. The fierce garnished with cooking utens ils has caught every guest’s attention.3、However, when experts from the Zoo received more and more evidence, they felt obliged to investigate, for the descriptions given by people who claimed to have seen the puma were extraordinarily similar.★本句亮点:中文习惯用一个主语贯穿到底,以人物的主要动作串联起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Human Data Interaction in IoT:The OwnershipAspectAfra MashhadiBell LaboratoriesAlcatel-LucentDublin,Irelandafra.mashhadi@Fahim Kawsar and Utku G¨u nay AcerBell LaboratoriesAlcatel-LucentAntwerp,Belgium{fahim.kawsar,utku gunay.acer}@Abstract—As Internet of Things(IoT)becomes a growing reality,more ubiquitous devices are embedded in our daily lives, serving us in a broad range of purposes in everyday life from: personal healthcare to home automation to tailored smart city services.These devices primarily collect data that is about or produced by people,be it street noise level of a neighbourhood, or the energy footprint of an individual’s home or her location and other situational context.As this unprecedented amount of data is collected,we are challenged with one fundamental research question:who owns this data and who should have access to it? Specifically,the emergent of the Human Data Interaction(HDI) topic which aims to put the human at the centre of the data driven industry,calls attention to the IoT community to address the data ownership aspect more carefully.In this note,we offer a reflection on the challenges that IoT faces in regards to the data ownership in HDI and advocate the roles that both ordinary people and industries must play to best answer those challenges in shaping the IoT landscape.I.I ntroductionWe are observing a significant metamorphosis of our com-putation driven experience uncovered by a plethora of open source hardware i.e.sensors and actuators resulting in more and more connected objects embodied with intelligence.As such,our physical space now represents an ecological synergy of connected objects augmented with awareness technologies. This unfolds a range of imaginative possibilities to discover, manage,compose,coordinate,and control physical space to realise personalised and coordinated behaviour within and across devices and provide the foundation for the Internet of Things(IoT).For instance,we now interact with our clothes to exchange emotion,with our furniture for personalised information services,with our umbrellas for weather forecast, etc.In fact,recent years have seen a sharp rise in the number of ubiquitous devices and the market is growing increasingly as IoT applications are becoming mainstream thanks to crowd-funding platforms such as KickStarter1and strong initiatives from large industrial companies.These devices facilitate our lives and will be everywhere,from home automation to public spaces,and used by everyone.The common facet of all these devices is that they all collect data that is produced by or about people.This data is either explicitly produced by users themselves,for example sharing their location while running through wearable accessories,or is implicitly inferred by the sensing infrastructures in cases such as monitoring residential 1/energy consumption or the noise level of an area.As this unprecedented amount of data is collected,we are faced with a fundamental research question regarding data ownership,in other words who owns this data,that is produced by this swarm of connected objects,and who has consent to access it?Recently in an effort to address this research question in a broader context of data analytics,the topic of Human Data Interaction(HDI)[1]has emerged.HDI refers to the broad topic of providing access and understanding of data that is about individuals and information on how their collected data affects them,by placing human at the centre of the data driven applications.Being an inter-disciplinaryfield,HDI brings together efforts from domains of databases,computer science, visualisation and interaction design along side law,psychology and behavioural economics in an attempt to define a human centred framework and design guidelines for future data driven applications.In the domain of IoT and more specifically in pervasive computing research,various studies have addressed the relationship between human and data through the data accessibility lens[2]–[5].In[4],the authors review the access control and role functionalities of some off-the-shelf home devices such as a wireless scale,and a variable colour lighting system.They highlight the deficiencies of the current state of the access control policies for these devices.In particular they observed that users lack awareness on who has accessed their devices due to missing intelligible feedback.Brush et.al.[2]suggest that simple design guidelines such as proximity-based trust can solve some security challenges in the domain of home automation.In[3],[5]authors address the access control in terms of simple predefined groups(e.g.,kids,parents,etc) as well as temporary access provision for guests.In[6],the authors highlights the need for a better visibility to the home network noting the privacy concerns.Finally[7]discusses an extensive view of consent in thefield of ubicomp and proposes guidelines for rebalancing the focus from the system to the users.While these solutions can provide sufficient access control for individual technologies,the problem of data ownership in the IoT arises as each crowd funded device in the market relies on its own individual black-box application to interact with the device.As such causing fragmentation in data ownership. Furthermore,as the IoT scales and smart cities become a reality,addressing data ownership and accessibility becomes ever more critical.For instance,imagine the local government has placed surveillance cameras and sensors on the street lampsin you neighbourhood to improve public safety,and to monitor the air pollution level for offering better environmental aware-ness to their citizens.However,the collected data is later sold to or shared with a third party company that operates as state agents.In this example,who owns this data?And who should be able to access it?Should people in the neighbourhood have consent to decide with whom their data can be shared with or sold to?In the rest of this note,we discuss the challenge of the data ownership in the IoT space taking an analytical stance and propose three models to instigate a dialogue on the roles that both individuals and industries can play in this new connected eco-system.II.A T wo-D imensional V iew of the I o T S pace Keeping the human consent at the centre of data ownership in IoT is an endeavouring challenge.At its core,resides the question of how a technology whose backbone consists of objects and aims to connect devices together,can account for human interaction.Indeed the literature on consent draws from multiple disciplines such as law[8],computer science[7], sociology and design[9],and psychology[10].The common point that all these multiple disciplines concur with,is the need to enable users to review/withdraw and interact with their data (e.g.,through visualisation).However the IoT domain differs greatly from the traditional data collection methods in practice. To understand these dynamics better,we present a view of IoT space from two dimensions:1)Functional Scope:Functional scope defines the oper-ating mode of the connected objects,and ranges fromself-contained to infra-structured ones.2)Spatial Scope:Spatial scope defines the operatingspace of a smart object which can be either privateor public.A self contained connected object is independent of any lo-cal infrastructure(e.g.,a gateway)and is capable of perception, reasoning and decision making autonomously and can operate in a private space(e.g.,a cooking pot,a personal health care monitoring device,etc.)or in a public place(e.g.,a smart elevator,a smart vending machine,etc.).An infra-structured connected object is a part of larger collection of physical objects that work collectively to attain a specific purpose in a private space(e.g.,a home automation system)or in a public space(e.g.,smart city services).Figure1illustrates this two dimensional view of the IoT.To highlight the challenge that is facing the IoT in regard to HDI,Figure2illustrates the sensitivity of the collected data versus the consent given to the users to interact with their data, for the IoT space described above.As presented in thisfigure, there are range of connected objects which rely on collecting sensitive data about the user(e.g.,connected smart home)but at their current implementation they provide the users with little consent to review and interact with this data.For example, in the domain of the connected home,if the data of users daily behaviour(such as energy usage)is shared with other companies,it can lead to invasive advertisement as well as potential risk to the household.Indeed consent is defined as “the primary means for individuals to exercise their autonomy and to protect their privacy”[11].Therefore the moreprivateFig.1:A Two-Dimensional View of IoTSpaceFig.2:The Consent View of the IoT space.and sensitive the collected data is,the higher the provided consent should be.III.O wnership M odels for the I o T S pace Considering the view of IoT presented in the previous section,we foresee multiple models of data ownership of varying granularity-i)Pay-Per-Use Model,ii)Data Market Model and iii)Open Data Model.In the following,we discuss these models and their implications into the IoT space.A.Pay-Per-Use ModelAs future objects such as appliances become connected and aware of their current state and usage patterns(i.e.,state full objects),the collected data from these objects can be used to interpret information about the users beyond their original purpose.For example,consider a smart chair which is able to remember your desired configuration.While the data is originally collected to provide this service,should the manufacturing company be able to use this data for other purposes too(e.g.,selling your weight information to a third party company).The current state of the IoT and massive number of crowd founded appliances in the market lacks users consent regarding how their data is used and how much is worth.To address this challenge,we propose a model in which human can gain monetary benefit from the data they share through their smart appliances,through a Pay-Per-Use model[12].In this model the user would be able to rent a smart appliance and only pay for it based on their usage as the manufacturing company collects the data from the appliances. Indeed,such payment models have been already proven to be popular in the automobile industry where the users can lease their desired car,also pay for its insurance depending to their use2.Indeed a recent survey by Lynx Research Consulting has shown an increase in the popularity of such insurance schemes despite the privacy concerns3.Granting similar model for smart appliances allows the manufacturers to monitor how their products are used thus enabling them to know what are the important features to improve,keep or discard.Moreover, it enables the manufacturing companies to apply a better repair and warranty models which would take account for the usage of the appliance and its deviation from the recommended guideline.A challenge that arises in here is on the affordability of such a payment model as it requires the companies to have the necessary capital,as well as the risks of frauds through tempering with the usage data.However,given the subscription based models are becoming increasingly popular in the IoT space,(e.g.,Tado Thermostat4),we concur that connected object manufacturer would consider this model to balance their value proposition with respect to perceived affordance of the consumers.This might also be critical to overcome the barrier of lacking consumer awareness,a fundamental blocking element for penetration of the IoT devices in the mass market, especially for the consumer focused ones.B.Data Market ModelThe IoT in private spaces such as residential home,semi-private office spaces goes beyond simply a collection of connected objects and opens up many privacy considerations to account for.Data streamed offdevices in home regarding energy or water usage has so far been handled by companies which treat the users as clients only with no say on how their data should be used.However,we believe that given a transparent framework and regulations,many users would be willing to share their data[13].As such,we propose the notion of Data Market as an instrument to enable users to share their personal data locally and globally with monetary benefits,i.e., 2Pay-as-you-drive insurance schemes allow the drivers to attach a device to their car that records the use of the car and sends it to the insurance company. 3/article/3572014 an individual can trade data produced at her personal space with interested business entities.Such model is currently being considered by a number of data exchange companies,where monetary incentives are offered to end users for correcting erroneous sensor data5.The challenge in this case is how to design future infrastructure so to make users aware of the commodity of their data along with the risks of sharing it. C.Open Data ModelThe data ownership becomes a much bigger challenge as we step outside specific domains such as healthcare and home automations and look at the bigger picture of smart cities.To keep the IoT ecosystem alive[14],one needs to be able to reuse the already deployed devices for purposes beyond the primary intention.One fundamental challenge that arises in this case is the role identification that is beyond the classic access control roles.First,we need to be able to identify who are those that are affected by the collected/inferred data from the sensors(e.g.,the sensors deployed in the neighbourhood). Are the roles limited to the physical proximity of the deployed devices?Andfinally what are the relationships amongst the roles?Furthermore,once the roles identified how can we provide simple means of interactions with the data,such that ordinary users can gain access to how their data is being used and control for it.We advocate Open Data Model with intention integrity,that is ordinary users should be capable of wilfully access their data captured by public devices,and the data must be used only to achieve the intended operation, and any inferred information for other intentions must befirst approved by the users.IV.C onnecting the D evice S pace with O wnership M odels In the previous two sections we have described a two dimensional view of the IoT from functional and spatial per-spectives,and three ownership models for the data generated by the IoT devices and services.Although we do no advocate a set of policies for connecting these two facets,in this section we offer a set of guidelines that IoT device/service providers can consider while designing their business model. Our objective here is to provide a balance between the value proposition,consumer awareness and data ownership for the future IoT services.These guidelines are visually depicted in Figure3.1)Self Contained Connected Objects in the PrivateSpace:For this class of connected objects we arguethat a Pay-Per-Use model would be appealing forthe consumers as well as for the device and serviceproviders.For example,a smart vacuum cleaner couldbe offered for a nominal price upfront,however theconsumers are billed every month or quarter on thebasis of the usage quantity and quality.As discussedin the earlier section,this model is lucrative not onlyfor the consumers considering monetary benefits,but also for the service providers as they will havebetter awareness of their service and product us-age,customer segmentation,and for designing futurefunctionalities of the product that are most useful forthe consumers.5Fig.3:Data Ownership Models for the IoT Space2)Self Contained Connected Objects in the PublicSpace:For this class of connected objects we alsoargue for a Pay-Per-Use model.However,given thespatial aspect and common use of these objects,consumers can be offered a small discount as a valueadded service in exchange of their data.Taking asmart vending machine example,this means that themachine records an individual’s purchase history tooffer a recommendation with a small discount topromote a new item or less popular items.This is alsoa win-win situation for the both the manufacturer aswell as for the consumers.In this particular example,the manufacturer can use the purchase history of theindividuals with predictive analytics to plan stockrefill to ensure optimise sales.3)Infra-structured Connected Objects in the PrivateSpace:For this class of objects,we promote a DataMarket model,where individuals can trade their dataeither for monetary incentives,or other tangible orintangible services.For example,data produced by aresidential energy monitoring system,can be tradedwith the utility company for a discount,or a freerepair/inspection service etc.The service providercan use the collected data for a variety of purposes,e.g.,exchanging insight from the data with the utilitycompanies for better resource planning,and/or withhome appliance manufacturers for targeted advertise-ment.4)Infra-structured Connected Objects in the PublicSpace:For this class of objects,we advocate a com-pletely open data model where monetary incentivesare not mandatory but individuals should be fullyaware of their data,and should be able to control whocan use their data and how.As such,we foresee thatthe role of policy enforcement from the governmentis very critical.V.O utlookIn this note,we put forward three ownership models for the emerging Human Data Interaction in the IoT space as an attempt to initiate a dialogue in the community.We would hope that this note stimulates others to consider how to empower the users to get more out of their shared data,enabling them to be an important part of the IoT ecosystem.We argue that there is a strong need for communication between the industries involved and the users regarding data ownership aspect and the research community needs to address this sensitive issue carefully to ensure that the Internet of Things does not fall short of its potentials.R eferences[1]R.Mortier,H.Haddadi,T.Henderson,D.McAuley,and J.Crowcroft,“Challenges&opportunities in human-data interaction,”in University of Cambridge,Computer Laboratory,2013.[2] A.B.Brush,B.Lee,R.Mahajan,S.Agarwal,S.Saroiu,and C.Dixon,“Home automation in the wild:challenges and opportunities,”in Pro-ceedings CHI’11,2011,pp.2115–2124.[3]M.L.Mazurek,J.Arsenault,J.Bresee,N.Gupta,I.Ion,C.Johns,D.Lee,Y.Liang,J.Olsen,B.Salmon et al.,“Access control for homedata sharing:Attitudes,needs and practices,”in Proceedings of the CHI’10,2010,pp.645–654.[4] B.Ur,J.Jung,and S.Schechter,“The current state of access controlfor smart devices in homes,”in Workshop on Home Usable Privacy and Security(HUPS),2013.[5]T.Denning,T.Kohno,and H.M.Levy,“Computer security and themodern home,”Commun.ACM,vol.56,no.1,pp.94–103,Jan.2013.[6]R.Mortier,T.Rodden,P.Tolmie,T.Lodge,R.Spencer,J.Sventek,A.Koliousis et al.,“Homework:Putting interaction into the infras-tructure,”in Proceedings of the25th annual ACM symposium on User interface software and technology.ACM,2012,pp.197–206.[7] E.Luger and T.Rodden,“An informed view on consent for ubicomp,”in Proceedings of the2013ACM international joint conference on Pervasive and ubiquitous computing.ACM,2013,pp.529–538. [8]Y.Bakos,F.Marotta-Wurgler,and D.Trossen,“Does anyone read thefine print?testing a law and economics approach to standard form contracts,”in Testing a Law and Economics Approach to Standard Form Contracts(October6,2009).CELS20094th Annual Conference on Empirical Legal Studies Paper,2009,pp.09–40.[9] B.Friedman,P.Lin,and ler,“Informed consent by design,”Security and Usability,pp.495–521,2005.[10]V.C.Plaut and R.P.Bartlett III,“Blind consent?a social psychologicalinvestigation of non-readership of click-through agreements.”Law and human behavior,vol.36,no.4,p.293,2012.[11]L.Curren and J.Kaye,“Revoking consent:A blind spotin dataprotection law?”Computer Law&Security Review,vol.26,no.3,pp.273–283,2010.[12] D.Fitton,V.Sundramoorthy,G.Kortuem,J.Brown,C.Efstratiou,J.Finney,and N.Davies,“Exploring the design of pay-per-use objects in the construction domain,”in Proceedings of the EuroSSC’08,2008, pp.192–205.[13] D.Foster,M.Blythe,P.Cairns,and wson,“Competitive carboncounting:can social networking sites make saving energy more enjoy-able?”in Proceedings of the CHI’10,2010,pp.4039–4044.[14]S.Leminen,M.Westerlund,M.Rajahonka,and R.Siuruainen,“To-wards iot ecosystems and business models,”in Internet of Things,Smart Spaces,and Next Generation Networking.Springer,2012,pp.15–26.。