高中数学三年,学好函数只需掌握这10道题

合集下载

函数常见题型及其解答

函数常见题型及其解答

函数常见题型及其解答函数是高中数学的重要内容之一,也是高考的重点和难点。

在学习函数的过程中,同学们可能会遇到各种类型的题目,本文将介绍一些常见的题型及其解答方法。

一、求函数的定义域定义域是函数的基础,求函数的定义域是常见的问题之一。

常见的方法有:1. 观察法:根据函数解析式,直接观察出其定义域。

2. 分式法:对于分式函数,需要保证分母不为0。

3. 偶次根式法:对于偶次根式函数,需要保证被开方数非负。

4. 对数法:对于对数函数,需要保证对数的真数大于0。

5. 复合法:对于含有多个函数的式子,需要保证每个函数都有意义。

例题:求函数f(x) = 的定义域。

解答:由已知可得,要使函数有意义,需满足:3x - 4 > 0,解得x > 4/3。

所以函数的定义域为{x︱x > 4/3}。

二、求函数的解析式求函数的解析式是另一个常见的问题。

常见的方法有:1. 直接法:根据已知的函数表达式,直接求出未给出的函数表达式。

2. 换元法:对于某些复杂的表达式,可以通过换元法简化表达式。

3. 待定系数法:通过设出函数表达式中的系数,再根据已知条件求出这些系数。

例题:已知函数f(x)满足f(x) + f(2 - x) = 2,求f(x)的解析式。

解答:设f(x) = kx + b,则f(2 + x) = k(x + 2) + b + k = kx + 2k + b + b = 2,解得k = - 1,b = 0,所以f(x)的解析式为f(x) = - x。

三、函数的性质与图像函数的性质和图像是函数的重要内容之一。

常见的题型有:1. 求函数的单调区间、极值和最值。

2. 根据函数的性质和图像,分析函数的特征和变化规律。

3. 根据已知条件,画出函数的图像。

例题:已知函数f(x)在定义域内为减函数,且f(x - 1) >f(1),求函数的单调区间。

解答:由题意可知,函数f(x)在定义域内为减函数,且f(x - 1) > f(1),所以x - 1 < 1 < x,即- 1 < x < 2,函数的单调递减区间为( - 1,2)。

10道高中函数难题(详解版)

10道高中函数难题(详解版)
(3)
由 ,则 ,
,当且仅当 时,等式成立.
① 时, , ,
② , , ,
综上: 当且仅当 时等式成立.
【点睛】
本题考查了新定义问题,考查了数学阅读能力,考查了分类讨论问题,考查了数学运算能力.
8.(1) (2)3.
【解析】
【分析】
将绝对值函数写成分段函数形式,分别求出各段的最小值,最小的即为函数的最小值。
【解析】
【分析】
根据函数的奇偶性,以及特殊值即可判断.
【详解】
因为
又定义域关于原点对称,故该函数为奇函数,排除B和D.
又 ,故排除C.
故选:A.
【点睛】
本题考查函数图像的选择,通常结合函数的性质,以及特殊值进行判断即可.
6.(Ⅰ)8;(Ⅱ)(i) ;(ii)详见解析.
【解析】
【分析】
(Ⅰ)对 求导, 可得 , 单调递增,得到 最小值,从而得到 的值.

如图所示:
【点睛】
本题考查绝对值函数的图像的画法,绝对值函数需先将绝对值去掉,再分段画出图像.属于基础题.
10.325
【解析】
【分析】
利用 可得 ,再利用等差数列求和公式,即可求出结果.
【详解】
因为 ,
所以

……
故答案为:
【点睛】
本题主要考查求抽象函数的函数值,关键是利用已知将 变形转化,属于中档题.
10道高中函数难题突破(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若存在正实数y,使得 ,则实数x的最大值为( )
A. B. C.1D.4

高中函数题型及解题方法

高中函数题型及解题方法

高中函数题型及解题方法在高中数学学习中,函数是一个非常重要的内容,也是学生们比较头疼的一个知识点。

函数题型涉及到了很多不同的情况和解题方法,下面我们就来系统地总结一下高中函数题型及解题方法。

一、基本函数题型及解题方法。

1. 一次函数。

一次函数是最基本的函数之一,其一般式为y=kx+b。

在解题时,可以根据函数的斜率和截距来确定函数的性质,例如斜率为正表示函数单调递增,斜率为负表示函数单调递减,截距表示函数与y轴的交点等。

2. 二次函数。

二次函数的一般式为y=ax^2+bx+c。

解二次函数题型时,可以利用函数的开口方向、顶点坐标、对称轴、判别式等性质来进行分析,从而解决问题。

3. 指数函数和对数函数。

指数函数和对数函数是一对互逆函数,其性质和解题方法有很多特点,包括增减性、奇偶性、周期性等,需要根据具体问题来进行分析和解答。

二、函数图像与函数性质题型及解题方法。

1. 函数图像的性质。

在解题过程中,可以通过函数的导数、极值、拐点等性质来确定函数的图像特点,例如凹凸性、单调性、零点、极值点等。

2. 函数性质的应用。

在实际问题中,函数的性质经常被用来解决各种实际问题,例如最值问题、最优化问题、变化率问题等,需要根据函数的性质来建立方程并求解。

三、函数的综合运用题型及解题方法。

1. 函数的综合运用。

在综合题型中,通常会涉及到多个函数的综合运用,需要根据题目所给条件来建立方程并求解,同时要注意函数之间的关系和相互影响。

2. 函数的应用拓展。

除了基本的函数题型外,还会有一些应用拓展的函数题型,例如函数的复合、函数的逆、函数的复合逆等,需要根据具体情况来进行分析和解答。

总结,高中函数题型及解题方法涉及到了很多不同的情况和解题方法,需要学生们掌握函数的基本性质和解题技巧,同时要注重实际问题的应用和拓展,通过练习和思考来提高自己的解题能力。

希望本文的总结能够帮助学生们更好地掌握高中函数的知识,提高数学学习的效果。

高中数学三年必须吃透的70个必刷题

高中数学三年必须吃透的70个必刷题

高中数学是学生在数学学科中学习的重要阶段,数学知识的掌握对于学生进入大学甚至未来的职业发展都是至关重要的。

而在高中数学的学习过程中,大家必须掌握一定的数学题目,才能更好的提高自己的数学水平。

我将在本文中共享70个高中数学必刷题,希望能够帮助更多的学生在高中数学学习过程中取得更好的成绩。

一、代数部分1. 一元二次不等式2. 根据配方法求最值3. 分式方程4. 二项式定理5. 绝对值不等式6. 倍式展开与二项式系数二、函数部分7. 函数奇偶性8. 函数极值问题9. 参数方程问题10. 反函数与复合函数11. 对数函数的性质12. 求极限问题三、方程部分13. 解方程组14. 解不等式组15. 二元一次方程组16. 解三元一次方程组17. 解分式方程18. 二次方程的判别式四、几何部分19. 三角形内角和20. 三角形外角定理21. 直线与平面的交点22. 圆的切线与切点23. 直角三角形的性质24. 平行四边形的几何关系五、概率部分25. 事件的概率26. 条件概率27. 期望与方差28. 排列与组合29. 二项分布30. 正态分布的性质六、数列部分31. 数列的通项32. 数列的性质33. 数列的求和34. 数列的递推公式35. 等差数列与等比数列36. 等比中项问题七、植物生长模型37. 个体生长模型38. 种裙增长模型39. 人口增长模型40. 自然增长模型41. 对数生长模型42. 指数生长模型八、微积分部分43. 函数的极限44. 函数的连续性45. 一元函数的导数46. 函数的微分47. 函数的积分48. 微积分中的应用问题九、向量部分49. 向量的定位问题50. 向量的线性运算51. 向量的数量积52. 向量的夹角问题53. 平面向量的应用54. 空间向量的应用十、解析几何部分55. 曲线与曲面的方程56. 空间中的直线57. 空间中的平面58. 空间中的球面59. 空间中的圆锥曲线60. 空间中的二次曲面十一、复数部分61. 复数的性质62. 复数的运算63. 复数的共轭64. 复数的幂与根65. 复数的几何意义66. 复数方程问题十二、三角部分67. 弧度与角度的转换68. 三角函数的基本关系69. 三角函数的图像70. 三角函数的性质以上便是我整理的高中数学必刷题清单,希望对大家在高中数学学习中有所帮助。

高中数学三年,学好函数只需掌握这10道题.doc

高中数学三年,学好函数只需掌握这10道题.doc

高中数学三年,学好函数只需掌握这10道

1、利用函数思想。

函数思想,即将原有的复杂函数进行构造转化,以达到相对简单的形式,这样更方便同学们进行计算、求解。

2、分离参数法。

在解决恒成立问题的时候,分离参数的方法是非常常用的,在运用到这个方法的时候,同学们要能够巧妙的设参数,要把原式简单化在进行取值的求解。

3、判别式法。

判别式,是一种非常常用的方法,同学们要先确定该函数的定义域,然后用判别式来求值的范围,这个方法非常简单实用,如果同学们细心一点的话,基本上不会丢分。

4、利用函数单调性。

如果已知某式恒大于某式的话,同学们就要求出前者的最小值和后者的最大值。

如果是某式恒小于某式的话,同学们就要求出前者的最大值和后者的最小值。

5、恒成立问题。

恒成立问题,在函数式中是非常常考的,同学们一定要掌握好这些题目的解决方法。

今天将为大家分解两例。

(1)利用一元不等式在区间上恒成立的充要条件。

(2)利用一元二次不等式在区间上恒成立的充要条件。

6、待定系数法。

7、不等式法。

8、特值法。

9、确立主元法。

10、整体换元法。

以上就是我总结的解决高中数学函数问题的10种方法,希望能够帮助同学们更好地学习高中数学函数,提高解题能力,考出好成绩。

一个好的学习方法,让孩子受益一生。

高一函数拔高练习题

高一函数拔高练习题

高一函数拔高练习题函数作为高中数学的一部分,是一门关键的概念。

在高一的学习中,函数作为数学内容的一个重要组成部分,需要深入理解和掌握。

为了帮助同学们更好地掌握函数的概念和运用,下面将提供一些拔高练习题,希望能对同学们的学习有所帮助。

题目一:给定函数 f(x) = 2x^2 + 3x - 1,求函数的对称轴和顶点坐标。

解析:函数的对称轴可以通过求顶点坐标得出。

首先,通过求导数f'(x) = 4x + 3,令导数等于零,得出 x = -3/4。

将 x = -3/4 代入原函数,可以得出 y = -11/8。

因此,对称轴为直线 x = -3/4,顶点坐标为 (-3/4, -11/8)。

题目二:已知函数 f(x) = |x - 2| + 3,求函数的定义域和值域。

解析:定义域是指函数中自变量x 的取值范围。

对于这个函数来说,绝对值的参数 x - 2 不能小于零。

因此,定义域为 x >= 2。

而值域则是函数中因变量 f(x) 的取值范围。

由于绝对值函数的特点,取值范围是non - negative real numbers,也就是大于等于零的实数集。

题目三:已知函数 f(x) = log₂x,求函数在 x = 8 时的导数值。

解析:对于对数函数求导数的问题,可以利用导数的性质和换底公式来计算。

首先,利用换底公式将底数 2 转换为自然对数的底数 e,log₂x = ln x / ln 2。

然后,对 ln x 进行求导,即 1 / x。

因此,函数 f(x)= log₂x 在 x = 8 时的导数值为 1 / 8。

题目四:已知函数f(x) = sin(x + π/6),求函数的最小正周期。

解析:对于三角函数的最小正周期的求解,可以通过比较函数中sin 函数的参数x + π/6 与 sin 函数的最小正周期2π 的整数倍的关系来得出。

即x + π/6 = 2πk,其中 k 是任意整数。

如果取 k = 0,则可以得到最小正周期为2π。

高考函数的十大题型

高考函数的十大题型

高考函数的十大题型一、函数定义与性质1.确定函数的定义域、值域,并描述函数的单调性、奇偶性、周期性等基本性质。

2.根据函数的不同特性比较大小,解决与函数性质相关的问题。

二、函数图象与变换1.能够绘制函数的图象,并分析函数的周期性、对称性等特性。

2.通过平移、对称、伸缩等变换,研究函数图象的变化规律。

三、函数解析式与求值1.根据函数解析式,求函数的值或已知函数值求自变量的值。

2.理解参数在函数中的作用,掌握参数的求法。

四、函数不等式与最值1.利用函数的单调性或导数研究不等式,解决与不等式相关的问题。

2.求解函数的最大值、最小值,以及在特定条件下的最优化问题。

五、函数零点与方程根1.求函数的零点或方程的根,并分析零点或根的分布情况。

2.利用零点或根的性质解决方程的求解问题。

六、函数单调性与极值1.利用导数研究函数的单调性,判断函数的极值点。

2.求函数的极值或已知极值求参数的值。

七、函数奇偶性与周期性1.分析函数的奇偶性,判断函数的对称性。

2.研究函数的周期性,掌握周期函数的性质和特点。

八、函数值域与最优化1.求函数的值域或已知值域求参数的范围。

2.解决与最优化相关的问题,如最大利润、最小成本等。

九、函数在实际问题中的应用1.利用函数模型解决实际问题,如增长率、人口模型等。

2.掌握常见函数在实际问题中的应用技巧和方法。

十、综合题与压轴题1.掌握综合题的解题思路和方法,能够灵活运用多个知识点解决复杂问题。

2.掌握压轴题的解题技巧和方法,提高解题能力和思维水平。

高三数学函数专题经典复习题

高三数学函数专题经典复习题

1.已知函数f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=________.2.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,则f (72)=------------.一、选择题1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 2.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式可取为( ) A.x 1+x 2 B .-2x 1+x 2 C.2x 1+x 2 D .-x 1+x 23.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )4.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f ⎝⎛⎭⎫1f (2)的值为( )A.1516 B .-2716 C.89D .18 5.若函数f (x )=⎩⎨⎧1x,x <0⎝⎛⎭⎫13x,x ≥0则不等式|f (x )|≥13的解集为( )A .(-3,1)B .[-1,3]C .(-1,3]D .[-3,1] 二、填空题6.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是____________. 7.如果f [f (x )]=2x -1,则一次函数f (x )=_____________. 三、解答题9.如右图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式; (2)作出函数的图象,并根据图象求y 的最大值.10.已知二次函数f (x )=ax 2+bx +c ,(a <0)不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求实数a 的取值范围.第三部分 函数的值域与最值一、选择题1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3} 2.函数y =log 2x +log x (2x )的值域是( ) A .(-∞,-1] B .[3,+∞)C .[-1,3]D .(-∞,-1]∪[3,+∞)3.设f (x )=⎩⎨⎧x 2, ||x ≥1x , ||x <1,g (x )是二次函数,若f (g (x ))的值域是[)0,+∞,则g (x )的值域是( )A.(]-∞,-1∪[)1,+∞B.(]-∞,-1∪[)0,+∞ C .[0,+∞) D.[)1,+∞4.设函数f (x )=⎩⎪⎨⎪⎧-1,x >01,x <0,则(a +b )-(a -b )f (a -b )2(a ≠b )的值是( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数 5.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.6.若f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2对任意的非负实数x 成立,则f ⎝⎛⎭⎫12010+f ⎝⎛⎭⎫22010+f ⎝⎛⎭⎫32010+…+f ⎝⎛⎭⎫20092010=________. 7.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.8.若函数y =f (x )=12x 2-2x +4的定义域、值域都是闭区间[2,2b ],求b 的值.函数的单调性一、选择题1.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a ,x <1,log ax , x ≥1,是(-∞,+∞)上的增函数,那么a 的取值范围是( ) A .(1,+∞) B .(-∞,3) C.⎣⎡⎭⎫35,3 D .(1,3)3.设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( )A .-3B .3C .-8D .84.若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的取值范围是( ) A .(0,+∞) B .[-2,+∞) C.⎣⎡⎭⎫-52,+∞ D .(-3,+∞) 5.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 二、填空题6.函数y =x 2+2x -3的递减区间是________.7.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫23,f (1)从小到大的排列是________.8.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是________. 三、解答题9.已知函数f (x )在(-1,1)上有定义,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.一、选择题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件2.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥04x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 二、填空题5.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为________.6设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如右图所示,则不等式f (x )<0的解是________.7.若f (x )=12x -1+a 是奇函数,则a =____________.三、解答题8.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式;10.设f (x )是定义在R 上的奇函数,且对任意实数x 恒满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数. (2)当x ∈[2,4]时,求f (x )的解析式. (3)计算f (0)+f (1)+f (2)+…+f (2013).函数的图象一、选择题1.函数y =f (x )的图象与函数g (x )=log 2x (x >0)的图象关于原点对称,则f (x )的表达式为( ) A .f (x )=1log 2x(x >0) B .f (x )=log 2(-x )(x <0) C .f (x )=-log 2x (x >0) D .f (x )=-log 2(-x )(x <0) 2.函数y =e |ln x |-|x -1|的图象大致是( )3.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如下图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 4.函数f (x )=2|log 2x |-⎪⎪⎪⎪x -1x 的图象为( )二、填空题6. f (x )是定义域为R 的偶函数,其图象关于直线x =2对称,当x ∈(-2,2)时,f (x )=-x 2+1,则x ∈(-4,-2)时,f (x )的表达式为________.7.已知定义在区间[0,1]上的函数y =f (x )的图象如右图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论: ①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22.其中正确结论的序号是________.(把所有正确结论的序号都填上)8.定义在R 上的函数f (x )满足f ⎝⎛⎭⎫x +52+f (x )=0,且函数f ⎝⎛⎭⎫x +54为奇函数,给出下列结论:①函数f (x )的最小正周期是52;②函数f (x )的图象关于点⎝⎛⎭⎫54,0对称; ③函数f (x )的图象关于直线x =52对称;④函数f (x )的最大值为f ⎝⎛⎭⎫52.其中正确结论的序号是________.(写出所有你认为正确的结论的符号)第九部分 一次函数与二次函数一、选择题1.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是( ) A .a <0 B .a >0 C .a <-1 D .a >12.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+523.已知函数f (x )=ax 2-2ax +1(a >1),若x 1<x 2,且x 1+x 2=1+a ,则( ) A .f (x 1)>f (x 2) B .f (x 1)<f (x 2) C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小不能确定4. 右图所示为二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于( ) A.c a B .-c a C .±caD .无法确定5.关于x 的方程()x 2-12-||x 2-1+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是( )A .0B .1C .2D .3 二、填空题6.若方程4()x 2-3x +k -3=0,x ∈[]0,1没有实数根,求k 的取值范围________.7.如果方程x 2+2ax +a +1=0的两个根中,一个比2大,另一个比2小,则实数a 的取值范围是________. 8.已知f (x )=x 2, g (x )是一次函数且为增函数, 若f [g (x )]=4x 2-20x +25, 则g (x )=____________. 三、解答题9.设二次函数f (x )=x 2+ax +a ,方程f (x )-x =0的两根x 1和x 2满足0<x 1<x 2<1. (1)求实数a 的取值范围; (2)试比较f (0)·f (1)-f (0)与116的大小,并说明理由.10.设函数f (x )=x 2+|x -2|-1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A 和集合B 都是实数集R ,映射f :A →B 是把集合A 中的元素x 对应到集合B 中的元素x 3-x +1,则在映射f 下象1的原象所组成的集合是( )A .{1}B .{0}C .{0,-1,1}D .{0,1,2}2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( ) A .[0,1) B .(0,1) C .[0,1] D .(-1,0] 3.函数y =log a (|x |+1)(a >1)的大致图象是( )4.已知函数f (x )=log a x ,其反函数为f -1(x ),若f -1(2)=9,则f (12)+f (6)的值为( )A .2B .1 C.12D.135.函数f (x )=(12)x 与函数g (x )=log 12|x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .f (x )是增函数,g (x )是减函数D .f (x )是减函数,g (x )是增函数6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (a )=12,则a =( )A .-1 B. 2C .-1或 2D .1或- 27.设函数f (x )=-x 2+4x 在[m ,n ]上的值域是[-5,4],则m +n 的取值所组成的集合为( )A .[0,6]B .[-1,1]C .[1,5]D .[1,7]8.方程(12)|x |-m =0有解,则m 的取值范围为( )A .0<m ≤1B .m ≥1C .m ≤-1D .0≤m <19.定义在R 上的偶函数f (x )的部分图象如右图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1 B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0,x 3+1,x <0, D .y =⎩⎪⎨⎪⎧e x ,x ≥0,e -x ,x <010.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,那么( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b11.中国政府正式加入世贸组织后,从2000年开始,汽车进口关税将大幅度下降.若进口一辆汽车20XX 年售价为30万元,五年后(20XX 年)售价为y 万元,每年下调率平均为x %,那么y 和x 的函数关系式为( )A .y =30(1-x %)6B .y =30(1+x %)6C .y =30(1-x %)5D .y =30(1+x %)512.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)(f (x 2)-f (x 1))>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n )二、填空题(13.函数f (x )=11-ex 的定义域是________.14.若x ≥0,则函数y =x 2+2x +3的值域是________. 15.设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上f (x )=______.16.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设f (x )=a ·2x -12x +1是R 上的奇函数.(1)求a 的值;(2)求f (x )的反函数f -1(x ).18.(本小题满分12分)已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明.19.(本小题满分12分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3ax -4x 的定义域为区间[-1,1]. (1)求g (x )的解析式; (2)判断g (x )的单调性.21.(本小题满分12分)设函数f (x )=x 2+x -14.(1)若函数的定义域为[0,3],求f (x )的值域;(2)若定义域为[a ,a +1]时,f (x )的值域是[-12,116],求a 的值.22.(本小题满分12分)已知函数f (x )=(13)x ,函数y =f -1(x )是函数y =f (x )的反函数.(1)若函数y =f -1(mx 2+mx +1)的定义域为R ,求实数m 的取值范围; (2)当x ∈[-1,1]时,求函数y =[f (x )]2-2af (x )+3的最小值g (a ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三年,学好函数只需掌握这10道题
现在,在高中生的学习中,最普遍的大问题就是数学了,不仅仅是文科数学,理科更是如此。

高中数学真的是有那么难吗?
的确,特别是高中数学的第一次考试,一般都是对同学们打击最大的。

很多同学都觉得平时的作业也还完成得不错,考试的时候也觉得自己完成得不错,至少一百一二十分吧,但是最后结果只有六七十分,这都是非常常见的现象。

在上学期临期临近期末的时候,我在班上做了一次调查,问题就是看看同学们觉得最难的问题是什么,有接近百分之九十的同学都说,在高中数学的学习中,函数是最难的。

这一点从同学们平时的作业和考试答题情况也可以看出来。

函数题目考的最多的就是求取值范围了,但是很多同学都束手无策。

“老师,函数体重的取值范围怎么求?”
“老师,判别式怎么用,什么情况下用?”
“老师,高中数学中的函数题考题太多了,分分值也太大了,真的是丢不起,但是又觉得好难,总是学不会。


……
关于高中数学函数的学习,同学们的问题真的是非常多,特别是还有很多同学,同样的问题就会反复问我好多遍,虽然每次讲到函数题目,我都会给同学生分析很多解题思路和方法,但是感觉同学们接受这些东西的样子真的是很有限的样子,我也只好不厌其烦的讲。

现在在暑假期间,也有很多的同学来问我一些关于高中数学中的函数部分的问题,同学们都想在这个假期能够把函数这些大难题解决掉。

为了帮助更多的同学更好地学习,我把高中数学的函数题目做了整理、归
纳,一共10道题,这10道题都是高中数学函数中最常考的典型题目,同学们如果能够把这10道题目吃透的话,很多的问题自然就迎刃而解了。

接下来,我就将为大家做详细分析,希望大家在看的时候注意体会其中的解题思路和解题技巧的运用。

1、利用函数思想。

函数思想,即将原有的复杂函数进行构造转化,以达到相对简单的形式,这样更方便同学们进行计算、求解。

2、分离参数法。

在解决恒成立问题的时候,分离参数的方法是非常常用的,在运用到这个方法的时候,同学们要能够巧妙的设参数,要把原式简单化在进行取值的求解。

3、判别式法。

判别式,是一种非常常用的方法,同学们要先确定该函数的定义域,然后用判别式来求值的范围,这个方法非常简单实用,如果同学们细心一点的话,基本上不会丢分。

4、利用函数单调性。

如果已知某式恒大于某式的话,同学们就要求出前者的最小值和后者的最大值。

如果是某式恒小于某式的话,同学们就要求出前者的最大值和后者的最小值。

5、恒成立问题。

恒成立问题,在函数式中是非常常考的,同学们一定要掌握好这些题目的解决方法。

今天将为大家分解两例。

(1)利用一元不等式在区间上恒成立的充要条件。

(2)利用一元二次不等式在区间上恒成立的充要条件。

6、待定系数法。

7、不等式法。

8、特值法。

9、确立主元法。

10、整体换元法。

以上就是我总结的解决高中数学函数问题的10种方法,希望能够帮助同学们更好地学习高中数学函数,提高解题能力,考出好成绩。

一个好的学习方法,让孩子受益一生。

相关文档
最新文档