2013年全国各地中考数学试卷分类汇编:图形的展开和叠折

合集下载

2013年全国各地中考数学试卷分类汇编:图形的展开和叠折

2013年全国各地中考数学试卷分类汇编:图形的展开和叠折

图形的展开与叠折【方法指导】本题考查空间观念,分类讨论的数学思想方法.解答时,一要理解圆柱和其侧面展开图之间的数量关系.2•注意分两种情况讨论求解.由于本题是选择题型,因了 C 、D这样的两解答案,可以引导学生发现图 1和图2两种情况,无形中降低了解题难度. 这也启示我们在遇到这种命题结构的选择题时,要严谨、细致的多思量,再下笔. 【易错警示】 易漏掉一种情况而错选 A 或B .如果本题以填空题的面貌呈现, 学生较易联想到图1情形而错解为4n.2. ( 2013重庆,7, 4分)如图,矩形纸片 ABCD 中,AB=6cm , BC=8cm ,现将其沿 AE 对 折,使得点B落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为()A . 6cmB . 4cmC . 2cmD . 1cm【解析】由折叠可知,/ BAE= / B 1AE , •••/ BAE=Z B 1AE=45 °又:/ B=45 ° /-Z AEB=45 ° ••• BE=AB=4,/CE=BC — BE=8 — 6=2 .故选 C .【方法指导】 本题考查了折叠变换, 需明确折叠变换是全等变化, 同时综合考查了等腰三角形的判定以及线段的和差问题.轴对称的性质是解决此类问题的关键,轴对称的性质是: 对应边和对应角相等,成轴对称的两个图形全等;正确的找出对称边和对称角是我们解题的关 键.3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆【答案】 【解析】圆半径为 C .由图示侧面展开图r ,在图1中有2 n = 4 n r = 2,所以底面圆的面积为 兀综上可知圆柱底面圆的面积为矩形联想圆柱形状可得图=1,所以底面圆的面积为 1和图2两种圆柱.设圆柱的底面4 n;在图2中有2 n = 2 n, r n 或4n一、选择题1. ( 2013湖北黄冈,7, 图1 图2【易错警示】对折叠的全等性质不能掌握,对结果只能想当然判断.3. ( 2013四川南充,9, 3分)如图,把矩形ABCD 沿EF 翻转,点B 恰好落在AD 边的B' 处,若AE=2,DE=6,/ EFB=60°,则矩形 ABCD 的面积是()A . 12B . 24C . 12 .3D . 16.3【答案】:D .【解析】连接 BE ,根据矩形的对边平行可得 AD // BC ,根据两直线平行,同旁内角互补可得/ AEF=120°,两直线平行,内错角相等可得/DEF=60°,再根据翻折变换的性质求出/ BEF=Z DEF ,然后求出/ AEB=60°,再解直角三角形求出 AB ,然后根据矩形的面积公式列式计算即可得解.【方法指导】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直 线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的 关键.【解析】其展开图共有5个面.选C【方法指导】本题考查了立体图形展开与平面图折叠 •立体图形展开与平面图折叠,往往可 以进行动手操作或进行空间联想获取符合要求的答案 【易错提示】错误分析后选B考点:几何体的展开图.分析:根据三棱柱的展开图的特点进行解答即可. 解答:A 、是三棱锥的展开图,故选项错误;B 、是三棱柱的平面展开图,故选项正确;,3分]下列图形中,能通过折叠围成一个三棱柱的是(直棱柱中的三棱柱,上、下两个面是三角形面,互相平行,侧面是三个矩形围成C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选B.点评:此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.6. (2013 湖南郴州,8, 3 分)如图,在Rt△ACB 中,/ ACB=90 ° / A=25 ° D 是AB 上一点.将RtAABCB. 30C. 35°D. 40沿CD折叠,使B点落在AC边上的B处,则/ ADB等于()考点:翻折变换(折叠问题).分析:先根据三角形内角和定理求出/ B的度数,再由图形翻折变换的性质得出/ CBD的度数,再由三角形外角的性质即可得出结论.解答:解:•••在Rt△ACB 中,/ ACB=90 ° / A=25 °•••/ B=90 °- 25°=65 °•••△ CDB '由ACDB反折而成,•••/ CB'D= / B=65 °•••/ CB D是AAB D的外角,•••/ ADB = / CB D -Z A=65 °- 25°=40°故选D.点评:本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.7. (2013江苏南京,6, 2分)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。

全国各地中考数学试卷解析分类汇编(第1期)专题18 图形的展开与叠折

全国各地中考数学试卷解析分类汇编(第1期)专题18 图形的展开与叠折

图形的展开与叠折一、选择题1.(2015•江苏无锡,第9题2分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .考点: 几何体的展开图.分析: 根据正方体的表面展开图进行分析解答即可.解答: 解:根据正方体的表面展开图,两条黑线在一列,故A 错误,且两条相邻成直角,故B 错误,间相隔一个正方形,故C 错误,只有D 选项符合条件, 故选D点评: 本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2015湖北荆州第8题3分)如图所示,将正方形纸片三次对折后,沿图中AB 线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A .B .C .D .考点: 剪纸问题.分析: 根据题意直接动手操作得出即可.解答: 解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.3.(2015湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.考点:翻折问题.4.(2015•四川资阳,第9题3分)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是 A .13cmB.CD.考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求. 解答:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′, 连接A ′B ,则A ′B 即为最短距离,A ′B ===13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.5、(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( )A. 2 B .6 C.2 D .4图5EB考点:矩形的性质、翻折(轴对称)、勾股定理、最值.分析:连接EA 后抓住△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上, 此时''D B D E EB =-略解:∵E 是AB 边的中点,AB 4= ∴1AE EB AB 22===∵四边形ABCD 矩形 ∴A 90∠=o∴在Rt △DAE 根据勾股定理可知:222DE AE AD =+又∵AD 6= ∴ED =根据翻折对称的性质可知'EB EB 2==∵△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上(如图所示). ∴''DB DE EB 2=-= ∴'DB 的长度最小值为2. 故选A6. (2015•绵阳第12题,3分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .B .C .D . 考点: 翻折变换(折叠问题)..分析: 借助翻折变换的性质得到DE =CE ;设AB =3k ,CE =x ,则AE =3k ﹣x ;根据余弦定理分别求出CE 、CF 的长即可解决问题. 解答: 解:设AD =k ,则DB =2k ; ∵△ABC 为等边三角形,EB∴AB=AC=3k,∠A=60°;设CE=x,则AE=3k﹣x;由题意知:EF⊥CD,且EF平分CD,∴CE=DE=x;由余弦定理得:DE2=AE2+AD2﹣2AE•AD•cos60°即x2=(3k﹣x)2+k2﹣2k(3k﹣x)cos60°,整理得:x=,同理可求:CF=,∴CE:CF=4:5.故选:B.点评:主要考查了翻折变换的性质及其应用问题;解题的关键是借助余弦定理分别求出CE、CF的长度(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.7. (2015•浙江省台州市,第8题)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.C.5.5cmD.1cm8.(2015·贵州六盘水,第4题3分)如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对 B.相邻 C.相隔 D.重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面, “我”与“祖”是相对面, “爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻. 故选B . 点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】A . 201521B . 201421C .2015211-D .2014212-【答案】D . 【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-,32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-.故选D .10.(2015•江苏泰州,第4题3分)一个几何体的表面展开图如图所示, 则这个几何体是A .四棱锥B .四棱柱C .三棱锥D .三棱柱【答案】A . 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A .考点:几何体的展开图.11. (2015•四川广安,第4题3分)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A . 全B . 明C . 城D . 国考点: 专题:正方体相对两个面上的文字..分析: 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.点评:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12. (2015•浙江金华,第9题3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线,互相平行的是【】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【答案】C.【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.【分析】根据平行的判定逐一分析作出判断:A. 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行;B. 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线,互相平行;C. 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线,互相平行;D. 如图4,由OA=OB,OC=OD,得到,从而得到,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行.故选C.13. (2015•山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD= x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD= x,∴DE=6﹣2 x,∴纸盒侧面积=3x(6﹣2 x)=﹣6 x2+18x,=﹣6 (x﹣)2+ ,∴当x= 时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二、填空题1. (2015•浙江嘉兴,第14题5分)如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为____▲____.考点:翻折变换(折叠问题)..分析:如图,D为BC的中点,AD⊥BC,因为折叠该纸片使点A落在BC的中点D上,所以折痕EF垂直平分AD,根据平行线等分线段定理,易知E是AC的中点,故AE=2.5.解答:解:如图所示,∵D为BC的中点,AB=AC,∴AD⊥BC,∵折叠该纸片使点A落在BC的中点D上,∴折痕EF垂直平分AD,∴E是AC的中点,∵AC=5∴AE=2.5.故答案为:2.5.点评:本题考查了折叠的性质,等腰三角形的性质以及平行线等分线段定理,意识到折痕EF垂直平分AD,是解决问题的关键.2. (2015•四川省内江市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.考点:翻折变换(折叠问题)..分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.解答:解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB 边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,在Rt△ABH中,AH==2,∴EF=.故答案为:.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.3. (2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE 折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .【答案】(10,3)考点:折叠的性质,勾股定理4. (2015•浙江杭州,第16题4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________【答案】24+【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NH⊥BM于点H,第16题A易证四边形BMDN 是菱形,且∠MBN =∠C =30°.设BN =DN =x ,则NH =12x.根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN∴CD=2+如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H ,易证四边形BAEC 是菱形,且∠BCH =30°.设BC =CE =x ,则BH =12x.根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1.在Rt BCH ∆中,CHEH=2.易证BCD EHB ∆∆∽,∴CD BC HB EH =,即1CD =∴224CD +==+.综上所述,CD =2+4+5. (2015•四川省宜宾市,第15题,3分)如图, 一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次幽数的解析式为 .y =+yxCBAO三、解答题1. (2015•浙江金华,第23题10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB'C'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D 'C '相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。

2013年全国中考数学试题分类解析汇编专题57探索规律型问题(图形类)

2013年全国中考数学试题分类解析汇编专题57探索规律型问题(图形类)

专题57探索规律型问题(图形类)一、选择题1. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50 B.64 C.68 D.72【答案】D。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

2. (2012广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。

【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。

【分析】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°。

∴∠2=120°。

∵∠MON=30°,∴∠1=180°-120°-30°=30°。

又∵∠3=60°,∴∠5=180°-60°-30°=90°。

∵∠MON=∠1=30°,∴OA1=A1B1=1。

∴A2B1=1。

∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°。

∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。

2013年全国各地中考数学试卷分类汇编总汇免费打包 (40)

2013年全国各地中考数学试卷分类汇编总汇免费打包 (40)

-为整数,ab≠0);(4)am÷an=amn(m,n为整数,a≠0).
【易错警示】易把同底数幂的乘法和幂的乘方相混淆,如x4·x4=x8和(x4)4=x16,即(am)n和am·an混淆.
2.(2013江苏苏州,2,3分)计算-2x2+3x2的结果为( ).
A.-5x2 B.5x2 C.-x2 D.x2
【解析】A项错误,根据同底数幂的乘法,可得a5;B项错误,根据同底数幂的除法,可得结果为a10;C项错误,根据幂的乘方,可得结果为a9; D正确,根据积的乘方可得结
?? D.??a?336
整式与因式分解
一、选择题
1.(2013湖北黄冈,4,3分)下列计算正确的是( )
A.x4?x4?x16 B.a
C.ab???a3224?a9 3?????ab?232??ab4 D.a6?a4?1 ????
【答案】D.
【方法指导】本题是等式性质的灵活运用,关键是将已知的等式变形,得出所求的代数式.
【易错警示】等式变形的方法不正确而出错.
4.(2013江苏扬州,2,3分)下列运算中,结果是a6( ).
A.a2?a3 B.a12?a2 C.a
【答】计算-2x2+3x2=(-2+3)x2=x2,所以应选D.
【方法指导】所含字母相同且相同字母的指数也相同的项叫做同类项.合并同类项时,系数相加减,相同的字母及其指数不变.
【易错警示】本题主要考查同类项的概念,以及合并同类项.对同类项的概念把握不准,合并同类项的方法不对而出错.
【解析】A选项中应为x4·x4=x4+4=x8;B选项中应为(a3)2·a4=a6·a4=a6+4=a10;C选项
--2中应为(ab2)3÷(-ab)2=a3b6÷a2b2=a32b62=ab4;D选项中(a6)÷(a4)3=a12÷a12=1.所以

2013年全国各地中考数学试卷分类汇编:开放性问题

2013年全国各地中考数学试卷分类汇编:开放性问题

开放性问题一.选择题二.填空题1.(2013•徐州,13,3分)请写出一个是中心对称图形的几何图形的名称:.考点:中心对称图形.专题:开放型.分析:常见的中心对称图形有:平行四边形、正方形、圆、菱形,写出一个即可.解答:平行四边形是中心对称图形.故答案可为:平行四边形.点评:本题考查了中心对称图形的知识,同学们需要记忆一些常见的中心对称图形.2.(2013上海市,15,4分)如图3,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是____________.(只需写一个,不添加辅助线)3.(2013四川巴中,14,3分)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD.(只需写出一个)边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】x 2-5x +6=0【解析】先确定两条符合条件的边长,再以它为根求作一元二次方程. 【方法指导】本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560x x -+=;也可以以1、6为直角边长,得方程为2760x x -+=.5.(2013山东菏泽,12,3分)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”. “面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”) .已知等边三角形的边长为2,则它的“面径”长可以是______(写出1个即可).(写出1个即可).【解析】1)根据“三线合一”等可知,面径为底边上的高h ,31222=-=h ;(2)与一边平行的线段(如图),设DE=x ,因为△ADE 与四边形 DBCE 面积要相等,根据三角形相似性质,有2122=)(x.解得综上所述,所以符合题意的面径只有这两种数量关系.【方法指导】根据规定内容的定义,思考要把边长为2的等边三角形分成面积相等的两部分的直线存在有两种情形:(1)高(中线、角平分线)所在线;(2)与一边平行的线.要把一个三角形面积进行两等份,这样的直线有无数条,都过这个三角形三边中线的交点(重心).经过计算无数条中等边三角形“面径”长只有上述两种情形.三.解答题1.(2013山西,25,13分)(本题13分)数学活动——求重叠部分的面积。

(45专题全套打包)2013年全国各地中考数学试卷分类汇编总汇-5.doc

(45专题全套打包)2013年全国各地中考数学试卷分类汇编总汇-5.doc

正多边形与圆一.选择题1.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A .6,32B .32,3C .6,3D .62,32【答案】:B .【解析】∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3,∴233322=+=AO ,故选B .【方法指导】本题考查了正多边形和圆,重点是了解有关概念并熟悉如何构造特殊的直角三角形,比较重要.由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.第34章 正多边形与圆2.(2013浙江台州,9,4分)如图,已知边长为2的正三形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .34-C .4D .326-【答案】:B .【解析】在正三形ABC 中,边长为2,易得AD=3;在正六边形绕中心o 旋转一周的过程中,若DE 的值最小,则E 点位于y 轴的正半轴上,在正六边形中易得OE=2,此时DE=AO-AD-OE=6-3-2=4-3。

【方法指导】本题考查等边三角形和正六边形的计算,在动态问题中,抓住旋转过程中DE 最小的特殊时刻解决问题。

3.(2013江西南昌,11,3分)如图,正六边形ABCDEF 中,AB=2,点P 是ED 的中点,连接AP ,则AP 的长为( ).x yABC EO 第9题DA .23B .4C .13D .11【答案】C【解析】连接AE 、BE ,由正六边形的性质知,△ABE 、△APE 为直角三角形,22224212AE BE AB =-=-=, 所以2212113AP AE PE =+=+=【方法指导】本题考查了正六边形的有关计算,运用正六边形的性质将正六边形转化为直角三角形或等边三角形是解题的关键。

2013年全国各地中考数学试卷分类汇编阅读理解图表信息

2013年全国各地中考数学试卷分类汇编阅读理解图表信息

阅读理解、图表信息一.选择题1.(2013广西钦州,12,3分)定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )2.(2013·潍坊,12,3分)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A .40 B .45 C .51 D .56答案:C考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.3.(2013•东营,6,3分)若定义:(,)(,)f a b a b =-, (,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--答案:B 解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B .4.(2013浙江湖州,10,3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为点是抛物线的内接格点三角形.......的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .13【答案】C【解析】如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=-x 2+4x ,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y 轴的抛物线条数是:7+7=14.故选C .【方法指导】本题是二次函数综合题型,主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.根据在OB 上的两个交点之间的距离为3 可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.二.填空题1.(2013·鞍山,14,2分)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解. 解答:解:根据所给规则:m =(-1)2+3-1=3∴最后得到的实数是32+1-1=9.点评:依照规则,首先计算m 的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.2.(2013·潍坊,12,3分)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A .40 B .45 C .51 D .56答案:C考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.3.(2013•东营,6,3分)若定义:(,)(,)f a b a b =-, (,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--答案:B 解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B .4.(2013山东临沂,19,3分)对于实数a、b,定义运算“*”:a*b=22()().a ab a bab b a b⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2=_________________.【答案】3或-3.【解析】可以用公式法求出方程x2-5x+6=0的两个根是2和3,可能是x1=2,x2=3,也可能是x1=3,x2=2,根据所给定义运算可知原题有两个答案.【方法指导】用公式法或因式分解法求出方程对两个根.【易错点分析】忽视讨论思想,会少一种情况.5.(2013浙江台州,16,5分)任何实数a,可用[]a表示不超过a的最大整数,如[]4=4,[]3=1,现对72进行如下操作:72 第1次[]72=8第2次[]8=2第3次[]2=1,这样对72只需进行3次操作后变为1,类似地,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.【答案】:3;255.【解析】①首先理解[]a的意义,它表示不超过a的最大整数,然后仿照“72”的操作,81 =9=3第=1,,所以对81只需进行3次操作后变为1;②只需进行3次操作后变为1的所有正整数中找出最大的,需要进行逆向思维,若=1,则a可以取的最大整数为3;若=3,则a可以取的最大整数为15;若=15,则a可以取的最大整数为255,∴最大为255.【方法指导】本题考查学生的阅读理解能力和算术平方根的计算,本题定义了一种新的运算,需要学生清楚如何计算,并且能够结合算术平方根的运算,进行求值计算。

2013全国中考数学试题分类汇编----基本作图

2013全国中考数学试题分类汇编----基本作图

2013全国中考数学试题分类汇编----基本作图(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1B.2C.3D.4考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图.分析:①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答:解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD: AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.(2013•乐山) 如图9,已知线段AB.(1)用尺规作图的方法作出线段AB 的垂直平分线l(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方).连结AM、AN、BM、BN.求证:∠MAN=∠MBN.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)考点:作图—应用与设计作图.分析:仔细分析题意,寻求问题的解决方案.到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.解答:解:(1)作出线段AB的垂直平分线;(2)作出角的平分线(2条);它们的交点即为所求作的点C(2个).点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解.(2013•青岛)已知,如图,直线AB与直线BC相交于点B,点D是直线BC 上一点求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等(在题目的原图中完成作图)结论:解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.点E即为所求.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键. (2013兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P 既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P 即为所求.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹. (2013,河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考数学 图形的展开与叠折一、选择题1.(2013湖北黄冈,7,3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .πB .4πC .π或4πD .2π或4π【答案】C .【解析】由图示侧面展开图——矩形联想圆柱形状可得图1和图2两种圆柱.设圆柱的底面圆半径为r ,在图1中有2πr =4π,r =2,所以底面圆的面积为4π;在图2中有2πr =2π,r =1,所以底面圆的面积为π.综上可知圆柱底面圆的面积为π或4π.【方法指导】本题考查空间观念,分类讨论的数学思想方法.解答时,一要理解圆柱和其侧面展开图之间的数量关系.2.注意分两种情况讨论求解.由于本题是选择题型,因了C 、D 这样的两解答案,可以引导学生发现图1和图2两种情况,无形中降低了解题难度.这也启示我们在遇到这种命题结构的选择题时,要严谨、细致的多思量,再下笔.【易错警示】易漏掉一种情况而错选A 或B .如果本题以填空题的面貌呈现,学生较易联想到图1情形而错解为4π.2.(2013重庆,7,4分)如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6cmB .4cmC .2cmD .1cm【答案】C【解析】由折叠可知,∠BAE =∠B 1AE ,∴∠BAE =∠B 1AE =45°,又∵∠B =45°,∴∠AEB =45°,∴BE =AB =4,∴CE =BC -BE =8-6=2.故选C .【方法指导】本题考查了折叠变换,需明确折叠变换是全等变化,同时综合考查了等腰三角形的判定以及线段的和差问题.轴对称的性质是解决此类问题的关键,轴对称的性质是:对应边和对应角相等,成轴对称的两个图形全等;正确的找出对称边和对称角是我们解题的关键.【易错警示】对折叠的全等性质不能掌握,对结果只能想当然判断.A CB DB 1 (第7题图)图1 图23.(2013四川南充,9,3分)如图,把矩形ABCD 沿EF 翻转,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .312D .316【答案】:D .【解析】连接BE ,根据矩形的对边平行可得AD ∥BC ,根据两直线平行,同旁内角互补可得∠AEF =120°,两直线平行,内错角相等可得∠DEF =60°,再根据翻折变换的性质求出∠BEF =∠DEF ,然后求出∠AEB =60°,再解直角三角形求出AB ,然后根据矩形的面积公式列式计算即可得解.【方法指导】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.4.. [2013山东菏泽,3,3分]下列图形中,能通过折叠围成一个三棱柱的是( )ABC D 【答案】C【解析】直棱柱中的三棱柱,上、下两个面是三角形面,互相平行,侧面是三个矩形围成.其展开图共有5个面.选C【方法指导】本题考查了立体图形展开与平面图折叠.立体图形展开与平面图折叠,往往可以进行动手操作或进行空间联想获取符合要求的答案.【易错提示】错误分析后选B. . . .一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。

8. 2013•宁波3分)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()【解析】A 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B 、剪去阴影部分后,无法组成长方体,故此选项不合题意;C 、剪去阴影部分后,能组成长方体,故此选项正确;D 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;【方法指导】此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.9.(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是( )【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B 、C 中两个小的与两个大的相邻,错,D 中底面不符合,只有A 符合。

10.(2013四川巴中,3,3分)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是( )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B。

12.(2013河南省,5,3分)如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

【答案】B二、填空题1.(2013山东烟台,17,3)如图,△ABC中,AB=AC.∠BAC=54°,∠BAC的平分线与AB的垂直平分线相交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC为________度.【答案】108【解析】如图:连接OB、OC,∵AB=AC,AO是∠BAC的平分线,根据等腰三角形三线合一定理确定出点O是△ABC的外心,∴OB=OC.∵∠BAC=54°,OD是AB的垂直平分线,AB=AC∴∠BAO=∠ABO=27º,∠ABC=63º,∴∠OBC=∠OCB=63º-27º=36º,根据折叠的不变性得OE=OC,在△OEC中∠OEC=180º-36º-36º=108º【方法指导】本题考查了折叠、等腰三角形的性质、等腰三角形三线合一定理、折叠、垂直平分线的性质.在等腰三角形中有角平分线时,常用到等腰三角形三线合一定理,当与一边的垂直平分线相结合确定三角形的外心.将某一个图形按某种要求折叠后,会得到以折痕为对称轴的轴对称图形,解决图形的折叠问题时,根据折叠的不变性,常得到等腰三角形、直角三角形、全等三角形等知识2.(2013•东营,16,4分)如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内.壁.离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计).答案: 1.3解析:因为壁虎与蚊子在相对的位置,则壁虎在圆柱展开图矩形两边中点的连线上,如图所示,要求壁虎捉蚊子的最短距离,实际上是求在EF 上找一点P ,使PA+PB 最短,过A 作EF 的对称点A ',连接A B ',则A B '与EF 的交点就是所求的点P ,过B 作BM AA '⊥于点M ,在Rt A MB '∆中, 1.2A M '=,12BM =,所以 1.3A B '==,因为A B AP PB'=+,所以壁虎捉蚊子的最短距离为1.3m .16题答案图3.(2013上海市,18,4分)如图5,在△ABC 中,AB AC =,8BC =, tan C = 32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为__________.4.(2013山西,16,3分),将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A′处,则AE 的长为______.【答案】103【解析】由勾股定理求得:BD=13,DA=D 'A =BC=5,∠D 'A E=∠DAE=90°,设AE=x ,则'A E=x ,BE=12-x ,B 'A =13-5=8, 在Rt △E 'A B 中,222(12)8x x -=+,解得:x =103,即AE 的长为1035.(2013湖北省咸宁市,1,3分)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是 泉 .第17题.三、解答题1.(2013浙江台州,22,12分)如图,在□ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在点B ′,C ′处,线段EC ′与线段AF 交于点G ,连接DG ,B ′G .求证:(1)∠1=∠2;(2)DG=B ′G .【思路分析】(1)∠1是折叠后所得到的角,根据轴对称的性质,易得∠1=∠CEF ,再由平行四边形的对边平行,可得∠2=∠CEF ,∴∠1=∠2.(2)欲证DG=B ′G ,可证它们所在的两个三角形全等,即△DEG ≌△B ′FG 。

【解】证明:(1)由折叠知,∠1=∠CEF ,又由平行四边形的性质知,CD ∥AB ,∴∠2=∠CEF , ∴∠1=∠2.(2)由折叠知,BF= B ′F ,又∵DE=BF ,∴DE= B ′F ,由(1)知∠1=∠2,A B CD EG FC ′B ′ 12第22题∴GE= GF,又由平行四边形的性质知,CD∥AB,∴∠DEF=∠EFB,由折叠知,∠EFB=∠EF B′,∴∠DEF=∠EF B′,即∠DEG+∠1=∠GF B′+∠2,∴∠DEG=∠GF B′,∴△DEG≌△B′FG(SAS),∴DG=B′G.【方法指导】本题考查轴对称的性质、平行四边形的性质、全等三角形的证明等知识点,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换。

另外本题考查了一种常见的解题思路,证明两条线段相等或两个角相等,可以证明它们所在的两个三角形全等。

相关文档
最新文档