第11讲无穷级数-12-29
高等数学第11章 无穷级数

un
=
lim
n→∞
1 n
=
0.
∞
推论3 若 un →/ 0, 则级数 ∑ un必发散 .
n=1
小结:
un → 0
un →/ 0
∞
∑ u n 收敛
n=1 ∞
∑ u n 发散
n=1
二、典型例题
例1
判别级数
∞
∑
ln
n
+
1
的敛散性.
n=1 n
解 部分和
Sn
= ln 2 1
+ ln 3 2
+ ln 4 3
第十一章 无穷级数
本章基本要求
1. 理解无穷级数收敛、发散以及和的概念,了 解无穷级数的基本性质和收敛的必要条件。
2.了解正项级数的比较审敛法以及几何级数与 p—级数的敛散性,掌握正项级数的比值审敛法。
3.了解交错级数的莱布尼茨定理,会估计交错 级数的截断误差。了解绝对收敛与条件收敛的概 念及二者的关系。
设收敛级数
S=
∞
∑ un,σ =
∞
∑ vn,则
n=1
n=1
∞
∑(un ±vn) 也收敛, 其和为 S ± σ .
n=1
注 1º 收敛级数可逐项相加(减) .
2o
∞
∑ ( un ± vn ) 的敛散性规律:
n=1
收收为收,收发为发,发发不一定发.
例如, 取 un = (−1)2n , vn = (−1)2n+1, 而 un + vn = 0
+
L
+
ln
n
+ n
1
拆项相消
无穷级数的概念与性质(课堂PPT)

无穷级数
14
收敛的必要条件
级数
un
n 1
收敛
lim
n
un
0.
证明 设
un s
n1
则
un sn sn1 ,
lim
n
un
lim
n
sn
lim
n
sn1
s
s
0.
逆否命题成立:
lim
n
un
0
级数 un 发散 n 1
无穷级数
15
例:判断级数(1)n n 的敛散性。 2n 1
解:lim (1)n n
12 23 34
n n1
1 1 n 1
lim
n
S
n
1 lim (1 )
n n 1
1
(无穷小与无穷大的互逆 关系)
上级数收敛
无穷级数
8
例:判断级数ln 2 ln 3 ln 4 ... ln n 1 ...是否收敛
123
n
解:上述数列的通项可用公式ln A ln A ln B化简 B
n 1 an ln n ln(n 1) ln n
解:部分和 Sn
n(n 1) 2
(等差数列求和公式 )
lim
n
Sn
lim n2 n n 2
上级数发散
无穷级数
7
例:判断级数 1 1 1 ... 1 ...是否收敛
1 2 23 3 4
n (n 1)
解:上述数列的通项有规律可循
an
1 n(n 1)
1 n
1 n 1
部分和Sn
(1 1) (1 1) (1 1) ... (1 1 )
若级数 un 的每一项 un 均为常数 , n1
高等数学无穷级数

数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
的和.
证: 设收敛级数 S un , 若按某一规律加括弧, 例如
n1
则新级数的部分和序列
为原级数部分和
序列 Sn ( n 1 , 2 , )的一个子序列, 因此必有
n
n
证: 令 Sn uk , 则 n c uk c Sn ,
k 1
k 1
lim
n
n
cS
这说明 c un 收敛 , 其和为 c S .
n1
说明: 级数各项乘以非零常数后其敛散性不变 .
性质2. 设有两个收敛级数
S un, vn
n1
n1
则级数 ( un vn )也收敛, 其和为 S .
n1
n
n
证: 令 Sn uk , n vk , 则
k 1
k 1
n
n ( uk vk )
S ( n )
k 1
这说明级数 ( un vn ) 也收敛, 其和为 S .
n1
说明:
(1) 性质2 表明收敛级数可逐项相加或减 .
(2) 若两级数中一个收敛一个发散 , 则 ( un vn )
1 2
1 2
1 3
1 3
1 4
1 n
n
1
1
1 1 1 ( n ) n 1
所以级数 (2) 收敛, 其和为 1 .
技巧: 利用 “拆项相消” 求和
二、无穷级数的基本性质
性质1. 若级数
收敛于 S , 即 S un , 则各项
n1
乘以常数 c 所得级数
无穷级数(课件)

∞
(1)
1
n1 (n 1)(n 4)
∞
(2)
1
n1 n(n 1)
解
(1)因为
(n
1 1)(n
<1 4) n2
,而级数
∞ n 1
1 n2
收敛,所以根据比较审敛法,级数
∞ n1
(n
1 1)(n
4)
收敛。
(2)因为
1> n(n 1)
1 (n 1)2
1 n 1
,而级数
∞ n1
1 n+1
是级数
∞ n 1
1 n2
去掉
∞
第一项所成的级数,由第一节中的性质 6.3 可知级数
1
发散,所以根据比较审敛法,级
n1 n+1
∞
数
1 发散。
n1 n(n 1)
21
第二节 常数项级数的审敛法
∞
∞
定理 6.3(比较审敛法的极限形式) 设 un 和 vn 都是正项级数,如果
n 1
n1
lim un l,(0<l< ∞) ,
(3)当 =1时,级数可能收敛也可能发散。
【例
11】判断级数
∞ n1
n 2n
1
n
的敛散性。
解
lim
n∞
n
un
lim n n∞ 2n 1
1<1 ,所以级数收敛。 2
26
第二节 常数项级数的审敛法
二、交错级数及其审敛法
定义 6.5 设 un>0 (n 1,2, ) ,形如
u1 u2 u3 u4 (1)n1un 或 u1+u2 u3 +u4 (1)n un 的级数称为交错级数。
高等数学无穷级数111精品文档

的敛散性.
解 由于
nlimun
lim n2 2n5 n(3n1)(3n1)
1 9
0
发散
用级数收敛的必要条件 ln imun 0, 判别级数发散.
例
判别级数
n1
1 3n
lnn 3 3n
敛散性.
解
因调和级数
1
n 1 3 n 发散.
1
n1n(n51)21n
n1
5 n(n1)
n1
1 2n
n 1n(n 51)5n 1 n 1n1 1
令gn5kn1k1k11
5(1
1 ), n1
ln im gn5ln i (m 1n1 1)5,
常数项级数的基本概念
级数收敛的必要条件 lnimun 0
记住等比级数(几何级数) aq n 的收敛性
n0
基本审敛法
1. 当ln i m un0,则级数发散
2. 由定义, 若sns,则级数收敛
3. 按基本性质
级数收敛的必要条件: ln im un 0
设 un 为收敛级数, a为非零常数,
性质4 设级数 u n 收敛, 则对其各项任意
n1
加括号所得 新级数仍收敛于原级数的和.
注 ①一个级数加括号后所得新级数发散,
则原级数发散.
事实上, 设级数收敛, 根据性质4 加括后 的级数就应该收敛了.
②一个级数加括号后收敛, 原级数敛散 性不定.
例(如 11)(11)收敛 1111 发散
部分和定义 un 前n项 的 和 n1 S n u 1 u 2 u 3 u n
无穷级数

第九章.无穷级数无穷级数。
整个微积分的根本目的就是构造研究函数的方法。
我们已经知道如何利用极限,求导,微分这些基本的微积分方法,来直接研究一个函数,这里我们要讨论的是运用完全不同的一种思想方法,来研究函数的行为,这就是逼近的方法。
我们在进行函数的数值计算时,已经接触过逼近的思想方法,但纯粹数值逼近,得到的只是数值结果,对于我们要求了解函数的解析性质并没有直接的帮助,我们希望用解析的形式来逼近函数,一般就是利用比较简单的函数形式,逼近比较复杂的函数,最为简单的逼近途径就是通过加法,即通过加法运算来决定逼近的程度,或者说控制逼近的过程,这就是无穷级数的思想出发点。
形式地看,无穷级数就是用自然数编号的无穷多项的和式,每一项都是一个确定的解析式,也就是说每一项所在的项数唯一地决定了它的表达式形式,当然也可以是一个确定的数值,这就是常数项级数。
一般我们能够用一个统一的表达式即所谓通项来表述无穷级数的每一项,只要给出项数,就能根据通项唯一地确定这一项的表达形式。
对于任意构造的无穷级数,我们肯定能够给出加法运算结果的,只能是有限的和式,这就是部分和,部分和总是我们在考察整个无穷级数之前用以探测级数性质的对象。
而我们考察一个无穷级数的另一个角度,就是考虑由一个无穷级数的所以部分和所组成的数列,或者是函数列。
最终,我们的目的是希望级数逼近某个确定的函数,或者说是以某个函数作为极限,因此,对于给出的无穷级数,最为关键的问题就是它是否收敛,然后就是收敛函数的性质,这就是我们研究无穷级数的中心课题。
无穷级数的收敛与发散性质。
首先我们只是考虑级数的敛散性的问题,也就是存在性问题,而不是如何求极限的问题。
关于无穷级数的敛散性,有如下的基本性质:1.任意改变一个级数的任意有限项的值,都不影响这个级数的敛散性。
原因很显然,只要对一个级数所作的改变是有限的,就不能使得这个级数,由趋向于无穷而变得趋向于有限,也不能使得这个级数由趋向于有限而变得趋向于无穷,或者是由根本不存在任何极限,而变得出现极限。
高等数学第11章 无穷级数

18
19
20
21
22
11.4 幂级数
幂级数是函数项级数的一种重要情形,我们首先介 绍函数项级数的几个基本概念。 11.4.1 函数项级数的一些基本概念设{un(x)} 是定义在区间I上的一个函数列,则由这函数列所构成的 表达式
23
11.4.2 幂级数的基本概念
24
25
26
27
28
48
49
50
51
52
53
54
55
56
57
58
59
60
61
35
36
37
38
39
40
41
11.6 函数幂级数展开式的应用
11.6.1 近似计算 例11.28 计算ln2的近似值,误差不超过0.0001. 解 若用展开式
42
43
44
பைடு நூலகம்
45
46
47
11.7 傅立叶级数
11.7.1 三角级数 我们常会碰到周期运动,如描述简谐振动的正弦函 数
29
30
31
32
33
34
11.5 函数展开成幂级数
前面已讨论了幂级数的性质以及求一个收敛的幂级 数的和函数.若给定一个函数,能否找一个幂级数来表示 此函数?如果能找到,函数的幂级数表示式是否唯一? 11.5.1 泰勒级数 高等数学上册讲过泰勒公式,若f(x)在点x0的某 邻域内存在n+1阶的连续导数,则
8
9
10
11
12
13
14
15
11.3 一般项级数
上节我们讨论了正项级数的敛散性,一般级数的敛 散性问题要比正项级数复杂,本节我们只讨论特殊类型 级数的敛散性问题。 11.3.1 交错级数
院校资料无穷级数.pptx

sn
,
这时级数发散.
若q 1,这时sn na (n ),因此级数发散. 若q 1,这时级数成为a a a a 此级数发散。
第12页/共122页
综上所述,几何级数
aqn a aq aq2 aqn
当|q|<1时级数收敛,且收敛于 n0,当|q|≥1时级a数发散.
1 q
第13页/共122页
对于无穷级数 un u1 u2 un
n1
记S1 u1,
S2 u,1 u2,
Sn u1 u2 un ,
称Sn为级数的部分和, 称 { Sn} 为级数的部分和数列.
考察下列级数的部分和: 1
1 2
1 22
1 23
1 2n1
1 23 n
第4页/共122页
对于 1 1 1 1 1
p 1 时, p 1 时,
收敛 发散
注意
几何级数
n1
1 pn
当 当
p p
1 时, 1 时,
收敛 发散
1 收敛 3
n1 n 2
1 发散
n1 n
1 收敛
n1 n n
1 收敛
n1 2n
第30页/共122页
例5 判别级数
解
因为
的敛1散性.
n1 n 1 n
1
1
1
1
n 1
n2
n1 2
2n 2
第22页/共122页
定理1 正项级数 它的部分和数列{sn}有上界.
u 收敛的充要条件是: n n1
证 必要性:
若
{Sn} 有界
un 收敛
n1
lim
n
Sn
存在
{Sn} 有上界.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
正项级数
.1第十一讲无穷级数
根值判别法
比值, ).1(同阶或等价的无穷小
与关键是找
式用比较判别法的极限形n u ,).2(与参数的取值范围有关
级数的敛散性通常中含参数 , (3).n u 再利用比较判别法
估计,利用定积分性质对积分中含积分,).4(n u 数项级数的敛散性
Next
2
n
u n e
u p ln ,).5(=可变形级数比较考虑同数列极限定义等
比较判别法的基本性质级数的定义通常可利用级数敛散性敛散性的无通项具体表达式讨论某个一般级数,, ,, )().6(变号级数
.2
,,还是发散条件收敛判断其为绝对收敛一般先讨论绝对值级数
Previous Next
10
,
1
收敛由正项级数∑∞
=n n a {}.M S n 有界得其部分和数列,
221242M S a a a a n n
k k n ≤=<+++∑= 又.
1
2收敛可知∑∞
=n n a .于是原级数绝对收敛)
(:A 解答Previous Next
23
内容: 幂级数
阿贝尔定理
的端点
的情形及幂级数收敛域缺项注意""Previous Next 1.求幂级数的收敛域
24
).
(5,
6)3(0
C x x x a n
n n 点处则在点处条件收敛在若级数−==−∑∞
=练习二十/一(1)
.
).(;
).(;).(;).(敛散性不定发散绝对收敛条件收敛D C B A .
:必是其收敛域的端点幂级数的条件收敛点
注意Previous Next
2.幂级数的展开
间接法
及幂级数的运算展开克劳林级数
利用五个初等函数的麦
Previous Next
27
32
3.求和
的麦克劳林级数或利用等比级数
cos ,sin , x x e x
Previous Next。