初二数学上学期期末试题
初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。
故选B。
2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。
故选B。
3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
故选A。
4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。
故选B。
5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。
由m+n+p=12,得m+p=10。
若n=2,则m+p=10,得m=8,p=2。
若n=-2,则m+p=10,得m=6,p=4。
由等比数列的性质,得m/p=n/m,即m²=np。
若n=2,则m²=4,得m=±2。
若n=-2,则m²=-8,无实数解。
故选A。
6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。
故选A。
7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
人教版数学八年级上学期《期末检测试题》含答案解析

∵∠EBD=65°,
∴65∘−∠EBC=60°−∠BAE,
∴65°−(60°−∠ABE)=60°−∠BAE,
∴∠ABE+∠BAE=55°,
∴∠AEB=180°−(∠ABE+∠BAE)=125°.
故选C.
[点睛]本题考查了全等三角形 判定与性质, 等边三角形的性质,根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=55°,根据三角形内角和定理求出即可.
若提速前列车的平均速度为x km/h,行驶1200km的路程,提速后比提速前少用多长时间?
(2)若v=50,行驶1200km的路程,提速后所用时间是提速前的 ,求提速前列车的平均速度?
用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.
24.已知:BE⊥CD于E,BE=DE,BC=DA,
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方 一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
答案与解析
一、选一选(本大题共10小题,每小题3分,共30分)
1.下列计算正确的是()
A.(2ab3)•(﹣4ab)=2a2b4B. ,
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()
(3)计算△ABC的面积.
22.如图,△ABC中,∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.
【压轴题】初二数学上期末试卷(含答案)

【压轴题】初二数学上期末试卷(含答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()A .2-B .1-C .2D .3 6.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 7.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A.4B.3C.2D.18.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.69.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠110.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.A B.B C.C D.D二、填空题13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 16.若x 2+kx+25是一个完全平方式,则k 的值是____________. 17.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.18.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN 周长的最小值为________.19.因式分解:328x x -=______.20.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;23.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -24.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。
人教版数学八年级上学期《期末测试题》及答案解析

15.因式分解:
(1) ;(2) .
16.(1)解分式方程: .
(2)如图, 与 中,AC与BD交于点E,且 , ,求证: .
四、解答题(共32分,每题8分)
17.(1)已知 ,求 的值.
(2)化简: ,并从±2,±1,±3中选择一个合适的数求代数式的值.
18.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型 共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
例如:
利用这种分组的思想方法解决下列问题:
(1)分解因式 ;
(2) 三边a,b,c满足 判断 的形状,并说明理由.
五、解答题(本题共18分,其中每9分)
21.如图,在 中, ,点 在 内, , ,点 在 外, , .
(1)求 的度数;
(2)判断 形状并加以证明;
(3)连接 ,若 , ,求 的长.
22.阅读下面材料:
①AD是∠BAC 平分线
②∠ADC=60°
③点D在AB的垂直平分线上
④若AD=2dm,则点D到AB的距离是1dm
⑤S△DAC:S△DAB=1:2
A.2B.3C.4D.5
[答案]D
[解析]
[分析]
①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
(1) ;(2) .
[答案](1) ;(2)
[解析]
[分析]
(1)先提取公因式,然后利用完全平方公式因式分解即可;
初二数学期末试题及答案

初二数学期末试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是偶数?A. 3B. 5C. 2D. 7答案:C2. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A3. 计算下列算式的结果:\[ 3x - 2x + 5 = \]A. \( x + 5 \)B. \( 5x \)C. \( 3x \)D. \( 2x \)答案:A4. 一个正方形的对角线长度为5,那么它的面积是?A. 12.5B. 25C. 50D. 100答案:A5. 一个圆的半径为3,那么它的周长是?A. 6πB. 9πC. 12πD. 18π答案:C6. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C7. 计算下列算式的结果:\[ \frac{3}{4} + \frac{2}{5} = \]A. \( \frac{17}{20} \)B. \( \frac{15}{20} \)C. \( \frac{13}{20} \)D. \( \frac{11}{20} \)答案:A8. 一个数的立方是64,那么这个数是?A. 4B. -4C. 4或-4D. 8答案:A9. 一个数的平方是9,那么这个数是?A. 3B. -3C. 3或-3D. 9答案:C10. 计算下列算式的结果:\[ 2^3 \times 3^2 = \]A. 108B. 72C. 81D. 54答案:C二、填空题(每题2分,共20分)1. 一个数的平方是36,那么这个数是________。
答案:6或-62. 如果一个角的补角是60°,那么这个角的度数是________。
答案:120°3. 一个数的立方是27,那么这个数是________。
答案:34. 一个数的绝对值是8,那么这个数是________。
答案:8或-85. 计算下列算式的结果:\( \frac{1}{2} \times 4 = \)________。
八年级数学上册期末考试卷(含答案)

八年级数学上册期末考试卷(含答案)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在平面直角坐标系中,点P (2,﹣3)关于y 轴对称的点的坐标是( )A. (﹣2,﹣3)B. (﹣2,3)C. (2,3)D. (2,﹣3) 2. 下列四个函数中,y 随x 的增大而减小的是( )A. 3y x =B. 12y x =+C. 1y x =-+D. 12y x =- 3. 下列命题中,假命题是( )A. 直角三角形的两个锐角互余B. 等腰三角形的两底角相等C. 面积相等的两个三角形全等D. 有一个角是60︒的等腰三角形是等边三角形 4. 已知一次函数6y kx =+的图象经过(2,2)A -,则k 的值为( )A. 4-B. 1-C. 1D. 45. 下列条件中,不能确定ABC 的形状和大小的是( )A. 5AB =,6BC =,7AC =B. 5AB =,6BC =,45B ∠=︒C. 5AB =,4AC =,45B ∠=︒D. 5AB =,4AC =,90C ∠=︒6. 小芳有长度分别为4cm 和8cm 的两根木条,桌上有下列长度的四根木条,她要用其中的一根与原有的两根木条钉成一个首尾相接的三角形木框,则这根木条的长度为( )A. 3cmB. 5cmC. 12cmD. 17cm7. 如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,25DAC ∠=︒,则BAE ∠的度数为( )A. 55︒B. 75︒C. 105︒D. 115︒8. 如图,P 是ABC 的三条角平分线的交点,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A. 1S <23S S +B. 1S =23S S +C. 1S >23S S +D. 无法确定1S 与(23S S +)的大小9. 若直线3y mx =-和2y x n =+相交于点(2,3)P -,则方程组32y mx y x n =+⎧⎨=-⎩的解为( ) A. 23x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=-⎩ C. 23x y =⎧⎨=⎩D. 23x y =⎧⎨=-⎩ 10. 如图,PBC 的面积为215cm ,PB 为ABC ∠的角平分线,过点A 作AP BP ⊥于P ,则ABC 的面积为( )A. 225cmB. 230cmC. 232.5cmD. 2 35cm二、填空题:本大题共8个小题,每小题3分,共24分.请把答案填在答题卷的相应位置.11. 在函数y =x 的取值范围是_________.12. 如图,在平面直角坐标系中,AB 平行于x 轴,点A 坐标为(5,3),B 在A 点的左侧,AB a ,若B 点在第二象限,则a 的取值范围是_______.13. 如图,AD 垂直平分BC 于点D ,EF 垂直平分AB 于点F ,点E 在AC 上,若20BE CE +=,则AB =_______.14. 如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.15. 已知一次函数132y x =-+,当34x -≤≤时,y 的最大值是_______. 16. 在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.17. 如图,AD 是等边ABC 底边上的中线,AC 的垂直平分线交AC 于点E ,交AD 于点F ,若9AD =,则DF 长为_______.18. 如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.三、解答题:本大题共6题,共46分.解答题应写出文字说明、演算步骤或证明过程.解答写在答题卷上的指定区域内.19. 如图,在ABC 中,AD 平分BAC ∠,AE BC ⊥.若40BAD ∠=︒,70C ∠=︒,求DAE ∠的度数.20. 在同一平面直角坐标系内画出一次函数14y x =-+和225y x =-的图象,根据图象回答下列问题: (1)求出方程组425y x y x =-+⎧⎨=-⎩的解; (2)当x 取何值时,12y y >?当x 取何值时,10y >且20y <?21. 如图,已知在ABC 中,AC BC AD ==,CDE B ∠=∠,求证:ADE BCD △≌△.22. 如图,在等腰ABC 和等腰ADE 中,AB AC =,AD AE =,BAC DAE ∠=∠且C E D 、、三点共线,作AM CD ⊥于M ,求证:BD DM CM +=.23. 如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.24. 已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题: (1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.参考答案与解析 一、1~5:ADCAC 6~10:BDADB二、11.32x ≥- 12. 5a >13.20 14.45︒ 15.9216.(3,2) 17.3 18.12a三、19.【详解】解:如图:AD 平分BAC ∠224080BAC BAD ∴∠=∠=⨯︒=︒70C ∠=︒30B ∴∠=︒AE BC ⊥于点E90AED ∴∠=︒903060BAE ∴∠=︒-︒=︒604020DAE BAE BAD ∴∠=∠-∠=︒-︒=︒.20.【详解】解:(1)如图所示:一次函数14y x =-+和225y x =-的图象相交于点(3,1)∴方程组425y x y x =-+⎧⎨=-⎩的解为31x y =⎧⎨=⎩; (2)由图可知,当3x <时,12y y >当 2.5x <时,10y >且20y <;21.【详解】证明:ADE CDE B BCD ∠+∠=∠+∠,CDE B ∠=∠,ADE BCD ∴∠=∠,AC BC =,A B ∴∠=∠,在ADE 和BCD △中A B AD BCADE BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ADE ∴≌BCD △(ASA) .22.【详解】证明:BAC DAE ∠=∠CAE BAD ∴∠=∠在△AEC 和△ADB 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ADBBD CE ∴=在等腰ADE 中,AM DE ⊥DM EM ∴=BD DM CE EM CM ∴+=+=.23.【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =, (2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.24.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-,又DE DF =,∴DM DN DE x ===, 又60DMN ∠=︒,∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=, 即2x =,∴24EF x ==.。
人教版数学八年级上学期《期末考试题》带答案解析

[点睛]本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
15.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.
[答案]﹣7或5
[解析]
[分析]
利用完全平方公式得到9x2﹣2(m+1)xy+4y2=(3x±2y)2,则﹣2(m+1)xy=±12xy,即m+1=±6,然后解m的方程即可.
[解析]
试题解析:∵x2+(m-2)x+9是一个完全平方式,
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
10.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()
A. 30°B. 15°C. °D. 35°
[答案]2
[解析]
[分析]
本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.
[详解]解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
[点睛]本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
[答案]A
[解析]
[分析]
由于点C关于直线MN的对称点是B,所以当 三点在同一直线上时, 的值最小.
[详解]由题意知,当B.P、D三点位于同一直线时,PC+PD取最小值,
人教版八年级上学期数学《期末考试题》附答案解析

故答案为4.
[点睛]本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.
14.已知4y2+my+1是完全平方式,则常数m的值是______.
[答案]4或-4
[解析]
[详解]∵4y2-my+1是完全平方式,
∴-m=±4,即m=±4.
故答案为4或-4.
15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
5.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC
6.已知 ,则分式 的值为()
A.1B.5C. D.
7.一个多边形 每一个外角都等于36 ,则该多边形的内角和等于()
A 1080°B. 900°C. 1440°D. 720°
(1)求原计划每天铺设路面的长度;
(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.
23.阅读理解:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
③∵∠1=∠B=30°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=30°,∴CD= AD.
∴BC=CD+BD= AD+AD= AD,S△DAC= AC•CD= AC•AD.
∴S△ABC= AC•BC= AC•A D= AC•AD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学试卷
注意事项:1.本卷考试时间为90分钟,满分100分.
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.
一、细心填一填(本大题共有10小题,16空,每空2分,共32分.请把结果直接填在题中的横
线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)
1.16的平方根是________;25的算术平方根是________;若y 3=-8,则y =________. 2.计算:(1)a 12÷a 4=________;(2)(m +2n )(m -2n )=__________;
(3)(4a 3b 2
-6a 2b 2
+2ab )÷2ab =_________________.
3.如图,△ABC 中,∠ABC =36︒,BC =6cm ,E 为BC 的中点,平移△ABC 得到△DEF ,则∠DEF =________︒,平移距离为_________cm .
4.我们知道,所有的正多边形都是旋转对称图形.其中,正九边形绕它的旋转中心至少旋转________︒后才能与原图形重合.
5.如图,已知AB =AD ,若要得到△ABC ≌△ADC ,则还需增加一个条件________________.
6.若菱形ABCD 的两条对角线AC 、BD 的长分别为12cm 和16cm ,则菱形ABCD 的边长AB =________cm ,其面积S =________cm 2. 7.若等腰△ABC 的底边BC 长为10cm ,周长为36cm ,则△ABC 的面积为________cm 2.
8.如图,若□ABCD 的周长为10cm ,△ABC 的周长为8cm ,则对角线AC 的长为________cm .
9.将一矩形纸条ABCD 按如图方式折叠后,若∠AED ′=64︒,则 ∠EFC ′=________︒.
10.若顺次连结四边形ABCD 各边中点所得四边形为正方形,则四边形
ABCD 的对角线AC 与BD 之间的关系为___________________.
二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只
有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思
G
F
E D
C B
A (第3题)
D
C B
A
(第8题)
C
B
A
(第5题)
(第9题)
考,相信你一定会选对的!)
11.以下四个说法:①负数没有平方根;②一个正数一定有两个平方根;③平方根等于它本身的数
是0和1;④一个数的立方根不是正数就是负数.其中正确说法有 ( ) A .0个 B .1个 C .2个 D .3 个
12.给出下列7个实数:-3,2.5,-32,0,16,3
9,227.其中无理数共有 ( )
A .1个
B .2个
C .3个
D .4个
13.将多项式ax 2-4ay 2分解因式所得结果为 ( ) A .a (x 2-4y 2) B .a (x +2y )(x -2y ) C .a (x +4y )(x -4y ) D .(ax +2y )(ax -2y )
14.给出下列长度的四组线段:①1,2,3;②3,4,5;③6,7,8;④a -1,a +1,4a (a >1).其
中能组成直角三角形的有 ( ) A .①②③ B .②③④ C .①② D .①②④
15.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失。
现在游戏
机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你必须进行以下哪项操作 ( )
A .先逆时针旋转90︒,再向左平移
B .先顺时针旋转90︒,再向左平移
C .先逆时针旋转90︒,再向右平移
D .先顺时针旋转90︒,再向右平移
16.下列判断中错误..的是 ( ) A .平行四边形的对边平行且相等
B .四条边都相等且四个角也都相等的四边形是正方形
C .对角线相等的平行四边形是矩形
D .对角线互相垂直的四边形是菱形
三、认真答一答(本大题共有7小题,共40分.解答需写出必要的文字说明或演算步骤.只要你
认真思考,仔细运算,积极探索,一定会解答正确的!) 17.(本题4分)计算:(3x +2)(3x +1)-(3x +1)2.
18.(本题5分)有这样一道计算题:“求[(a -b )2+(a +b )2-2(a +b )(a -b )]÷3b 的值,其中a =-12
,
(第15题)
b =3.”小明同学误把a =-12抄成a =1
2
,但他计算的最后结果也是正确的.请你帮他找一找原
因,并求出这个结果.
19.(本题5分)若x 2y +xy 2=30,xy =6,求下列代数式的值:(1)x 2+y 2;(2)x -y .
20.(本题6分)已知四边形ABCD (如图),请在所给的方格纸(图中小正方形的边长为1个单位)
内,按下列要求画出相应的图形:
①把四边形ABCD 先向右平移6个单位,再向下平移1个单位得到四边形A ′B ′C ′D ′;
②画出四边形A ′B ′C ′D ′关于点A ′的中心对称四边形A ′B ′′C ′′D ′′.
(友情提醒:请别忘了标上字母!)
21.(本题6分)如图,在□ABCD 中,E 、F 分别为AD 、BC 上
的点,且AE =13AD ,CF =1
3BC ,试说明BD 与EF 互相平分.
22.(本题6分)如图,在梯形ABCD ,AD ∥BC ,AB =CD ,P 为梯
形内一点,且PB =PC ,试说明:P A =PD .
23.(本题8分)如图,已知等边△ABC 的边长为4,D 为△ABC 内一点,以
B A
C
D
F
E D
C
B A P
D C
B
A
BD 为一边作等边△BDE .
(1)请找出图中的全等三角形,并说明理由.
(2)试求出图中阴影部分的面积.
四、动脑想一想(本题满分10分.只要你认真探索,仔细思考,你一定会获得成功的!) 24.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD (AB
<BC )的对角线交点O 旋转(如图①→②→③),图中M 、N 分别为直角三角板的直角边与矩形ABCD 的边CD 、BC 的交点.
(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD 重合)中,BN 2=CD 2+CN 2;在图③(三角板的一直角边与OC 重合)中,CN 2=BN 2+CD 2. 请你对这名成员在图①和图③中发现的结论选择其一....说明理由.
(2)试探究图②中BN 、CN 、CM 、DM 这四条线段之间的关系,写出你的结论,并说明理由.
→
图①
图②
图③
→。