金属和陶瓷的力学性能

合集下载

陶瓷的分类及性能

陶瓷的分类及性能

陶瓷材料的力学性能陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。

金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键)陶瓷:离子键和共价键。

普通陶瓷,天然粘土为原料,混料成形,烧结而成。

工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。

工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。

硬度高,弹性模量高,塑性韧性差,强度可靠性差。

常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。

一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。

可以通过改变晶体结构的晶型变化改变其性能。

如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。

(可通过热处理改善材料的力学性能)陶瓷的分类玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃陶瓷—普通陶瓷日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷-电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2.陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。

(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

2 (E/1000--E/100)。

陶瓷材料的力学性能检测方法.

陶瓷材料的力学性能检测方法.

陶瓷材料力学性能的检测方法为了有效而合理的利用材料,必须对材料的性能充分的了解。

材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。

物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。

化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。

工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。

机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。

而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。

1. 弯曲强度弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。

四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。

而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。

但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。

图1-1 三点弯曲和四点弯曲示意图由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为:zI My =σ在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为:=∙⎪⎭⎫⎝⎛∙=zI y a P max max 21σ⎪⎩⎪⎨⎧圆形截面 16矩形截面 332DPa bh Paπ其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。

因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。

而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:=∙⎪⎭⎫⎝⎛∙=zI y a P l max max 4σ⎪⎩⎪⎨⎧圆形截面 8矩形截面 2332DPl bh Plπ式中l 为两个支点之间的距离(也称为试样的跨度)。

金属陶瓷材料检验标准国标

金属陶瓷材料检验标准国标

金属陶瓷材料检验标准国标
一、金属材料力学性能试验方法:
GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法GB/T 229—2007金属材料夏比摆锤冲击试验方法
GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)
GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法GB/T 232—1999金属材料弯曲试验方法
GB/T 233—2000金属材料顶锻试验方法
GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法
GB/T 238—2013金属材料线材反复弯曲试验方法
GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法GB/T 241—2007金属管液压试验方法
GB/T 242—2007金属管扩口试验方法
GB/T 244—2008金属管弯曲试验方法
GB/T 245—2008金属管卷边试验方法
GB/T 246—2007金属管压扁试验方法
GB/T 1172—1999黑色金属硬度及强度换算值
GB/T 2038—1991金属材料延性断裂韧度JIC试验方法
GB/T 2039—2012金属材料单轴拉伸蠕变试验方法
GB/T 2107—1980金属高温旋转弯曲疲劳试验方法
GB/T 2358—1994金属材料裂纹尖端张开位移试验方法。

力学性能指标

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。

影响力学性能的因素:温度、拉伸速度、环境介质、压力等。

弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高.弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。

一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大金属材料常见的塑性变形方式滑移和孪生金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。

脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。

α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。

α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。

拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。

硬度:布氏、洛氏、维氏缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。

断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。

断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。

分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。

金属陶瓷复合材料的力学性能和应用

金属陶瓷复合材料的力学性能和应用

金属陶瓷复合材料的力学性能和应用金属陶瓷复合材料是一种新型的材料,具有独特的力学性能和
应用价值。

本文将从力学性能和应用两个方面对金属陶瓷复合材
料进行分析。

1、力学性能
金属陶瓷复合材料的力学性能主要包括强度、硬度、韧性和耐
磨性等方面。

一般来说,金属与陶瓷的组合可以使材料既具有金
属的强度和韧性,又具有陶瓷的硬度和耐磨性。

例如,钨钢复合材料具有高强度、高硬度和高耐磨性,是极好
的刀具材料;钨铁热障复合材料具有较高的热稳定性和耐磨性,
可用于高温环境下的摩擦零件等;不锈钢陶瓷复合材料则具有较
高的耐腐蚀性。

2、应用
金属陶瓷复合材料的应用范围广泛,主要在航空、航天、电力、机械、化工等领域。

以下是一些应用案例:
(1)航空领域
飞机零件中,需要同时考虑材料的轻量化和力学性能,金属陶瓷复合材料在此方面有很好的应用前景。

例如,铝陶瓷复合材料可用于制造高温静叶环等;钛合金陶瓷复合材料可用于制造航空发动机部件等。

(2)化工领域
化工领域中,材料要求较高的化学稳定性和机械性能,金属陶瓷复合材料可作为替代方案。

例如,不锈钢陶瓷复合材料可用于制造高强度和耐腐蚀的化工泵和阀门等。

(3)电力领域
金属陶瓷复合材料的高耐磨性在电力领域中也有广泛的应用。

例如,使用陶瓷制成的电气绝缘件,具有较高的耐磨性和耐高温性,可用于高压开关等设备中。

总之,金属陶瓷复合材料是一种具有良好力学性能和广泛应用
前景的新型材料,可用于制造各种机械零件、工具和化学设备等。

随着技术的不断进步,金属陶瓷复合材料的应用范围将会不断扩大。

金属陶瓷合金

金属陶瓷合金

金属陶瓷合金金属陶瓷合金是一种由金属和陶瓷相组成的材料,具有金属和陶瓷的特性和优点,广泛应用于航空、汽车、电子、医疗等领域。

本文将从材料性质、制备工艺、应用领域等方面详细介绍金属陶瓷合金。

一、材料性质金属陶瓷合金具有优良的力学性能和化学稳定性。

其力学性能主要表现在高强度、高硬度和良好的耐磨性上。

与普通金属相比,金属陶瓷合金的硬度更高,可达到1000~2000HV,甚至更高。

此外,金属陶瓷合金还具有较好的抗腐蚀性能,能够在高温、酸碱等恶劣环境下长期稳定工作。

二、制备工艺制备金属陶瓷合金的主要工艺包括粉末冶金、熔融冶金和溶胶-凝胶法等。

其中,粉末冶金是最常用的制备方法之一。

该方法主要通过粉末混合、压制和烧结等步骤来获得金属陶瓷合金。

熔融冶金方法则是将金属和陶瓷相一起熔炼,形成均匀的合金液,然后通过冷却凝固得到金属陶瓷合金。

溶胶-凝胶法是一种比较新颖的制备方法,通过溶胶和凝胶的转变过程来制备金属陶瓷合金。

三、应用领域金属陶瓷合金由于其独特的性能,在多个领域得到广泛应用。

在航空领域,金属陶瓷合金常用于制造高温结构件,如涡轮叶片、燃烧室等。

其高温强度和耐磨性使其能够在高速飞行和高温环境下保持良好的性能。

在汽车领域,金属陶瓷合金常用于制造发动机零部件,如活塞环、气门等。

其高硬度和耐磨性使其能够承受高速运动和高温高压环境的考验。

在电子领域,金属陶瓷合金常用于制造半导体封装材料、电子陶瓷等。

其高导电性和优良的热稳定性使其成为电子器件的重要材料。

在医疗领域,金属陶瓷合金常用于制造人工关节、牙科修复材料等。

其生物相容性和耐磨性使其能够在人体内长期稳定使用。

金属陶瓷合金是一种具有优良性能和广泛应用的材料。

通过不同的制备工艺,可以获得不同性能和形态的金属陶瓷合金。

随着科学技术的不断进步,金属陶瓷合金在各个领域的应用将得到更加广泛和深入的发展。

陶瓷的力学性能包括哪些内容

陶瓷的力学性能包括哪些内容

陶瓷的力学性能包括哪些内容
陶瓷作为一种常见材料,在工程领域中有着广泛的应用。

其独特的力学性能是其被广泛使用的重要原因之一。

陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度、韧性等几个方面。

硬度
陶瓷通常具有较高的硬度,这使得陶瓷在抗磨损方面表现突出。

陶瓷的硬度主要取决于其晶体结构和化学成分。

硬度高意味着陶瓷在磨擦和表面损耗方面有着良好的表现,使其在耐磨领域得到广泛应用。

抗弯强度
陶瓷的抗弯强度是指陶瓷在受到弯曲载荷时抵抗变形和破坏的能力。

由于陶瓷在工程上通常用于承受一定的弯曲应力,其抗弯强度是评估其在这种情况下表现的重要参数。

抗压强度
陶瓷的抗压强度是指陶瓷在受到压缩载荷时抵抗破坏的能力。

在一些工程应用中,陶瓷可能需要承受来自各个方向的压力,因此抗压强度是评估陶瓷材料综合承载能力的重要指标之一。

韧性
尽管陶瓷通常以其高硬度和脆性著称,但某些陶瓷材料也具有一定的韧性。

韧性是指材料抵抗断裂的能力,而不是材料硬度。

在一些需要承受冲击或振动载荷的工程应用中,具有一定韧性的陶瓷材料表现出色。

综上所述,陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度和韧性等方面。

根据不同的工程需求,选择合适的陶瓷材料可以充分发挥其优异的力学性能,实现更广泛的应用。

1。

5-陶瓷材料的力学性能

5-陶瓷材料的力学性能
山形切口法切口宽度对KIC值影响较小,测定值误差也较 小,也适用于高温和在各种介质中测定KIC值,但是测试 试样加工较困难,且需要专用的夹具。
二、陶瓷材料的增韧
工程陶瓷材料的脆性大,应用受到限制,所以陶瓷材料 的增韧一直是材料学界研究的热点之一。
通常金属材料的强度提高,塑性往往下降,断裂韧度也 随之降低。
产生的应力腐蚀后都会在没 有明显预兆的情况下发生脆 断,会造成严重事故。
(二)循环疲劳
1987年,研究发现单相陶瓷、相变增韧陶瓷以及陶瓷基复 合材料缺口试样,在室温循环压缩载荷作用下也有疲劳裂 纹萌生和扩展现象。
图10-13是多晶氧化铝(晶粒尺寸10微米)在室温空气环境 对称循环加载(f=5Hz)及在静载下的裂纹扩展特征。
应用主要取决于电绝缘性、半导体性、导电性、压电 性、铁电性、磁性及生物适应性、化学吸附性等。
第一节 陶瓷材料的变形与断裂
一、陶瓷材料的弹性变形
弹性模量
1、弹性模量的本质 弹性模量的大小反映材料原子间结合
力的大小,越大,材料的结合强度越高。 2、陶瓷材料高弹性模量的原因
1) 由于陶瓷材料具有离子键或共价键的 键合结构,因此陶瓷材料表现出高的熔点, 也表现出高的弹性模量。
断裂韧性:
K IC (2E s )1/ 2
金属材料要吸收大量的塑性变性能,而塑性变性能要比表面 能大几个数量级,所以陶瓷材料的断裂韧性比金属材料的药 低1~2数量级,最高达到12~15MPa.m1/2
陶瓷是脆性材料,弯曲或拉伸加载时,裂纹一旦出现, 极易产生失稳断裂。
山形切口法中切口剩余部分为三角形,其顶点处存在应 力集中现象,易在较低载荷下产生裂纹,所以不需要预 制裂纹。当试验参数合适时,这种方法能产生裂纹稳定 扩展,直至断裂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个滑移面和其上的一个滑移方向构成一个滑移
系。(以下以体心立方晶格为例)

滑移系越多,金属发生滑移的可能性越大,塑 性也越好,其中滑移方向对塑性的贡献比滑移
面更大。

因而金属的塑性,面心立方晶格好于体心立方
晶格, 体心立方晶格好于密排六方晶格。
面 心 立 方
密 排 六 方

Байду номын сангаас
⑶滑移时,晶体两部分 的相对位移量是原子间 距的整数倍. 滑移的结果在晶体表面 形成台阶,称滑移线, 若干条滑移线组成一个 滑移带。
同样方法可得晶向OB、OC的晶向指数分别 为[110]、[111]。 晶向指数的一般标记为[uvw]。 [uvw]实际表示一组原子排列相同的平行晶 向。 晶向指数也可能出现负数。(若两组晶向的 全部指数数值相同而符号相反, 如[110]与 [ ], 则它们相互平行或为同一原子列, 但 方向相反。) 若只研究该原子列的原子排列情况, 则晶向 [110]与[ ]可用一指数[110]表示。
第二章
材料力学性能
第一节
金属和陶瓷的力学性能
一、金属中的应力与应变:

1、轴向拉伸时的应 力与应变:
(表达方式及单位)


2、应力与应变之间 的关系(在弹性范围 内)

3、剪切变形时的应 力与应变:
(表达方式及单位)


4、应力与应变之间 的关系(在弹性范围 内)

二、拉伸试验和应 力-应变图:


2、孪生:
孪生是指晶体的一部分 沿一定晶面和晶向相对 于另一部分所发生的切 变。

发生切变的部分称孪生
带或孪晶,沿其发生孪 生的晶面称孪生面。

孪生的结果使孪生面两 侧的原子排列呈镜面对 称。


孪生与滑移相比:
孪生使晶格位向发生改变; 所需切应力比滑移大得多, 变形速度极快, 接近声速; 孪生时相邻原子面的相对位移量小于一个原子间距. 金属表面的基本差别:滑移产生一系列台阶,而孪 生则产生一个小的、范围确定的变形区
金的塑性变形除与合金基体的性质有关外,还
与第二相的性质、形态、大小、数量和分布有
关。第二相可以是纯金属、固溶体或化合物,
工业合金中第二相多数是化合物。
复习:金属化合物
在合金中,当溶质含量超过固溶体的溶解度 时,将出现新相。 若新相的晶格结构与合金中另一组成元素相 同,则新相是以另一组成元素为溶剂的固溶 体。 若新相的晶格结构不同于任一组成元素,则 新相将是组成元素相互作用而生成的一种新 物质,属于化合物或中间相。
生滑移所需切应力最
小。
复习:立方晶系的晶向表示方法
以图中的晶向OA为例, 说明晶向指数的标定 过程。 ①设定一空间坐标系, 原点在欲定晶向的一 结点上。 ②写出该晶向上另一结点的空间坐标 值:100 ③将坐标值按比例化为最小整数:100 ④将化好的整数记在方括号内:[100]得到晶 向OA的晶向指数为[100]。
Cu-Ni合金成分与性能关系

产生固溶强化的原因,是由于溶质原子与位错相互作 用的结果,溶质原子不仅使晶格发生畸变,而且易被 吸附在位错附近形成柯氏气团,使位错被钉扎住,位 错要脱钉,则必须增加外力,从而使变形抗力提高.
Cu-Ni合金成分与性能关系
2、多相合金的塑性变形与弥散强化

当合金的组织由多相(二相)混合物组成时,合
晶面族
在立方晶系中, 由于原子的排列具有高度的 对称性, 往往存在有许多原子排列完全相同 但在空间位向不同(即不平行)的晶面, 这些 晶面的总称为晶面族, 用大括号表示, 即 {hkl}。 在立方晶胞中(111)、( )、( )、( ) 同 属{111}晶面族。
复习:
晶面原子密度: 是指其单位面积中的原子数 。 晶向原子密度:是指其单位长度上的原子数 。 不同晶体结构中不同晶面、不同晶向上原子 排列方式和排列密度不一样。 在体心立方晶格中,原子密度最大的晶面为 {110}, 称为密排面; 原子密度最大的晶向为<111>, 称为密排 方向。 在面心立方晶格中, 密排面为{111}, 密排 方向为<110>。
常见的金属间化合物有以下三类: (1) 正常价化合物 (2) 电子化合物 (3) 间隙化合物
间隙化合物分晶格结构比较简单的间隙相和复杂晶格 结构的间隙化合物两种。钢中的Fe3C(渗碳体)属于 复杂晶格结构的间隙化合物。Fe3C是铁碳合金中的重 要组成相,

当在晶界呈网状分布时,对合金的强度和塑性不利;

合金可根据组织分为单相固溶体和多相混合物两种. 合金元素的存在,使合金的变形与纯金属显著不同.
碳在γ-Fe中的 间隙固溶体
铁素体与 渗碳体的 混合物
奥氏体
珠光体
1、单相固溶体合金的塑性变形

单相固溶体的显微组
织与纯金属类似,因
此其塑性变形过程也
与多晶体纯金属相似,
但随溶质含量增加, 固溶体的强度、硬度 提高,塑性、韧性下 降,称固溶强化。
原子排列情况相同而在空间位向不同(即不 平行)的晶向统称为晶向族, 用尖括号表示, 即<uvw>。如: <100> = [100] + [010] + [001] 在立方晶系中, 一个晶面指数与一个晶向指 数数值和符号相同时, 则该晶面与该晶向互 相垂直, 如(111) [111]。
以图中的晶面ABB’A’为例, 晶面指数的标定过程如 下: ①设定一空间坐标系(原点在欲定晶面外, 并使晶面在
堆积起来,称位错的塞积。要使变形继续进行,
则必须增加外力, 从而使金属的变形抗力提高。
多晶粒构成的试样的拉伸 试验的竹节现象

(2)晶粒位向的影响 由于各相邻晶粒位向不同,当一个晶粒发生塑
性变形时,必然会受到它周围不同晶格位向晶
粒的约束和障碍,各晶粒必须相互协调,相互
适应,才能发生变形。由于晶粒间的这种相互
因为晶粒越细,单位体积内晶粒数目越多,参与变形
的晶粒数目也越多,变形越均匀,而不致造成应力集 中,引起裂纹的过早产生和发展,因此在断裂前可发 生较大的塑性变形,金属在断裂前消耗的功也大,因 而其韧性也比较好。
通过细化晶粒来同时提高金属的强度、 硬度、塑性和韧性的方法称细晶强化。

(五)合金的塑性变形
变形。当有大量晶粒发生滑移后,金属
便显示出明显的塑性变形。
3、 晶粒大小对金属力学性能的影响

金属的晶粒越细,其强度和硬度越高。

因为金属晶粒越细,晶界总面积越大,位错障
碍越多;需要协调的具有不同位向的晶粒越多,
使金属塑性变形的抗力越高。
晶 粒 大 小 与 金 属 强 度 关 系


金属的晶粒越细,其塑性和韧性也越高。
1、 滑移

任何晶面上都可分解为
正应力和切应力。正应 力只能引起晶格的弹性 变形及将晶粒拉断。只 有在切应力的作用下金
外 力 在 晶 面 上 的 分 解
切 应 力 作 用 下 的 变 形
锌 单 晶 的 拉 伸 照 片
属晶体的晶格在发生弹
性扭曲后进一步造成滑 移而产生塑性变形。

滑移是晶体在切应力的作用 下, 晶体的一部分相对于另一 部分沿一定的晶面(滑移面) 和晶向发生滑动位移的现象。
三条坐标轴上有截距或无穷大。)
②以晶格常数a为长度单位, 写出欲定晶面在三条坐标 轴上的截距:1∞∞ ③截距取倒数:100 ④截距的倒数化为最小整数:100 ⑤将三整数写在园括号内:(100) 晶面ABB’A’的晶面指数即为(100)。 同样可得晶面ACC’A’和ACD’的晶面指数分别为 (110)、(111)。
(在光学显微镜下无法分辨 出滑移带内滑移台阶,因此, 滑移带也常常称为滑移线)


从滑移带的结构可知, 金属即使进行了大量的 塑性变形,这些变形也 只是集中在一小部分的 滑移面,许多潜在的滑 移面上并没有进行滑移, 大多数原子对于其邻居 来讲并移动。
⑷ 滑移的同时伴随着晶体的转动

如图所示:当外力作 用于单晶体试样时, 它在某些相邻层晶面 上所分解的切应力使 晶体发生滑移,而正 应力则组成一力偶, 使晶体在滑移的同时 向外力方向发生转动。
约束,使得多晶体金属的塑性变形抗力总是高 于单晶体。
2、 多晶体金属的塑性变形过程

多晶体中首先发生滑移的是滑移系与外 力夹角等于或接近于45°的晶粒(切应 力最大)。 当塞积位错前端的应力达到一定程度,

加上滑移时晶粒的转动,促使另一批晶
粒开始滑移变形,

从而使滑移由一批晶粒传递到另一批晶 粒,从少量晶粒开始逐步扩大到大量晶 粒,从不均匀变形逐步发展到比较均匀



第二相质点以两种明显的方式阻碍位错 的运动。当位错运动遇到第二相质点时: 质点被位错切开(软质点); 质点阻拦位错而迫使位错只有在加大外 力的情况下才能通过。 当质点小而软,或为软相时,位错能割 开它并使其变形,如图所示,这时加工 硬化小,但随质点尺寸的增大而增加。

位错切割 第二相粒 子示意图
在这些化合物中,有些具有相当程度的金属键及一 定程度的金属性质,是一种金属化合物,称为金属 间化合物; 有些化合物具有离子键,没有金属性质,属于一般 化合物,称为非金属化合物。 非金属化合物对合金性能影响很坏,一般称为非金 属夹杂。 金属化合物通常能提高合金的强度、硬度及耐磨性, 但会降低塑性和韧性。是各类合金、硬质合金和许 多有色金属的重要组成相。
电 镜 观 察


当质点坚硬而难于被位错切开时,位错 不能直接越过这种第二相质点,但在外 力作用下,位错线可以环绕第二相质点 发生弯曲,最后在质点周围留下一个位 错环而让位错通过。 使位错线弯曲将增加位错影响区的晶格 畸变能,增加位错移动的阻力,使滑移 抗力提高。位错线弯曲的半径越小,所 需外力越大 。
相关文档
最新文档