考研概率论与数理统计重要考点与命题特点全分析(7)

合集下载

考研数学三必背知识点:概率论与数理统计

考研数学三必背知识点:概率论与数理统计

概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。

山东省考研数学复习资料概率论与数理统计重点解析

山东省考研数学复习资料概率论与数理统计重点解析

山东省考研数学复习资料概率论与数理统计重点解析概率论与数理统计是山东省考研数学中的一个重要部分,学好这一部分内容对于考研的顺利通过至关重要。

本文将对山东省考研数学复习资料中概率论与数理统计的重点进行解析,帮助考生更好地备考。

一、概率论的重点内容1.基本概念与基本规则- 随机试验及其基本概念- 事件与事件关系- 概率的基本性质与运算规则2.条件概率与独立性- 条件概率的定义与性质- 乘法定理- 全概率公式与贝叶斯公式3.随机变量及其分布律与数学期望- 随机变量及其分布函数- 离散型随机变量与连续型随机变量- 期望的定义与性质4.随机变量的函数的分布- 随机变量的函数的分布函数的求法- 随机变量的线性变换与标准化5.多维随机变量及其分布律- 多维随机变量的概念与联合分布函数- 边缘分布函数与条件分布函数- 相互独立的随机变量二、数理统计的重点内容1.抽样分布及极限定理- 抽样分布的概念与性质- 大数定律与中心极限定理2.参数估计- 点估计及其性质- 基本思想与方法- 矩估计与最大似然估计3.假设检验与区间估计- 假设检验的基本概念与步骤- 常用的假设检验方法- 信赖区间的概念与构造4.多元统计分析的基本方法- 样本协方差矩阵与相关系数矩阵- 多元正态分布- 多元正态总体的统计推断以上为山东省考研数学复习资料中概率论与数理统计的重点内容分析。

考生可以根据这些内容,有针对性地进行复习与备考。

在学习过程中,还应该注重理论联系实际,通过做题与练习巩固所学知识。

只有经过系统的学习与练习,才能真正掌握概率论与数理统计的重点知识,提高在考试中的应对能力。

为了更好地复习概率论与数理统计,建议考生使用多种复习资料,包括教材、习题集、考研真题等,多角度地对知识点进行加深理解和掌握。

同时,考生还可以参加相关的考研辅导班或自习室,与同学们一起学习和讨论,相互促进进步。

总之,山东省考研数学复习资料中的概率论与数理统计是一个重要的考点,考生要充分重视并进行有计划、有针对性的复习。

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。

在山东省考研的数学科目中,概率论与数理统计是必考内容之一。

为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。

一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

云南省考研数学复习资料概率论与数理统计重点考点详解

云南省考研数学复习资料概率论与数理统计重点考点详解

云南省考研数学复习资料概率论与数理统计重点考点详解概率论与数理统计作为数学的重要分支,被广泛应用于各个领域。

云南省考研数学科目中,概率论与数理统计也是重中之重的复习内容。

为了帮助考生更好地复习,本文将详细解析云南省考研数学复习资料中概率论与数理统计的重点考点。

一、随机事件与概率随机事件是指在相同实验中,可能出现也可能不出现的事件。

概率是研究随机事件发生的可能性大小的数值。

云南省考研数学中,随机事件与概率是概率论与数理统计的基础内容,考生需要深入了解和掌握。

1.1 随机事件的定义与性质随机事件的定义是指在相同的试验中,可能发生也可能不发生的事件。

随机事件有以下几个性质:- 必然事件:在任何一次实验中都会发生的事件,其概率为1。

- 不可能事件:在任何一次实验中都不会发生的事件,其概率为0。

- 互斥事件:不能同时发生的事件。

- 对立事件:至少有一个事件发生的事件。

1.2 概率的定义与性质概率的定义是指某一事件发生可能性大小的数值表示。

概率具有以下性质:- 非负性:概率是非负的。

- 规范性:必然事件的概率为1。

- 可列可加性:对于两个互不相容的事件A和B,有P(A∪B) = P(A) + P(B)。

二、离散型随机变量与分布离散型随机变量是指在一定范围内可能取到的值是有限或可数的,而分布则是研究离散型随机变量各个取值的概率分布情况。

云南省考研数学中,离散型随机变量与分布是概率论与数理统计中的重要内容之一。

2.1 离散型随机变量的概念与性质离散型随机变量是指在一定范围内可能取到的值是有限或可数的随机变量。

离散型随机变量具有以下性质:- 取值有限或可数- 概率函数为非负函数- 各个可能取值的概率之和为12.2 二项分布二项分布是指在进行一系列相同的独立实验中,某一事件发生的次数满足一定的概率分布。

二项分布的概率质量函数计算公式为P(X=k)= C(n,k) * p^k * (1-p)^(n-k),其中n为实验次数,k为事件发生的次数,p为事件发生的概率。

实用技巧山东省考研数学复习资料概率论与数理统计重点考点解析

实用技巧山东省考研数学复习资料概率论与数理统计重点考点解析

实用技巧山东省考研数学复习资料概率论与数理统计重点考点解析实用技巧:山东省考研数学复习资料概率论与数理统计重点考点解析概率论与数理统计作为山东省考研数学科目的重要部分,是考生备考过程中需要重点关注和准备的内容之一。

本文将针对山东省考研数学概率论与数理统计的重点考点进行深入解析,并提供一些实用的备考技巧,帮助考生取得更好的复习效果。

一、基础概念理解在学习概率论与数理统计时,首先需要掌握一些基础概念。

比如,概率的定义、样本空间和事件的关系、随机变量及其分布等。

对于初学者来说,这些概念可能有些抽象,但理解清楚这些基础概念对于后续的学习和应用至关重要。

在理解概率的定义时,我们可以通过一些实际问题来帮助理解,比如抛硬币的问题。

同时,结合样本空间和事件的定义,可以通过绘制样本空间的树状图来帮助理解事件的概念。

二、概率分布函数与密度函数在概率论与数理统计中,概率分布函数和密度函数是两个重要的概念。

概率分布函数通常用于离散型随机变量,而密度函数通常用于连续型随机变量。

在学习概率分布函数和密度函数时,需要掌握它们的定义和性质,并能够灵活应用到具体问题中。

比如,对于离散型随机变量,求解其期望和方差可以通过概率分布函数的性质来简化计算。

在解答概率论与数理统计的题目时,熟练掌握概率分布函数和密度函数的性质是非常有帮助的。

三、随机变量的特征参数在概率论与数理统计中,随机变量的特征参数包括期望、方差、协方差和相关系数等。

这些参数的计算可以帮助我们更好地了解随机变量的分布特征。

在计算期望和方差时,可以运用线性运算的性质,简化计算过程。

另外,在计算协方差和相关系数时,需要掌握它们的定义和计算公式,并能够应用到相关问题中。

四、常见分布的性质与应用在概率论与数理统计中,有几种常见的概率分布,包括正态分布、泊松分布、均匀分布等。

对于每种分布,我们需要了解其性质和应用场景,并能够通过计算题目中给定的参数,判断所给的随机变量属于哪一种分布。

考研数学重要知识点解析概率论与数理统计

考研数学重要知识点解析概率论与数理统计

考研数学重要知识点解析概率论与数理统计概率论与数理统计是考研数学中的一个重要知识点,也是许多专业的必修课程。

它涉及到随机事件的概率计算和数据分析的方法,对于理解和应用数学、统计学、经济学、计算机科学等学科都具有重要意义。

下面,我将从概率论和数理统计两个方面来解析该知识点。

一、概率论概率论是研究随机现象的规律性和不确定性的数学分支。

在考研数学中,概率论主要涉及到基本概念、概率计算、随机变量、概率分布和大数定律等内容。

以下是其中的几个重要知识点:1.基本概念:包括随机试验、样本空间、随机事件、事件的概率、事件的概率运算等。

其中,随机试验是指可重复进行的事件,样本空间是随机试验所有可能结果的集合,随机事件是样本空间的子集。

2.概率计算:概率计算方法主要包括古典概型、几何概型和概率公式法。

古典概型是指随机试验的样本空间是有限个元素的情况,几何概型是指样本空间可以用几何图形表示的情况,概率公式法是通过概率公式进行计算。

3.随机变量和概率分布:随机变量是指一个随机试验可能结果的实值函数。

对于离散型随机变量,其概率分布可以用概率质量函数表示;对于连续型随机变量,其概率分布可以用概率密度函数表示。

常见的离散型随机变量有二项分布、泊松分布等;常见的连续型随机变量有均匀分布、正态分布等。

4.大数定律和中心极限定理:大数定律指出,随着试验次数的增加,随机事件的频率稳定地趋近于事件的概率。

中心极限定理指出,随着独立同分布随机变量的和的数量级趋于无穷大时,其分布逼近于正态分布。

二、数理统计数理统计是利用数学的方法对数据进行运算和分析的学科。

在考研数学中,数理统计主要包括抽样调查、数据描述、参数估计、假设检验、方差分析等内容。

以下是其中的几个重要知识点:1.抽样调查:抽样调查是通过从总体中抽取一部分个体进行观察和测量,然后对这部分个体的特征进行统计推断的方法。

常用的抽样方法有随机抽样、系统抽样、整群抽样等。

2.数据描述和分析:包括数据的集中趋势和离散程度的度量、数据的频数统计和频率统计、描述性统计、数据的图形展示等。

概率论与数理统计重点和必考点

概率论与数理统计重点和必考点

05 数理统计基本概念与方法
总体与样本概念辨析
总体
研究对象的全体,是一个随机变 量,有确定的分布但未知。
样本
从总体中随机抽取的一部分个体, 用于推断总体的性质。
样本容量
样本中包含的个体数目,用n表示。
统计量与抽样分布
统计量
由样本构造出的一个或多个不含总体分布未知参数的函数。
抽样分布
统计量的分布,描述了样本统计量在不同样本下的可能取值及概 率。
03 多维随机变量及其分布
二维随机变量联合分布
01
联合分布函数
对于二维随机变量$(X,Y)$,其联合分布函数$F(x,y)$描述了随机点
$(X,Y)$落在以$(x,y)$为顶点的左下方区域的概率。
02 03
联合概率密度函数
若二维随机变量$(X,Y)$的分布函数可微,则存在非负函数$f(x,y)$,使 得$F(x,y)$等于$f(x,y)$在对应区域的二重积分,称$f(x,y)$为$(X,Y)$的 联合概率密度函数。
假设检验与方差分析
假设检验是统计推断中的另一种重要 方法,用于判断总体参数是否满足某 个假设。方差分析则是一种特殊的假 设检验方法,用于比较多个总体的均 值是否存在显著差异。
回归分析与相关分析
回归分析和相关分析是统计推断中的 两种常用方法,用于研究变量之间的 关系。回归分析通过建立回归方程来 描述变量之间的依赖关系;而相关分 析则是通过计算相关系数来衡量变量 之间的相关程度。这些方法在社会科 学、生物医学、经济金融等领域有着 广泛的应用。
随机变量的分类
根据随机变量可能取的值的个数分为离散型随机变量和连续型随机变量。
离散型随机变量分布律
分布律的定义
对于一个离散型随机变量X,其所有可能取的值为$x_k$,称$P{X=x_k}=p_k$为随 机变量X的分布律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研概率论与数理统计重要考点与命题特点全分析(7)
考研将第一时间整理发布考研相关信息,希望对2016考研考生有所帮助。

2015考研复习正在紧锣密鼓中进行,在各门考试科目中,数学作为一门公共科目,因为数学本身的逻辑性、连贯性很强、公式多、计算量大,要学好它有一定难度,另一方面是因为某些考生以前对数学的重视程度不够,基础知识学得不够扎实,所以面对即将到来的大考信心不足。

为了帮助这些考生能顺利通过考试,老师针对历年考研数学的复习规律及题型特点,进行深入解剖,分析提炼出各种常考重要题型及方法,供考生们参考。

下面主要分析数学三概率统计部分一维随机变量及其分布的两类重要题型及解题方法,以及应特别注意的事项。

题型:计算一维随机变量的数学期望和方差
计算一维随机变量的数学期望和方差是一个基本考点,常用的方法包括:
1)熟记6个重要的一维分布分布律和概率密度,及其数学期望和方差公式,这6个分布包括:0—1分布,二项分布,泊松分布,正态分布,均匀分布,指数分布;
2)熟练运用期望和方差的基本性质;
3)对应用题型要准确地理解题意并将应用问题正确地运用数学代数式表达出来。

例1.设随机变量X服从参数为1的泊松分布,则P{X=E(X2)}=________
分析:此题首先要求记得泊松分布的数学期望和方差,然后根据其分布律计算概率。

(2008年考研数学三真题第14题)
例3.假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机,试求该设备每次开机无故障工作的时间Y的分布函数F(y). (2002年考研数学三真题第十二题)
分析:此题首先要将Y与X的相互关系表示出来,然后根据指数分布的性质进行计算。

解:由题意知X~E(λ),E(X)=1/λ=5,故λ=1/5,Y与X的关系:Y=min{X,2}
当y<0时,F(y)=P{Y≤y}=0
当y≥2时,F(y)=P{Y≤y}=1
最后预祝各位考生在2015考研中取得佳绩。

小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。

2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。

加油!。

相关文档
最新文档