数字图像处理第二讲笔记
数字图像处理(第二版)章 (2)

第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)
(完整版)数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理笔记

数字图像处理笔记首先一幅图像本身就是一个二维的函数),(yxf其中x,y是坐标,而f的值是该点的强度或者灰度。
图像处理和图像分析。
MRI:磁共振成像。
分形:通过某些数学定理对一个基本模式的迭代复制。
‚瓦片(tiling)‛是产生分形的一个重要方法之一。
图像增强:显示某些细节。
是主观的,以人的主观偏好为基础。
图像复原:改进图像外貌。
是客观的。
复原技术倾向于以退化的数学或概率模型为基础。
分割过程将一幅图像划分为组成部分和目标部分,通常自主分割是最困难的任务之一,复杂的分割过程最终可以成功解决问题,但是需要大量处理工作。
另外不健壮的算法必将导致失败。
通常分割越准确,识别越成功。
彩色图像处理小波变化和多分辨率处理图像压缩形态学图像处理图像复原图像增强图像获取图像分割表示与描述对象识别知识库图像处理应用的存储分为三个主要的类别: 1 用于处理时的短期存储, 2关系到快速调用时的在线存储, 3频繁访问的档案存储,人眼的主观亮度是进入眼睛的光强的对数函数 灰度级:),(00y x f l ; 灰度级通常是2的整数次幂;广泛使用分辨率的意义是每单位距离可分辨的最小线对数目。
伪轮廓:数字图像平滑区灰度级数量不足引起的。
通常在均匀的平面上以16级或更少灰度显示的图像中十分明显。
图像的取样率是单位距离的取样数目(在两个空间方向上)。
放大可以看做过采样,缩小可以看做欠采样。
放大要求执行两部操作:1 创立新的像素和对这些新位臵赋灰度值。
最近临域插值,双线性内插。
像素之间的距离度量:1 欧氏距离:D=sqrt((x-s)^2+(y-t)^2) 2城市街区距离:D=|x-s|+|y-t|; 3 棋盘距离:D=max (|x-s|,|y-t|)感性压缩技术二维图像三维化数字b是存储数字图像需要的比特数:。
其中L为图像B=M kN⨯⨯其中M,N为数字图像的长宽。
K=Llog2的离散灰度级数。
当一幅图像有256个灰度级时则称该图像为8比特图像。
数字图像处理笔记

第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像处理数字图像处理第二章(第二讲)空域变换、频率域变换

2.1 引言 2.2 空域变换 2.3 频率域变换 2.4 离散余弦变换 2.5 KL变换 2.6 其他正交变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 遥感影像几何校正 2.2.2.2 几何校正类型
商用遥感数据(如:SPOT-Image, Digital Globe, Space Image)都已消 除了大多数系统误差 。两种常用的几何校正方法:
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换 灰度插值——高阶插值
如果简化计算,仅取原点周围有限范围函数:
第二章 常用的数学变换
2.2 空域变换——2.2.2. 几何变换
2.2.2.2 几何校正类型 ➢ 从影像到影像的配准
从影像到影像的配准 是平移和旋转过程的结合,通过 两幅影像中的同名点进行匹配,使同名地物出现在配准后 的 影像的相同位置。若不需要使每个像元都具有特定的地 图投影坐标(x, y),就可以使用这种纠正方法。例如,我们 可能希望用光标查看两幅不同时相影像是否发生变化。
国家级精品资源共享课
2.2.2.2 几何校正类型
➢ 影像校正/配准的混合方法
影像校正和配准所用的基本原理是相同的。所不同的是:从影像到 地图的校正中,参考的是有标准地图投影的地图;而从影像到影像的配 准中,参考的是另一景影像。 如果采用已校正过的影像(而不是传统地 图)为参考,那么得到的所有配准影像都会带有原参考影像中包含的几 何误差。 因此,高精度地球科学遥感研究中,应采用从影像到地图的 校正。 然而,对两个或多个遥感数据进行精确的变化检测时,选择从 影像到地图的校正和从影像到影像的配准相结合的混合校正法就显得十 分有用。
数字图像处理知识点

数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理笔记

一、绪论1、数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
2、通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
3、图像和语音是人类传递信息的主要媒介,视觉信息占60%4、模拟图像:直接通过感光设备记录成像目标所反射的光强,通常以胶片形式保存优点:速度快,一般为实时处理,理论上讲可达到光的速度,并可同时并行处理。
缺点:精度较差,灵活性差,很难有判断能力和非线性处理能力。
数字图像:用一个m×n的像素矩阵来表达一幅图像,m与n称为图像的分辨率,把图像按行与列分割成m×n个网格,每个网格的图像用该网格内颜色的平均值表示(空间量化),灰度(颜色)值量化(8位256)彩色(24bit)优点:处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。
缺点:速度慢,特别是进行复杂的处理更是如此;分辨率和精度有限制5、特点:图像信息量大、数据量也大;图像处理技术综合性强;图像信息理论与通信理论密切相关。
6、主要方法:空域法:邻域处理法:梯度运算、拉普拉斯算子运算、平滑算子运算卷积运点处理法:灰度处理面积、周长、体积、重心运算变换域法:通过正交变换将图像变换到另一个域,对变换域的系数阵列进行各种处理,然后再通过反变换,得到空间域处理结果。
DCT,DFT,DWT,KLT……7、主要内容:A、图像信息的获取;B、存贮(存储);C、传送(传输);内部传送:DMA 远距离传送:带宽、高效压缩算法、专网、互联网D、处理;几何处理、算术处理、图像增强:直方图增强、滤波、伪彩色增强法(pseudo color) 等技术、图像复原:去掉干扰和模糊,恢复图像的本来面目。
典型的例子如去噪就属于复原处理。
图像噪声包括随机噪声和相干噪声,随机噪声干扰表现为麻点干扰,相干噪声表现为网纹干扰。
去模糊也是复原处理的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sobel 算子 Prewwit 算子 b) 二阶微分 拉普拉斯算子 三、 直方图处理 a) 基本思想 对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像 的目的。 b) 操作步骤: (1) 示出图像 F 的总体像素个数 ������������ = ������ × ������得到像素点的个数 (2) (3) (4) (5) 计算每个灰度级的分布概率,即每个像素在整个图像中所占的比例。 计算图像的累积分布 乘以累积概率的最大值 进行一一对应
课程安排 周 使用者 实践问题
考试安排 第 使用者
[学期和年份]页4来自家庭作业规定 希望为您的文档添加更多表格,类似于后面的“课程安排”和“考试安排”?没问题。在“插入”选项卡上,单 击“表格”,然后单击“快速表格”。您将看到标题格式与此课程提纲相匹配的示例表格。
附加信息 单击此处添加文本。
[学期和年份]
必需文本 [出版物名称], [作者姓名] [学期和年份] 页3
[出版物名称], [作者姓名]
课程材料 需要标题或项目符号吗?在“开始”选项卡上的样式库中,从此课程提纲中使用的所有样式中进行选择。 单击此处添加文本。 单击此处添加文本。
资源 要编辑学期和年份,只需双击页面上的页脚区域。 单击此处添加文本。 单击此处添加文本。
数字图像处理
课程概述 图像增强与复原
图像增强
图像增强是主观的,可分为两大类 一、 滤波 a) 均值(平滑滤波) 目标点周围灰度值的平均值来代替目标点的灰度值,从而达到降低噪声的目的。 时频域
1 ������ ������ 1
������(������ ),滤波窗口大小可以设置,一般采用中心点对称的方式。
e)
带通或带阻滤波器
二、 对比度的提高 a) 一阶微分
[学期和年份]
页1
通常用来进行图像的边缘检测。 Roberts 算子(交叉微分) 罗伯茨算子、Roberts 算子是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子。 他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定 位精度高,对噪声敏感,无法抑制噪声的影响。
页5
b)
统计排序(平滑滤波) 统计周围 9 个点的灰度值,把灰度值做一个排列,由小到大,从而得到三种滤波器,“小”、 “中”、“大”,把最小的灰度代替当前点的灰度值,叫最小值滤波器,一般处理白点噪声;中间 的代替当前点的灰度值,叫中值滤波器;最大值灰度代替当前点的灰度值,叫最大值滤波器,一般 处理黑点噪声。
c)
g x, y = f x, y + η(x, y) 1 ������ ������ ������ , ������ = 1 ������ 2������ + ������ ������
d)
频域滤波 噪声主要集中在高频部分,可采用傅立叶变换,将图像按频率域分解,从而在高频和低频域对图像 进行滤波,高频区主要用于提取图像边缘,低频滤波提取图像主轮廓。
[学期和年份]
页2
图像的复原
复原是客观的 一、 滤波 二、 退化 退化:g(x,y)=h(x,y)*f(x,y)=η(x,y) G(u,v)=H(u,v)*F(u,v)=η(u,v) 三、 噪声参数估计 H u, v =H(u,v)F(u,v)+N(u,v); 四、 维纳滤波 最小均方差滤波,加入了对噪声的考虑(认为信号和噪声无关)。要以维纳滤波作为主要的处理方式。是比 较成熟的处理方法。 1、 运动模糊的复原。 2、 广角镜头的成像复原。 做数学模型,进行图像还原。 空间位置的变换 灰度值的插值 课下参考别人的图像处理的算法。