第19章一次函数单元测试卷
人教版8年级数学第十九章一次函数单元测试卷-试卷及答案解析

第十九章一次函数单元测试卷一、选择题(本大题共10道小题)1. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =02. 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )时间(分钟)路程(千米)单位家01283421A .12分钟B .15分钟C .25分钟D .27分钟3. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )4. 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3-3y 1=kx+by 2=x+ax yO5. 甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km)与行驶时间t (h)之间的函数关系.则下列说法错误的是 ( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地 km6. 某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图1l 、2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )6545060y I 1I 2A .骑车的同学比步行的同学晚出发30分钟B .步行的速度是6千米/时C .骑车同学从出发到追上步行同学用了20分钟D .骑车的同学和步行的同学同时达到目的地7. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )8. 如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( ) A. x >-2 B. x >0 C. x >1 D. x <19. 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-2-4Oy x10. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )二、填空题(本大题共10道小题) 11. 在函数y =3x +1x -2中,自变量x 的取值范围是________. 12. 将直线2y x =向右平移2个单位所得的直线的解析式是 .13. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.14. 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.BAO yx15. 如果直线y ax b =+不经过第四象限,那么ab 0(填“≥”、“≤”、“=”).16. 已知二元一次方程组⎩⎨⎧x -y =-5x +2y =-2的解为⎩⎨⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________. 17. 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.-1B A2O y x18. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________. 19. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.20. 一个一次函数的图象与直线59544y x =+平行,与x 轴,y 轴分别交于A ,B 两点,并且通过()125--,,则在线段AB 上(包括端点A ,B 两点),横纵坐标都是整数的点有_______个.三、解答题(本大题共5道小题)21. 已知2y -与x 成正比例,当3x =时,1y =,求y 与x 之间的函数关系式,并判断它是不是正比例函数.22. 为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示. (1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.23. 我市花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下x y y x 函数关系式;⑵如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;⑶若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.24. 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?25. 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.人教版8年级数学第十九章一次函数单元测试卷-答案一、选择题(本大题共10道小题)1. 【答案】D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.2. 【答案】B【解析】由题上班是平路用时3分钟走1千米,所以平路的速度是13千米/分,同理上坡路的速度为15千米/分,下坡的速度为12千米/分,所以下班先走上坡路用时12105÷=分,再走下坡路用时1122÷=分,最后走平路用时1133÷=分,所以下班共用时15分钟。
八年级数学上册《第十九章 一次函数》单元测试卷及答案(人教版)

八年级数学上册《第十九章一次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.已知正比例函数y=(m−3)x的图象过第二、四象限,则m的取值范围是( )A.m≥3B.m>3C.m≤3D.m<33.已知小明家、体育场、超市在一条笔直的公路旁(小明家、体育场、超市到公路的距离忽略不计),图中的信息反映的过程是小明从家跑步去体育场,在体育场锻炼了一阵后又走到超市买些学习用品,然后再走回家.图中x表示小明所用的时间,y表示小明离家的距离.根据图中的信息,下列说法中错误的是().A.体育场离小明家的距离是2.5kmB.小明在体育场锻炼的时间是15minC.小明从体育场出发到超市的平均速度是50m/minD.小明从超市回家的平均速度是60m/min4.一次函数y=−2x+4的图象可由y=−2x的图象平移得到的,则平移的方法为()A.向上平移4个单位B.向下平移4个单位C.向右平移4个单位D.向左平移4个单位5.点P(a,b)在函数y=4x+3的图象上,则代数式8a−2b+1的值等于()A.7 B.5 C.-5 D.-66.一次函数y=2ax−b(a<0)的图象经过两个点A(−1,y1)和B(2,y2),则y1,y2的大小关系是()A.y1>y2B.y1<y2C .当b >0时y 1>y 2D .当b <0时7.如图,一次函数y =kx +b 与y =x +2的图象相,交于点P(m ,4),则关于x 、y 的二元一次方程组{kx −y =−b y −x =2的解是( )A .{x =2y =4B .{x =1y =4C .{x =3y =4D {x =4y =48.如图,若一次函数y 1=−x −1与y 2=ax −3的图象交于点P(m ,−2)则关于x 的不等式−x −1<ax −3的解集是( )A .x >2B .x >1C .x <1D .x <−29.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题10.已知函数y =(m −1)x |m|−3是关于x 的一次函数,则m 的值为 .11.在平面直角坐标中,点A(−3,−2)、B(−1,−2)直线y =kx(k ≠0)与线段AB 有交点,则k 的取值范围为 .12.将直线y =−2x −1向左平移a (a >0)个单位长度后,经过点(1,−5),则a 的值为 .13.如图,直线y =2x +1和y =kx +3相交于点A(34,52),则关于x 的不等式kx +3≤2x +1的解集为 .14.某苹果种植合作社通过网络销售苹果,如图所示的线段AB 反映了苹果的日销售量y (千克)与销售单价x (元/千克)间的函数关系,已知1千克苹果的成本是5元,如果某天该合作社的苹果销售单价为8元/千克,那么这天销售苹果的盈利是 元.三、解答题15.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?16.如图,在平面直角坐标系内,直线AB与x轴交于点A(1,0),与y轴交于点B(0,−2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.17.潮州市湘桥区农投公司现有22吨优质农产品需要销售,经市场调查,采用批发、零售两种销售方式,这两种销售方式每天的销量及每顿所获得利润如表:销售方式批发零售利润(元/吨)1200 2000假设农投公司售完22吨优质农产品,共批发了x吨,所获总利润为y元.(1)求出y与x之间的函数关系式;(2)如果农投公司销售这批优质农产品共获利28000元,请计算农投公司通过批发方式销售这批农产品共多少吨?18.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?19.某商场计划购进甲、乙两种商品共80件进行销售,已知甲种商品的进价为120元/件,乙种商品的进价为80元/件,甲种商品的销售单价为150元/件,乙种商品的销售单价y(元/件)与购进乙种商品的数量x(件)之间的函数关系如图所示.(1)求y(元/件)关于x(件)的函数关系式(不要求写出自变量x的取值范围);(2)当购进乙种商品30件时,求销售完80件甲、乙两种商品获得的总利润;(3)实际经营时,因原材料价格上张,甲、乙两种商品的进价均提高了10%,为保证销售完后总利润不变,商场决定将这两种商品的销售单价均提高m元,且m不超过乙种商品原销售单价的9%,求m的最大值.参考答案1.B2.D3.C4.A5.C6.A7.A8.B9.D10.-111.23≤k ≤212.113.x ≥3414.660015.(1)解:设该一次函数解析式为y=kx+b将(150,45)、(0,60)代入y=kx+b 中,得 {150k +b =45b =60解得: {k =−110b =60∴该一次函数解析式为y= −110 x+60.(2)解:当y= −110 x+60=8时解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.16.(1)解:设直线AB 的解析式为y =kx +b把A(1,0),B(0,−2)分别代入得{k +b =0b =−2,解得{k =2b =−2∴直线AB 的解析式为y =2x −2;(2)解:设C(t ,2t −2),∵S △BOC =3∴12×2×t =3,解得t =3,∴C 点坐标为(3,4).17.(1)解:由题意可得y =1200x +2000(22−x)y =−800x +44000(2)解:当y =28000时−800x +44000=28000解得:x =20答:农投公司通过批发方式销售这批农产品20吨.18.(1)解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为(x +11)元,根据题意,得20(x +11)+30x =2920解得 x =54x +11=65答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w则m ≥12(40−m),解得m ≥1313,故最小整数解为m =14w =0.8×65m +(54−6)(40−m)=4m +1920∵4>0,则w 随m 的增大而增大∴m =14时,w 取最小值,最小值=4×14+1920=1976.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.19.(1)解:设y 关于x 的函数关系式为y =kx +b依题意得{20k +b =120,60k +b =100解得{k =−12b =130,所以y 关于x 的函数关系式为y =−12x +130 (2)解:当x =30时,y =−12×30+130=115利润为(150−120)×(80−30)+(115−80)×30=2550(元)答:当购进乙种商品30件时,总利润为2550元.(3)解:依题意,甲种商品进价为120×(1+10%)=132(元/件)乙种商品的进价是80×(1+10%)=88(元/件)根据提价前后总利润不变得(150+m−132)(80−x)+(−12x+130+m−88)x=(150−120)(80−x)+(−12x+130−80)x,化简得,x=−20m+240∵m≤9%(−12x+130)∴m≤9%[−12(−20m+240)+130]∴m≤9∴m的最大值为9.。
第19章一次函数单元达标测试题2021-2022学年人教版八年级数学下册

2021-2022学年人教版八年级数学下册《第19章一次函数》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.函数y=中自变量x的取值范围是()A.x≥2且x≠1B.x≥2C.x≠1D.﹣2≤x<1 2.如图所示曲线中,表示y是x的函数的为()A.B.C.D.3.函数y=﹣2021x﹣2022的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P在直线y=﹣x+4上,下列说法不正确的是()A.函数y随x的增大而减小B.图象与x轴的交点是(4,0)C.点P一定不在第三象限D.当x>2时,y>25.直线y=﹣x+2上有三个点(﹣2,y1),(﹣1,y2),(2,y2),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3 6.根据函数y1=5x+6和y2=3x+10的图象,当x>2时,y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7.小花放学回家走了一段路,在途径的书店买了一些课后阅读书籍,然后发现时间比较晚了,急忙跑步回到家.若设小花与家的距离为s(米),她离校的时间为t(分钟),则反映该情景的大致图象为()A.B.C.D.8.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量y(千克)与售价x(元)之间的关系如图所示,若成本5元/千克,现以8元/千克卖出,能挣得钱数为()A.55元B.155元C.165元D.440元二.填空题(共8小题,满分40分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+18,如果某一温度的摄氏度数是40℃,那么它的华氏度数是℉.10.已知直线y=kx+3向右平移2个单位后经过点(4,2),则k=.11.若一次函数y=kx+b(k为常数且k≠0)的图象经过点(﹣2,0),则关于x的方程k(x ﹣5)+b=0的解为.12.若一次函数y=2x+b(b是常数)向上平移5个单位后,图象经过第一、二、三象限,则b的取值范围是.13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集是.14.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC=1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.15.某苹果种植合作社通过网络销售苹果,图3中线段AB为苹果日销售量y(千克)与苹果售价x(元)的函数图象的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是元.16.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(m)与时间t(h)之同的关系.当甲车出发1小时时,两车相距km.三.解答题(共6小题,满分40分)17.已知点A(8,0)及在第一象限的动点P(x,y),且x+y=6,△AOP的面积为S.求:(1)S关于x的函数表达式:.(2)直接写出x的取值范围为;(3)当S=12时,求点P的坐标.18.如图,在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)①在平面直角坐标系中,描出A、B、C三点;②求出三角形ABC的面积.(2)①求出直线AB的函数关系式;②求三角形ABO的面积.19.甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达终点.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)甲车行驶的速度为km/h;乙车行驶的速度为km/h.(2)图中a=(3)求甲车到达B地后,y与x之间的函数表达式,并写出x的取值范围.(4)当两车之间的路程为160km时,请直接写出乙车行驶的时间.20.五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元.(1)分别表示出甲旅行社收费y1和乙旅行社收费y2与旅游人数x(x>4)的函数关系式;(2)某单位有8至18人参加旅游(含8人和18人),问哪家旅行社的收费更优惠?21.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y 轴交于点B,且与正比例函数的图象交点为C(a,4),求:(1)求a的值与一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)在y轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.22.已知在平面直角坐标系中,点A(0,2),动点P在x轴正半轴上,作矩形OABP,点C 为PB中点,△ABC沿AC折叠后得到△ADC,直线CD与矩形OABP一边交于点E.(1)如图,当点E与原点O重合时,①求证:△OCP≌△ADO.②求OP长.(2)当EC=5ED,求点P坐标.参考答案一.选择题(共8小题,满分40分)1.解:由题意得,x﹣2≥0且x﹣1≠0,解得x≥2且x≠1,∴x≥2.故选:B.2.解:A、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x 的函数,故A不符合题意;B、对于自变量x的每一个值,y都有唯一的值与它对应,所以能表示y是x的函数,故B符合题意;C、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C不符合题意;D、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x的函数,故D不符合题意;故选:B.3.解:∵y=﹣2021x﹣2022中k=﹣2021<0,b=﹣2022<0,∴一次函数图象经过第二、三、四象限,不经过第一象限,故选:A.4.解:∵直线y=﹣x+4上k=﹣1<0,∴y随着x的增大而减小,∴A选项不符合题意;当y=﹣x+4=0时,x=4,∴函数与x轴交点为(4,0),∴B选项不符合题意;∵y=﹣x+4经过第一、二、四象限,∴P一定不在第三象限,∴C不符合题意;当x>2时,y<2,∴D选项符合题意.故选:D.5.解:∵k=﹣2<0,∴y值随x值的增大而减小.又∵﹣2<﹣1<2,∴y1>y2>y3.故选:A.6.解:∵函数y1=5x+6和y2=3x+10的交点为(2,16),图象为:根据数形结合,当x>2时,y1>y2.故选:B.7.解:由题意得,最初与家的距离s随时间t的增大而减小,途径书店购买课后阅读书籍时,时间增大而s不变,急忙跑步时,与家的距离s随时间t的增大而减小,故选:C.8.解:设卖出的苹果数量y(千克)与售价x(元)之间的函数解析式是y=kx+b,该函数过点(5,100),(10,25),∴,解得,即卖出的苹果数量y(千克)与售价x(元)之间的函数解析式是y=﹣15x+175(5≤x ≤10),x=8时,卖出的苹果数量y=﹣15×8+175=55,∴这天销售苹果的盈利是55×(8﹣5)=165(元).故选:C.二.填空题(共8小题,满分40分)9.解:根据题意,当x=40时,y=×40+18=42,所以它的华氏度数是42℉,故答案为:42.10.解:直线y=kx+3向右平移2个单位得到的新直线的解析式为y=k(x﹣2)+3.∵直线y=k(x﹣2)+3经过(4,2),∴2=2k+3,∴k=﹣.故答案为:﹣.11.解:直线y=k(x﹣5)+b是由直线y=kx+b向右平移5个单位所得,∵y=kx+b与x轴交点为(﹣2,0),∴直线y=k(x﹣5)+b与x轴交点坐标为(3,0),∴k(x﹣5)+b=0的解为x=3,故答案为:x=3.12.解:一次函数y=2x+b(b是常数)向上平移5个单位后得到y=2x+b+5,∵图象经过第一、二、三象限,∴b+5>0,∴b>﹣5,故答案为:b>﹣5.13.解:根据题意,可知当x=﹣3时,y=kx+b=2,根据图象可知不等式kx+b<2的解集是:x<﹣3.故答案为:x<﹣3.14.解:方法一:在x轴负半轴截取OF=,过点F作FH⊥AF交AD的延长线于点H,过点H作HP⊥x轴于点P,∵OC:OB=1:4,OF:OA=÷3=1:4,∴将△BOC逆时针旋转90°时,再将点B平移到与点A重合时,此时的∠F AO和∠CBO 重合,∴∠F AO=∠CBO,∵FH⊥AF,∴∠AFO+∠HFP=90°,而∠AFO+∠F AO=90°,∴∠F AO=∠HFP=∠CBO,∴BC∥FH,∴∠FHA=∠BED=45°,∴△AFH为等腰直角三角形,∴AF=FH,而∠AOF=∠FPH,∠FPH=∠AFO,∴△AOF≌△FPH(AAS),∴PF=AO=3,PH=OF=,故OP=FP﹣OF=3﹣=,故点H(,﹣),设直线AH的表达式为y=kx+b,则,解得,故直线AH的表达式为y=﹣x+3,令y=0,则y=﹣x+3=0,解得:x=,故点D(,0),故OD=,故答案为.方法二:过点A作x轴的平行线MN,交过点E与y轴的平行线于点M,交过点F与y 轴的平行线于点N,由点B、C的坐标得,直线BC的表达式为y=﹣x+1,同理可证:△EMA≌△ANF(AAS),则AN=ME=3+m﹣1=m+2,NF=AM=m,则点F的坐标为(﹣m﹣2,3﹣m),将点F的坐标代入直线BC的表达式并解得m=,故点E的坐标为(,),由点A、E的坐标得,直线AE的表达式为y=﹣x+3,令y=﹣x+3=0,解得x=,故OD=,故答案为.15.解:设苹果日销售量y(千克)与苹果售价x(元)的函数解析式是y=kx+b,该函数过点(5,4000),(10,1000),∴,解得,即苹果日销售量y(千克)与苹果售价x(元)的函数解析式是y=﹣600x+7000(5≤x ≤10),x=8时,苹果日销售量y=﹣600×8+7000=2200,∴这天销售苹果的盈利是2200×(8﹣5)=6600(元).故答案为:6600.16.解:甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),∴甲走完全程所用时间为80÷40=2(小时),∴乙比甲先出发1小时,乙的速度是40÷3=(km/h),由图象知,当甲车出发1小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故答案为:.三.解答题(共6小题,满分40分)17.解:(1)∵x+y=6,∴y=﹣x+6,∵A(8,0),∴OA=8,∴S==4(﹣x+6)=﹣4x+24;故答案为:S=﹣4x+24;(2)∵P在第一象限,∴x>0,﹣x+6>0,解得0<x<6,故答案为:0<x<6;(3)当S=12时,即﹣4x+24=12,解得x=3,∴P(3,3).18.解:(1)①A、B、C三点如图所示;②三角形ABC的面积=•BC•(x B﹣x A)=×4×4=8;(2)①设直线AB的函数关系式为y=kx+b,∵A(﹣1,1),B(3,4),∴,解得,∴直线AB的函数关系式为y=x+;②如图所示,作BD⊥x轴于D,AE⊥x轴于E.则四边形AEDB为梯形,∴S△ABO=S梯形AEDB﹣S△AEO﹣S△BOD=×(1+4)×4﹣×1×1﹣×3×4=10﹣﹣6=.19.解:(1)甲车的速度是180÷1.8=100km/h;乙车的速度是180﹣100=80km/h.故答案为:100;80.(2)a=180÷80=2.25.故答案为:2.25.(3)设y与x之间的函数关系式为y=kx+b,由题意,得,解得,则y=80x.x的取值范围:1.8≤x≤2.25.(4)当y=160时,80x=160,解得:x=2.答:乙车行驶的时间是2小时.20.解:(1)根据题意,得y1=100×4+0.5×100(x﹣4)=50x+200,y2=0.7×100x=70x,∴当x>4时,y1=50x+200,y2=70x;(2)当y1=y2,即50x+200=70x,解得x=10,当y1>y2,即50x+200>70x,解得x<10,∴当8≤x<10时,选乙旅行社更优惠;当x=10时,两旅行社费用相同;当10<x≤18时,选甲旅行社更优惠.21.解:(1)∵点C在正比例函数图象上,∴a=4,解得:a=3,∵点C(3,4),A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)∵点C(3,4),∴OC==5,当OP=OC时,∵OP=OC=5,∴P的坐标为(0,5)或(0,﹣5),当CP=CO时,作CK⊥y轴垂足为K,∵CP=CO,CK⊥y轴,∴PK=OK,∵点C(3,4),∴OK=4,∴PK=OK=4,∴P的坐标是(0,8),当PO=PC时,作CK⊥y轴垂足为K,设P的坐标为,(0,t)在Rt△PCK中,PC=OP=t,PK=4﹣t,KC=3,∴(4﹣t)2+32=t2解得t=,∴P的坐标是(0,)综上可知,P的坐标为(0,5)或(0,﹣5)或(0,8)或(0,).22.(1)①证明:∵四边形OABP为矩形,∴∠B=∠P=90°,AB=OP.∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴AB=AD,∠B=∠ADC=90°.∴AD=OP,∠ADO==∠P=90°.∵∠AOD+∠COP=90°,∠COP+∠OCP=90°,∴∠AOD=∠OCP.在△OCP和△ADO中,,∴△OCP≌△ADO(AAS);②解:∵A(0,2),∴OA=2.∵点C为PB中点,∴CP=PB=1.∵四边形OABP为矩形,∴BP=OA=2.∵△OCP≌△ADO,∴OC=AO=2.∴OP==;(2)解:①当点E在线段OP上时,连接AE,如图,∵A(0,2),∴OA=2.∵点C为PB中点,∴CB=PB=1.∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴CD=BC=1,AD=AB.∵四边形OABP为矩形,∴AB=OP.∴AD=AB=OP.∵EC=5ED,∴ED=CD=.∴EC=.∴EP==.设AD=AB=OP=x,则OE=x﹣.∵AO2+OE2=AE2,AD2+DE2=AE2,∴.解得:x=3.∴P(3,0);②当点E在线段OA上,点D在第一象限时,过点E作EF⊥BP于点F,如图,由(2)①知:ED=,EC=,AB=AD=OP.∵EF⊥BP,四边形OABP为矩形,∴EF=OP,∠AEF=∠CFE=90°.∴EF=AD.∵∠AED+∠CEF=90°,∠CEF+∠ECF=90°,∴∠AED=∠ECF.在△ECF和△AED中,,∴△ECF≌△AED(AAS).∴CF=DE=.∴EF===.∴OP=EF=.∴P(,0);③当点E在线段OA上,点D在第二象限时,过点C作CF⊥OA于点F,如图,∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴CD=BC=1.∵EC=5ED,∴DE=,EC=.由(2)①知:AB=AD=OP.∵CF⊥OA,四边形OABP为矩形,∴CF=OP,∠AFC=∠BCF=90°.∴CF=AD.在△ECF和△AED中,,∴△ECF≌△AED(AAS).∴EF=DE=.∴FC===.∴OP=CF=.∴P(,0).综上,点P坐标为(3,0)或(,0)或(,0).。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级数学下册第19章一次函数单元测试题含答案

第十九章一次函数一、选择题(每小题4分,共28分)1.下列函数中:(1)y =πx ,(2)y =2x -1,(3)y =1x ,(4)y =2-3x ,(5)y =x 2-1,是一次函数的有( )A .4个B .3个C .2个D .1个2.若一次函数y =kx +b 的图象经过第二、三、四象限,则k ,b 的取值范围是( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >03.对于函数y =-3x +1,下列结论正确的是( ) A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >13时,y <0D .y 的值随x 值的增大而增大4.若点A (2,4)在函数y =kx 的图象上,则下列各点在此函数图象上的是( ) A .(1,2) B .(-2,-1) C .(-1,2) D .(2,-4)5.一次函数y 1=ax +b 与一次函数y 2=-bx -a 在同一平面直角坐标系中的图象大致是( )图19-Z -16.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3 B .-32C .9 D .-94图19-Z -27.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s (米)与用去的时间t (分)的关系如图19-Z -2所示,根据图象提供的有关信息,下列说法中错误的是( )A .兄弟俩的家离学校1000米B .他们同时到家,用时30分C .小明的速度为50米/分D .小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题(每小题4分,共20分)8. 函数y =x +1x -1的自变量x 的取值范围是________. 9.如图19-Z -3,直线y =ax +b 与直线y =cx +d 相交于点(2,1),则关于x 的一元一次方程ax +b =cx +d 的解为____________.10.在平面直角坐标系xOy 中,直线y =12x +2向上平移两个单位长度得到直线m ,那么直线m 与x 轴的交点坐标是________.11.一次函数y =kx +b 的图象经过点A(0,4)且与两坐标轴围成的三角形的面积为2,则这个一次函数的解析式为____________.图19-Z -319-Z -412.如图19-Z -4,在平面直角坐标系中,直线y =-12x +2分别交x 轴、y 轴于A ,B两点,点P(1,m)在△AOB 内(不包含边界),则m 的取值范围是________.三、解答题(共52分)13.(8分)一次函数的图象经过(-2,1)和(1,4)两点. (1)求这个一次函数的解析式; (2)当x =3时,求y 的值.14.(10分)已知一次函数y=2x+4.(1)在如图19-Z-5所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.图19-Z-515.(10分)如图19-Z-6,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积.图19-Z-616.(10分)某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4名)学生听音乐会.(1)设学生人数为x名,付款总金额为y(元),分别建立两种优惠方案中y与x之间的函数关系式;(2)请计算并确定出最节省费用的购票方案.17.(14分)国庆节期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价(元/台)200016001000售价(元/台) 2300 1800 1100的2倍.设该商店购买冰箱x 台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?详解详析1.B[解析] (1)y =πx ,(2)y =2x -1,(3)y =2-3x 是一次函数,共3个,故选B.2.C[解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 3.C4.A[解析]∵点A (2,4)在函数y =kx 的图象上,∴4=2k ,解得k =2,∴一次函数的解析式为y =2x .A .∵当x =1时,y =2,∴此点在函数图象上,故A 选项正确;B .∵当x =-2时,y =-4≠-1,∴此点不在函数图象上,故B 选项错误;C .∵当x =-1时,y =-2≠2,∴此点不在函数图象上,故C 选项错误;D .∵当x =2时,y =4≠-4,∴此点不在函数图象上,故D 选项错误. 5.D6.D[解析] 在函数y =2x +3中,当y =0时,x =-32,即交点坐标为(-32,0).把(-32,0)代入函数y =3x -2b ,求得b =-94.7.C[解析]A .根据函数图象右上端点的纵坐标可知,兄弟俩的家离学校1000米,故A 正确;B .根据函数图象右上端点的横坐标可知,兄弟俩同时到家,用时30分钟,故B 正确;C .根据小明与学校的距离s (米)与用去的时间t (分)的函数关系可知,小明的速度为1000÷30=1003(米/分),故C 错误;D .根据折线的第三段的端点坐标可知,小亮用5分钟走了400米,速度为400÷5=80(米/分),故D 正确.8.x ≠1[解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.9.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.(-8,0) [解析]∵直线y =12x +2向上平移两个单位长度得到直线m ,∴直线m 的解析式为y =12x +4,∵当y =0时,12x +4=0,解得x =-8,∴直线m 与x 轴的交点坐标是(-8,0).11.y =4x +4或y =-4x +4 [解析]∵一次函数y =kx +b 的图象经过点A (0,4),∴b =4,设图象与x 轴交于点B ,设B (a ,0).∵三角形的面积为2,∴12×|a |×b =2,∴a =±1,∴点B 的坐标是(1,0)或(-1,0),∴k +b =0或-k +b =0,∴k =-4或4, ∴这个一次函数的解析式为y =4x +4或y =-4x +4.12.0<m <32[解析]因为点P (1,m )在△AOB 内(不包含边界),解得0<m <32.13.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3.(2)当x =3时,y =3+3=6. 14.解:(1)如图所示:(2)令x =0,则y =4;令y =0,则x =-2.∴A (-2,0),B (0,4). (3)∵A (-2,0),B (0,4),∴OA =2,OB =4,∴△AOB 的面积=12OA ·OB =12×2×4=4.(4)由图象得x 的取值范围为x <-2.15.解:(1)由y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D (1,0).(2)设直线l 2的函数解析式为y =kx +b ,由图象知:x =4时,y =0;x =3时,y =-32.∴直线l 2的函数解析式为y =32x -6.∴C (2,-3).∵AD =3,∴S △ADC =12×3×||-3=92.16.解:(1)按优惠方案1可得y 1=20×4+(x -4)×5=5x +60(x ≥4); 按优惠方案2可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24, ∴当学生人数为24时,两种优惠方案付款一样多; ②当y 1-y 2<0时,得0.5x -12<0,解得x <24, ∴学生人数不少于4且少于24时,选方案一较划算; ③当y 1-y 2>0时,得0.5x -12>0,解得x >24, ∴当学生人数多于24时,选方案二较划算. 17.解:(1)根据题意,得2000×2x +1600x +1000×(100-3x )≤170000.解得x ≤261213.∵x 为正整数, ∴x 最大为26.答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)×2x +(1800-1600)x +(1100-1000)×(100-3x )=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500×26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。
人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广丰区2016-2017学年度第二学期八年级数学单元测试卷(四)
(第十九章 一次函数)
命题人:周焕山
学校___________ 班级___________ 姓名_____________ 班号_________
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1.下列函数(1)y=πx ;(2)y=2x-1;(3)y=1x ;(4)y=2-1
-3x 中,是一次函数的有( )
A .4个
B .3个
C .2个
D .1个 2.下面哪个点不在函数32+-=x y 的图像上( ) A .(-5,13) B .(0.5,2) C .(3,0) D .(1,1) 3.已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )
A .k>0,b>0
B .k>0,b<0
C .k<0,b>0
D .k<0,b<0
4.函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )
A.34
m <
B.3
14m -<< C.1m <- D.1m >-
5.如图1,在直角梯形ABCD 中,90,,ABC AB CD ∠=︒ 动点P 从点B 出发,沿BC ,CD 运动至点D 停
止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3 B .4 C .5
D .6
6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学
校. 图2描述了他上学的情景,下列说法中错误..
的是( ) A .自行车发生故障时离家距离为1000米 B .修车时间为15分钟 C .到达学校时共用时间20分钟 D . 学校离家的距离为2000米 二、填空题(本大题共8小题,每小题3分,共24分)
7.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.
8.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则ab=______. 9.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.
10.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则kb______0.(填“>”、“<”或“=”) 11.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 12.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30
220
x y x y --=⎧⎨
-+=⎩的解是________.
13.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 14.一次函数y=kx+b 的图象经过A (2,4)、B (0,2),与x 轴交于点C ,若点O 是坐标原点,则△AOC
的面积为_________. 三、(本大题共4小题,每小题6分,共24分)
15. 已知,函数()1321y k x k =-+-,问k 为何值时,图象交x 轴于点(
3
4
,0).
16.已知y+2与x-1成正比例,且x=3时y=4,求y 与x 之间的函数关系式.
17.蜡烛点燃后缩短长度y (cm )与燃烧时间x (分钟)之间的关系为()0y kx k =≠,已知长为21cm
的蜡烛燃烧6分钟后,蜡烛缩短了3.6cm ,求原蜡烛几分钟燃烧完.
18.一次函数y=kx +b 的自变量的取值范围是-3 ≤x ≤6,相应函数值的取值范围是
-5≤y≤-2,且该函数图象左高右低,求这个一次函数的解析式.
四、(本大题共3小题,每小题8分,共24分)
图
1
D 图2
(分钟)
6题图
19. 右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图.
观察图中所提供的信息,回答: 当t 为何值时,S 的值为20.
20.如图,直线y=2x+3与直线y=﹣2x ﹣1交于点C ,点A 、B 是两直线与y 轴的交点,
求△ABC 的面积.
21. 已知一次函数y=kx +b 的图象如图1所示。
(1)求k 、b 的值;
(2)在所给的平面直角坐标系内画出函数y=bx +k 的图象. 五、(本大题共2小题,每小题9分,共18分)
22.甲、乙两厂分别承印数学新课程标准实验教材20万册和25万册,供应A,B 两地实验区使用.设A,B 两地实验区学生数分别为17万和28万,已知从甲厂运往A 、B 两地的运费分别为200元/万册和180元/万册,从乙厂运往A 、B 两地的运费分别是220元/万册和210元/万册.如何安排调动计划,使总运费最少?
23. 如图,直线y=kx+6分别与x 轴、y 轴相交于点E 和点F ,点E (﹣8,0),点A (0,3). (1)若点P (x ,y )是第二象限内的线段EF 上的一个动点,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(2)探究:当P 运动到什么位置时,△OPA 的面积为6,并说明理由.
六、(本大题共12分)
24.如图,直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线
m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于
M N 、两点,设运动时间为t 秒(04t <≤).
(1)求A B 、两点的坐标;
(2)用含t 的代数式表示MON △的面积1S ;
(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S . ①当2t <≤4时,试探究2S 与t 之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516
?。