高三数学二轮考试考前模拟
辽宁省沈阳市第二中学2022届高三第二次模拟考试数学试题(高频考点版)

一、单选题二、多选题1. 设函数,若函数有3个零点分别为,,,则的取值范围为( )A.B.C.D.2. 已知等差数列中,若,则它的前项和为( )A.B.C.D.3.已知,若,,则p 是q 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知函数若,则x 的取值范围是( )A.B.C.D.5. 已知,则( )A.B.C.D.6. 集合A={-1,0,1},B={y|y=cosx ,x ∈A},则A B=A .{0}B .{1}C .{0,1}D .{-1,0,1}7. 根据一组样本数据,,…,,求得经验回归方程为,且.现发现这组样本数据中有两个样本点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的经验回归直线l 的斜率为1.2,则( )A .变量x 与y 具有正相关关系B.去除两个误差较大的样本点后,重新求得的经验回归方程为C .去除两个误差较大的样本点后,y 的估计值增加速度变快D .去除两个误差较大的样本点后,相应于样本点(2,3.75)的残差为0.058. 把函数f (x )=sin 2x 的图象向右平移个单位后,得到函数y =g (x )的图象.则g (x )的解析式是( )A.B.C.D.9. 从装有5只红球、5只白球的袋中任意取出3只球,下列各对事件为对立事件的有( )A .“取出2只红球和1只白球”与“取出1只红球和2只白球”B .“取出3只红球”与“取出的3只球中至少有1只白球”C .“取出3只红球”与“取出3只白球”.D .“取出的3只球中至少有2只红球”与“取出的3只球中至少有2只白球”10.已知椭圆的左、右焦点分别为,直线y =m 与C 交于A ,B 两点(A 在y 轴右侧),O 为坐标原点,则下列说法正确的是( )A.B .当时,四边形ABF 1F 2为矩形C .若,则辽宁省沈阳市第二中学2022届高三第二次模拟考试数学试题(高频考点版)辽宁省沈阳市第二中学2022届高三第二次模拟考试数学试题(高频考点版)三、填空题四、解答题D .存在实数m 使得四边形ABF 1O 为平行四边形11. 关于函数的图象和性质,下列说法正确的是( )A.是函数的一条对称轴B .是函数的一个对称中心C .将曲线向左平移个单位可得到曲线D .函数在的值域为12.已知函数,则下列结论正确的是( )A .是偶函数B.是周期函数C .在区间上单调递增D.的最大值为113. 已知函数,则______.14. 设函数的两个极值点分别为.若恒成立,则实数a 的取值范围是___________.15.设为等差数列的前项和,且,则_______.16. 某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?17.已知函数(为无理数,)(1)求函数在点处的切线方程; (2)设实数,求函数在上的最小值;(3)若为正整数,且对任意恒成立,求的最大值.18. 设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19. 设函数.(1)求证:有极值点;(2)设的极值点为,若对任意正整数a 都有,其中,求的最小值.20. 已知函数.(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)的单调递减区间.21. 某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,则得到体育成绩的折线图如下,若体育成绩大于或等于70分的学生为“体育良好”(1)已知该校高一年级有1000名学生,试估计该校高一年级学生“体育良好”的人数;(2)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取3人,求所抽取的3名学生中,至少有1人为非“体育良好”的概率.。
河北省2023届高三模拟(二)数学试题

一、单选题二、多选题1. 设,,,则( )A .b >c >aB .b >a >cC .c >b >aD .a >b >c2.已知等比数列的前n项和为,若,,则的公比为( )A .或B.或C .-3或2D .3或-23. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A .1.5B .1.2C .0.8D .0.64. 已知定义在R上的函数满足,且函数是偶函数,当时,,则( )A.B.C.D.5.函数在单调递减,且为奇函数.若,则满足的的取值范围是( )A .[-2,2]B .[-1,2]C .[0,4]D .[1,3]6. 已知圆和点,由圆外一点向圆引切线,切点分别为,若,则的最小值是( )A.B.C.D.7. 在中,记,,若,则( )A.B.C.D.8.已知是方程的一个根,则( )A.B.C .2D .39. 棱长为的正方体的展开图如图所示.已知为线段的中点,动点在正方体的表面上运动.则关于该正方体,下列说法正确的有()A .与是异面直线B .与所成角为C .平面平面D .若,则点的运动轨迹长度为10. 中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数”.恩格尔系数是河北省2023届高三模拟(二)数学试题河北省2023届高三模拟(二)数学试题三、填空题四、解答题国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知()A .城镇居民2015年开始进入“最富裕”水平B .农村居民恩格尔系数的平均数低于32%C .城镇居民恩格尔系数的第45百分位数高于29%D .全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数11. 已知、是平面直角坐标系中的两点,若,,则称是关于圆的对称点.下面说法正确的是( )A .点关于圆的对称点是B .圆上的任意一点关于圆的对称点就是自身C.圆上不同于原点的点关于圆的对称点的轨迹方程是D .若定点不在圆上,其关于圆的对称点为,为圆上任意一点,则为定值12. 若正实数,满足,则下列不等式中可能成立的是( )A.B.C.D.13.在的展开式中,含的项的系数是______.(用数字作答)14.中,,,D 为BC的中点,则______.15.已知函数,若关于的方程在上有三个不同的实根,则实数的取值范围是______.16.如图,直三棱柱中,,且.(1)证明:平面;(2),分别为棱,的中点,点在线段上,若平面与平面的夹角的余弦值为,求的值.17. 已知函数,.(1)当时,求函数的极值;(2)若实数,,满足,且,不等式恒成立,求实数的取值范围.18. 已知函数.(1)画出f(x)的图象,并写出的解集;(2)令f(x)的最小值为T,正数a,b满足,证明:.19. 在等腰直角三角形中,斜边,现将绕直角边所在直线旋转一周形成一个圆锥.(1)求这个圆锥的表面积;(2)若在这个圆锥中有一个圆柱,且圆柱的一个底面在圆锥的底面上,当圆柱侧面积最大时,求圆柱的体积.20.如图所示,在直四棱柱ABCD-中,底面ABCD为菱形,,,E为线段上一点.(1)求证:;(2)若平面与平面ABCD的夹角的余弦值为,求直线BE与平面所成角的正弦值.21. 已知数列中,,设数列满足:(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的通项公式(3)若数列满足,求数列的前项和;。
2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试高三数学(答案在最后)全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .B . C.1x x ≤-,或3x >D .【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可,【详解】由题意得{}3A x x =>,{}1B x x =≤-,又{}1B x x =>-R ð则(){}1A B x x ⋃=>-R ð,故选:B.【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=-+,又因为2z 为纯虚数,所以22020a b ab ⎧-=⎨≠⎩,即0a b =≠(舍)或0a b =-≠,所以i z a a =-,所以i z a a =+,所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z ---====-+++-.故选:D3.已知向量()2,4a =- ,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为()A.jB.j -C.2jD.2j- 【答案】C 【解析】【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j = 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a与b共线,则240t --=,所以2t =-,(1,2)a b +=-,所以向量a b +在向量()0,1j = 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅⋅=⋅=,故选:C4.“1ab >”是“10b a>>”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断.【详解】当0a >时,由1ab >,可得10b a>>,当a<0时,由1ab >,得10b a<<;所以“1ab >”不是“10b a>>”的充分条件.因为01010a b ab a a>⎧⎪>>⇔-⎨>⎪⎩,所以1ab >,所以“1ab >”是“10b a>>”的必要不充分条件.故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题.5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278D.336【答案】D【解析】命题意图本题考查排列与组合的应用.录用3人,有353360C A =种情况;录用4人,有4232354333162C C A C A -=种情况;录用5人,有12323331345333333225)4(C C A C A (C A C A )11A -+-=种情况.所以共有336种.6.已知D :222210x y ax a +---=,点()3,0P -,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是()A.()5,11,3⎡⎫--⋃-+∞⎪⎢⎣⎭ B.[)5,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦C.(][) ,21,-∞-⋃+∞D.[)()2,11,---+∞ 【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1r a =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥︒,由此可求解.【详解】D 的标准方程为()()2221x a y a -+=+,圆心坐标为(),0D a ,半径为1r a =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=︒.要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥︒,故1sin sin 302r MPD PD ∠=≥︒=,即()1132a a +≥+,整理得23250a a +-≥,解得[)5,1,3a ⎛⎤∈-∞-⋃+∞ ⎥⎝⎦.故选:B.7.已知ABC 中,60BAC ∠=︒,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC 所成角的正弦值的最大值为3,则三棱锥-P ABC 的外接球的表面积为()A.4πB.6πC.8πD.9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥-P ABC 外接球的球心,求出外接球的半径,再计算它的表面积.【详解】三棱锥-P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ的最大值是63,∴sin 3PA PQ PQ θ==≤,解得PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1,直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°,所以,A Q 重合,则∠ACB =90°,则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径2R OB =====,∴三棱锥-P ABC 的外接球的表面积2264π4π6π2S R ⎛==⨯= ⎝⎭.故选:B .B.椭圆M的蒙日圆方程为D.长方形G的面积的最大值为【分析】由椭圆标准方程求得,a b后再求得c,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a2b=,则c==e==A正确;当长方形G的边与椭圆的轴平行时,长方形的边长分别为4,=因此蒙2210x y+=,B正确;设矩形的边长分别为,m n,因此22402m n mn+=≥,即20mn≤,当且仅当m n=时取等号,所以长方形G的面积的最大值是20,此时该长方形G为正方形,边长为C正确,D错误.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【分析】A,根据12||=MN x x p++结合基本不等式即可判断;B,由抛物线定义知当,,P M A三点共线时MF MP+;C,D,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A,设112212(,),(,),(,0)M x y N x y x x>,因为这些MN倾斜角不为0,则设直线MN的方程为32x ky=+,联立抛物线得2690y ky--=,则12126,9y y k y y+=⋅=-,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=,则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确;对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小,即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确;对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误;对D ,1212123339(()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a -=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则()A.若E的两条渐近线相互垂直,则a =B.若EE 的实轴长为1C.若1290F PF ∠=︒,则124PF PF ⋅=D.当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===A 正确;B 选项,若E的离心率为c e a =====,解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=︒,则122221224PF PF aPF PF c⎧-=⎪⎨+=⎪⎩,整理得222121224448,4PF PF c a b PF PF ⋅=-==⋅=,故C 正确;D 选项,根据双曲线的定义可知,121222PF PF aQF QF a ⎧-=⎪⎨-=⎪⎩,两式相加得11114,4PF QF PQ a PF QF a PQ +-=+=+,所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥=,当且仅当84a a=,即a =所以1F PQ周长的最小值为D 正确.故选:ACD【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫ ⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅==⋅,则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩ ,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111141717A B n n ⋅=,D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240【解析】【详解】因为二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x x ⎛+ ⎝,则二项式展开式的通项3662166C (C 2r r rr r rr T xx x--+==,令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r --++⎧≥⎨≥⎩,解得111433r ≤≤,因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x-⨯==,所以填24013.若函数()sin f x ax x =+的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0【解析】【详解】注意到,()cos f x a x =+'.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ''=-⇔++=-()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +-⎛⎫⎛⎫⇔++-= ⎪ ⎪⎝⎭⎝⎭12cos cos 1,0x x a ⇔=-=±=.故答案为014.若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +-=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D A y y ==,可求3AB CD +的值;当直线方程为()1x n y =-时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论.【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =-,圆()22114x y +-=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =-=+=-=+,当l y ⊥轴时,则1A D y y ==,所以113131622AB CD ⎛⎫+=+++= ⎪⎝⎭;当l 不垂直于y 轴时,设l 的方程为:()1x n y =-,代入抛物线方程得:()2222240n y n y n -++=,所以2224,1A D A D n y y y y n++=⋅=。
江苏省新高考2023届高三下学期二模模拟数学试题及答案

江苏新高考二模数学模拟卷一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.已知全集U =R ,集合{|34}=-<≤A x x ,{}25B x x =<<,则()U B A ⋃=ð()A.{|3x x ≤-或2}x >B.{|3x x ≤-或4}x >C.{}35x x -<< D.{}24x x <≤2.当122m -<<时,复数i2im z +=-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在ABC 所在平面内,D 是BC 延长线上一点且4BD CD =,E 是AB 的中点,设AB a=,AC b= ,则ED =()A.1455a b + B.3144a b +C.5463a b-+ D.5564a b-+ 4.已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,若将其图象向右平移3π个单位长度后关于y ()f x 的解析式可能为()A.()sin 26f x x π⎛⎫=- ⎪⎝⎭ B.()cos 23f x x π⎛⎫=- ⎪⎝⎭C.()cos 26f x x π⎛⎫=+⎪⎝⎭D.7()sin 26f x x π⎛⎫=+⎪⎝⎭5.在1220 ,,,这20个正整数中随机选取三个数,能构成递增等差数列的概率是()A.257B.119C.338D.136.菠萝眼常有两种剔除法:用图1甲所示的去眼刀逐个挖掉菠萝眼,或者用图1乙所示的三角刀沿着菠萝眼挖出一条一条的螺旋线.现有一个波萝准备去眼,假设:()1该菠萝为圆柱体,菠萝有64个菠萝眼,都均匀的错位排列在侧面上(如图2甲());2若使用去眼刀,则挖出的每一个菠萝眼可看成侧棱为3cm ,且侧棱与底面成60︒夹角的正四棱锥();3若使用三角刀,可挖出8根螺纹条,其侧面展开图如图2丙所示,设螺纹条上两个相邻菠萝眼A ,B的距离为()cm .h 若将8根螺纹条看成8个完全一样的直三棱柱,每个直三棱柱的高为()8cm h ,其底面为等腰三角形,该等腰三角形的底边长为()1.4cm ,顶角为30︒,则当菠萝眼的距离h 接近于()cm 时,两种刀法留下的菠萝果肉一样多(参考数据:3 1.7)≈A.1.7B.1.8C.1.9D.2.07.设2log 3a =,123b =,132c =,则()A.a c b <<B.a b c <<C.c b a<< D.c<a<b8.记i A d 为点i A 到平面α的距离,给定四面体1234A A A A -,则满足()122,3,4i A A d d i ==的平面α的个数为()A.1B.2C.5D.8二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.已知A BCD -是棱长均为1的三棱锥,则()A.直线AB 与CD 所成的角90B.直线BC 与平面ACD 所成的角为60C.点C 到平面ABD 的距离为63D.能容纳三棱锥A BCD -的最小的球的半径为6410.已知0a >,0b >,且21a b +=,则()A.2a b ≤B.1222a b<<C.22log log 1a b +≥- D.21a b ->-11.已知椭圆2211612x y +=,点F 为右焦点,直线()0y kx k =≠与椭圆交于P Q ,两点,直线PF 与椭圆交于另一点M ,则()A.PQM 周长为定值B.直线PM 与QM 的斜率乘积为定值C.线段PM 的长度存在最小值D.该椭圆离心率为1212.已知定义域为R 的奇函数()f x ,当0x >时,()22,2122,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是()A.存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B.当122x x <<-时,有()()12f x f x >C.当0x a <≤时,()f x 的最小值为1,则13a ≤≤D.若关于x 的方程()32f x =和()f x m =的所有实数根之和为零,则32m -=三、填空题(本大题共4小题,共20.0分)13.二项式2nx ⎛+ ⎝的展开式的第5项为常数项,则n =__________.14.过点()3,2P -且与圆C :222410x y x y +--+=相切的直线方程为__________15.已知曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x =__________16.设过双曲线2222:1(0,0)x y C a b a b-=>>左焦点F 的直线l 与C 交于M N ,两点,若3FN FM = ,且0OM FN ⋅= (O 为坐标原点),则C 的离心率为__________四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.在ABC 中,角A ,B ,C 所对的边为a ,b ,csin cos B b A b =+.(1)求A ;(2)若2c =,1cos b C-=sin C .18.已知矩形ABCD,1AB AD ==,,M 为AD 的中点,现分别沿BM ,CM 将ABM 和DCM △翻折,使点,A D 重合,记为点P.(1)求证:;BC PM ⊥(2)求直线BC 与平面PMC 所成角的正弦值.19.为促进经济发展,某地要求各商场采取多种举措鼓励消费.A 商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取2个球.具体规则如下:摸出3个红球记为一等奖,没有红球记为二等奖,2个红球记为三等奖,1个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为5折、7折、8折和9折.记随机变量ξ为获得各奖次的折扣率,求随机变量ξ的分布列及期望()E ξ;(2)某一时段内有3人参加该促销活动,记随机变量η为获得7折及以下资格的人数,求()2P η=.20.已知数列{}n a 满足112a =-,()1120n n n a na +++=.数列{}n b 满足11b =,1n n n b k b a +=⋅+.(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤-.21.如图,过y 轴左侧的一点P 作两条直线分别与抛物线24y x =交于,A C 和,B D 四点,并且满足3PC PA = ,3PD PB =.(1)设CD 的中点为M ,证明PM 垂直于y 轴.(2)若P 是双曲线2214x y -=左支上的一点,求PAB 面积的最小值.22.已知函数()()1211e2x f x x a x ax -=---+.(1)当1a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在()0,∞+的最小值为12-,求a 的最大值.江苏新高考二模数学模拟卷一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.已知全集U =R ,集合{|34}=-<≤A x x ,{}25B x x =<<,则()U B A ⋃=ð()A.{|3x x ≤-或2}x >B.{|3x x ≤-或4}x >C.{}35x x -<< D.{}24x x <≤【答案】A 【解析】【分析】先求出集合A 的补集,再与集合B 求并集.【详解】{|3U A x x =≤-ð或4}x >,{}25B x x =<<,所以(){|3U A B x x =≤- ð或2}x >,故选:A .2.当122m -<<时,复数i 2im z +=-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】先对复数进行化简,再确定实部和虚部的符号即可得解.【详解】()()()()i i i 21i 2i 22525i 2i m m m m z -++-+===+-++因为12,2m ⎛⎫∈- ⎪⎝⎭,所以2120,055m m-+,故复数z 在复平面内的对应点位于第二象限,故选:B .3.在ABC 所在平面内,D 是BC 延长线上一点且4BD CD =,E 是AB 的中点,设AB a=,AC b= ,则ED =()A.1455a b + B.3144a b +C.5463a b-+ D.5564a b-+【答案】C 【解析】【分析】根据给定条件,借助向量的线性运算用AB 、AC 表示ED即可判断作答.【详解】在ABC 所在平面内,D 在BC 延长线上,且4BD CD =,则43BD BC =,又E是AB 的中点,所以2)14141454()2332363(ED EB BD AB BC AB AC AB a b a a b =+=+=+-=+-=-+ .故选:C4.已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,若将其图象向右平移3π个单位长度后关于y 轴对称,则()f x 的解析式可能为()A.()sin 26f x x π⎛⎫=- ⎪⎝⎭ B.()cos 23f x x π⎛⎫=- ⎪⎝⎭C.()cos 26f x x π⎛⎫=+ ⎪⎝⎭D.7()sin 26f x x π⎛⎫=+⎪⎝⎭【答案】B 【解析】【分析】先根据函数图象的平移得到平移后函数图象对应的解析式,再根据其图象关于y 轴对称及||2ϕπ<得到ϕ的值,进而可得函数()y f x =可能的解析式.【详解】解:由题意知22πωπ==.将()sin(2)f x x ϕ=+的图象向右平移3π个单位长度后得到sin 23y x πϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦的图象,因为其图像关于y 轴对称,所以2,32k k Z ππϕπ-=+∈.又||2ϕπ<,所以6πϕ=.即()sin(26f x x π=+,由诱导公式知()sin 2cos 263f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,故选:B .【点睛】本题主要考查三角函数图象的平移、三角函数图象的对称性等,考查数学运算、直观想象、逻辑推理等核心素养.5.在1220 ,,,这20个正整数中随机选取三个数,能构成递增等差数列的概率是()A.257B.119C.338D.13【答案】C 【解析】【分析】根据题意可得公差9d ≤,进一步确定满足题意的可能情况数,再由古典概型概率公式计算即可.【详解】因为三个数成递增等差数列,设为,,2a a d a d ++,按题意必须满足220a d +≤,9d ≤,若给定了d ,则a 可以取1,2,,202d - ,故三数成递增等差数列的个数为912)109d d -=⨯∑,所以三数成递增等差数列的概率为3201093C 38⨯=,故选:C .6.菠萝眼常有两种剔除法:用图1甲所示的去眼刀逐个挖掉菠萝眼,或者用图1乙所示的三角刀沿着菠萝眼挖出一条一条的螺旋线.现有一个波萝准备去眼,假设:()1该菠萝为圆柱体,菠萝有64个菠萝眼,都均匀的错位排列在侧面上(如图2甲());2若使用去眼刀,则挖出的每一个菠萝眼可看成侧棱为3cm ,且侧棱与底面成60︒夹角的正四棱锥();3若使用三角刀,可挖出8根螺纹条,其侧面展开图如图2丙所示,设螺纹条上两个相邻菠萝眼A ,B 的距离为()cm .h 若将8根螺纹条看成8个完全一样的直三棱柱,每个直三棱柱的高为()8cm h ,其底面为等腰三角形,该等腰三角形的底边长为()1.4cm ,顶角为30︒,则当菠萝眼的距离h 接近于()cm 时,两种刀法留下的菠萝果肉一样多?(1.7)≈A.1.7B.1.8C.1.9D.2.0【答案】B 【解析】【分析】根据棱锥及棱柱的体积的计算公式即可得到答案.【详解】欲使留下的果肉一样多,只需两种刀法下削掉的菠萝果肉的体积一样大.若用去眼刀削菠萝,削掉的每个菠萝眼视为一个正四棱锥,该椎体的高为333sin602⨯︒=,底面对角线长为23cos603⨯︒=,故正四棱锥的体积为1933933224⨯⨯=,菠萝眼共有64个,故用去眼刀去掉的菠萝果肉的体积为644⨯,若用三角刀削菠萝削掉的每根螺纹条视为一个直三棱柱,其底面的高为()(0.70.70.72tan15tan 4530==⨯︒︒-︒,底面积为((11.40.7222⨯⨯⨯+=⨯+,直三棱柱的体积为(0.4928h ⨯+⨯,故用三角刀去掉的菠萝果肉的体积为(0.49288h ⨯+⨯⨯,由题可得:(930.49288644h ⨯⨯⨯=⨯,则()()9393921.73 3.64 1.840.49 1.96 1.96h ⨯⨯⨯-==≈=⨯,故选:B .7.设2log 3a =,123b =,132c =,则()A.a c b <<B.a b c <<C.c b a<< D.c<a<b【答案】D 【解析】【分析】利用对数函数的单调性和指数以及对数的运算,并借助中间量进行比较,即得答案.【详解】223log 3log 2a =>=,333272(28c =<=,所以32c <,由于5832<,所以25log 38<,即28log 3 1.65<=,而123 1.7b ==>,所以c<a<b ,故选:D .8.记i A d 为点i A 到平面α的距离,给定四面体1234A A A A -,则满足()122,3,4i A A d d i ==的平面α的个数为()A.1 B.2C.5D.8【答案】D 【解析】【分析】分类讨论,当平面α与平面234A A A 平行时,分析可得2个,当平面α经过234A A A △的中位线时分析可得6个,从而得解.【详解】到点23,A A 和4A 的距离相等的平面α有两种类型,与平面234A A A 平行或者经过234A A A △的某一条中位线.当平面α与平面234A A A 平行时,如下图1,设121314,,A A A A A A 的三等分点分别为234,B B B ,(靠近1A ),对于平面234B B B ,利用三角形相似可知1212222A A d A B d A B ==,平面234B B B 符合题意.在线段1i A A 的延长线上取i C 使得()12,3,4i i i A A AC i ==,对于平面234C C C ,利用三角形相似可知1212222A A d A C d A C ==,平面234C C C 符合题意,即平面α与平面234A A A 平行时,满足条件的平面有2个;设232434,,A A A A A A 的中点分别为,,E F G ,当平面α经过234A A A △的中位线EF 时,如下图2:对于平面2B EF ,2B 在线段12A A 上且12222A B A B =,利用三角形相似可知1212222A A d A B d A B ==,又34//EF A A ,EF ⊂平面2B EF ,34A A ⊄平面2B EF ,可得34A A //平面2B EF ,且E 、F 分别为2324,A A A A 的中点,则2A 、3A 、4A 到平面2B EF 的距离相等,因此平面2B EF 符合题意.如下图3:对于平面34B B FE ,3B 在线段13A A 上,4B 在线段41A A 上,且131433442A B A B A B A B ==,利用三角形相似可知1313332A A d A B d A B ==,又34//EF A A ,EF ⊂平面34B B FE ,34A A ⊄平面34B B FE ,可得34A A ∥平面34B B FE ,且E 、F 分别为2324,A A A A 的中点,则2A 、3A 、4A 到平面34B B FE 的距离相等,因此平面34B B FE 符合题意.对于中位线EG GF 、,也有类似结论,即平面α经过234A A A △的某条中位线时,满足条件的平面有6个,综上所述,符合题意的平面共有8个.故选:D .【点睛】难点点睛:本题判断满足条件的平面的个数时,难点在于要发挥空间想象能力,明确满足条件的平面的位置,作图分析,说明平面所处的位置是怎样的,加以说明,解决问题.二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.已知A BCD -是棱长均为1的三棱锥,则()A.直线AB 与CD 所成的角90B.直线BC 与平面ACD 所成的角为60C.点C 到平面ABD 的距离为63D.能容纳三棱锥A BCD -的最小的球的半径为64【答案】ACD 【解析】【分析】根据正四面体的结构特征、线面垂直判定及性质、线面角定义逐一计算或判断各项正误即可.【详解】A :若E 为CD 中点,连接,AE BE ,由题设知:各侧面均为等边三角形,所以,AE CD BE CD ⊥⊥,AE BE E =I ,,AE BE ⊂面ABE ,则CD ⊥面ABE ,又AB ⊂面ABE ,故AB CD ⊥,正确;B :若F 为面ACD 中心,连接BF ,则BF ⊥面ACD ,CF ⊂面ACD ,所以直线BC 与平面ACD 所成的角为BCF ∠,且BF CF ⊥,而2331323CF =⨯⨯=,故cos 3CF BCF BC ∠==,显然BCF ∠不为60 ,错误;C :由B 分析3BF ==,即该正棱锥的体高为3,故C 到平面ABD 的距离为63,正确;D :显然正棱锥的外接球半径最小,令其外接球半径为R ,则22263()33R R =-+,所以64R =,正确.故选:ACD10.已知0a >,0b >,且21a b +=,则()A.a ≤B.1222a <<C.22log log 1a +≥- D.21a b ->-【答案】ABD 【解析】【分析】对于A 利用基本不等式可判断;对于B 利用不等式的基本性质以及指数函数的单调性即可判断;对于C 可用特殊值法判断;对于D 直接根据不等式的基本性质判断即可.【详解】0a > ,0b >,且21a b +,212a b ∴=+≥,()((22222a b a a ∴+≥+∴+≤,,当且仅当22a ==取等号,故A 正确;0a > ,0b >,且21a b +=,010111a a ∴<<<<∴-<<∴,,,1222a <<,故B 正确;则21a b b ->->-,故D 正确;取2122a ==,则223log log 12a +=-<-,故C 错误.故选:ABD .11.已知椭圆2211612x y +=,点F 为右焦点,直线()0y kx k =≠与椭圆交于P Q ,两点,直线PF 与椭圆交于另一点M ,则()A.PQM 周长为定值B.直线PM 与QM 的斜率乘积为定值C.线段PM 的长度存在最小值D.该椭圆离心率为12【答案】BCD 【解析】【分析】通过k 取不同值求出周长即可判断A ,设出点的坐标利用斜率公式化简即可判断B ,确定线段PM 取最小值的条件即可判断C ,确定a 、c 的值即可求出离心率从而判断D .【详解】该椭圆中42a b c ===,,则()2,0F ,所以离心率为12,故D 正确;设()11,M x y ,()22,P x y ,()22Q x y --,,则在PM 、QM 斜率都存在的前提下有1212PM y y k x x -=-,1212QM y y k x x +=+,于是()()()()2212121222121212PM QMy y y y y y k k x x x x x x -+-⋅==-+-221222123312124434x x x x ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭==--为定值,故B 正确;由题意可设PM 的方程为2x my =+,联立22116122x y x my ⎧+=⎪⎨⎪=+⎩,消x 得()223412360m y my ++-=,则1212221236,3434m y y y y m m +=-=-++,所以()2224134m PM m +===+2222424134311m m m ==++++,则当0m =时,min6PM =,所以线段PM 的长度存在最小值,故C 正确.当216k =时,直线216y x =与椭圆2211612x y +=交于点2132⎛⎫ ⎪ ⎪⎝⎭,和2132⎛⎫-- ⎪ ⎪⎝⎭,,不妨取点P 为2132⎛⎫ ⎪ ⎪⎝⎭,,得直线PF 方程为()2122y x =-,求得交点M 为132124⎛⎫- ⎪ ⎪⎝⎭,则254PM =,2174QM =,PQ =PQM的周长为2521744++,当32k =时,联立221161232x y y x⎧+=⎪⎪⎨⎪=⎪⎩,解得2x =±,不妨取()2,3P ,则PM 垂直于x 轴,此时6PM =,4QM =,PQ =,此时PQM的周长为10+,显然PQM 周长不为定值,故A 错误;故选:BCD .12.已知定义域为R 的奇函数()f x ,当0x >时,()22,2122,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是()A.存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B.当122x x <<-时,有()()12f x f x >C.当0x a <≤时,()f x 的最小值为1,则13a ≤≤D.若关于x 的方程()32f x =和()f x m =的所有实数根之和为零,则32m -=【答案】ABC 【解析】【分析】A 选项,根据函数的奇偶性得到()f x 在R 上的解析式,画出函数图象,数形结合得到当12k <<-时,y kx =与()f x 的图象有7个交点,即方程()f x kx =有7个不相等的实数根,A 正确;由图象可得<2x -时,()y f x =单调递减,从而得到B 正确;由()11f =,令211x =-,解得:3x =,数形结合得到13a ≤≤,C 正确;求出()32f x =的所有实数根之和为123133x x x ++=,进而当<2x -时,2313513=--+,再结合对称性得到32m -=时,方程()32f x =和()f x m =的所有实数根之和为零,从而35m =-或32-,D 错误.【详解】因为()f x 为定义域为R 的奇函数,当<2x -时,2x ->,故()()2211f x f x x x =--=-=--+,当20x -≤<时,02x <-≤,故()()()222222f x f x x x x x ⎡⎤=--=--++=---⎣⎦,当0x =时,()0f x =,综上:()222,2122,020,022,202,21x x x x x f x x x x x x x ⎧>⎪-⎪-+<≤⎪⎪==⎨⎪----≤<⎪⎪<-⎪+⎩,画出函数()f x的图象,如下:存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根,理由如下:如图1,当1k =时,直线1:l y x =与()f x 的图象有5个交点,联立y kx =与()222f x x x =-+,()2220xk x -++=,由()2280k ∆=+-=且0k >得:2k =,且此时()2y x =与()222f x x x =---联立,220x ---=,其中(280∆=--=,故2k =时,直线()2:2x l y =与两抛物线刚好相切,故有5个交点,则当12k <<-时,y kx =与()f x 的图象有7个交点,即关于x 的方程()f x kx =有7个不相等的实数根,A正确;当<2x -时,()y f x =单调递减,故当122x x <<-时,有()()12f x f x >,B 正确;由图象可知:()11f =,令211x =-,解得:3x =,当0x a <≤时,()f x 的最小值为1,则13a ≤≤,C 正确;令()32f x =,当02x <≤时,23222x x -+=,设两根为12,x x ,则12221,122x x =+=-,当2x >时,2312x =-,解得:373x =,故()32f x =的所有实数根之和为123133x x x ++=,当<2x -时,2313513=--+,故当35m =-时,方程()32f x =和()f x m =的所有实数根之和为零,由对称性可知32m -=时,方程()32f x =和()f x m =的所有实数根之和为零,综上:35m =-或32-,D 错误.故选:ABC【点睛】数形结合在研究函数与方程方面具有重要作用,通常函数零点,方程的根及两函数的交点可互相转化进行求解,本题中()f x kx =实数根个数问题,要转化为两函数()y f x =与y kx =的交点个数问题,再同一平面直角坐标系中画出()y f x =与y kx =的图象,用数形结合的思想求解.三、填空题(本大题共4小题,共20.0分)13.二项式2nx ⎛+ ⎝的展开式的第5项为常数项,则n =__________.【答案】6【解析】【分析】根据二项式通项公式和展开式的第5项为常数项建立方程即可得解.【详解】二项式2nx ⎛ ⎝展开式的通项公式为23321C 2n r r r n r nT x --+⋅=,由展开式中,第5项为常数项,此时4r =,则23402n -⨯=,即6n =.故答案为:6.14.过点()3,2P -且与圆C :222410x y x y +--+=相切的直线方程为__________【答案】3x =或3410x y +-=【解析】【分析】分斜率存在与否两种情况进行讨论,结合点到直线距离公式即可得解.【详解】解:将圆C 方程化为圆的标准方程()()22124x y -+-=,得圆心()1,2C ,半径为2r =,当过点()3,2P -的直线斜率不存在时,直线方程为3x =是圆C 的切线,满足题意;当过点()3,2P -的直线斜率存在时,可设直线方程为()23y k x +=-,即320kx y k ---=,2=,解得34k =-,即此直线方程为3410x y +-=,故答案为:3x =或3410x y +-=.15.已知曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x =__________【答案】366-【解析】【分析】求导得切线斜率,根据切线垂直的斜率关系建立方程即可得解.【详解】由21y x =-,得2y x '=,则曲线21y x =-在0x x =处的切线斜率为102k x =,由31y x =+,得23y x '=,则曲线31y x =+在0x x =处的切线斜率为2203k x =,则根据题意有121k k =-,即3061x =-,得0366x =-.故答案为:6-.16.设过双曲线2222:1(0,0)x y C a b a b-=>>左焦点F 的直线l 与C 交于M N ,两点,若3FN FM = ,且0OM FN ⋅= (O 为坐标原点),则C 的离心率为__________【解析】【分析】利用双曲线的定义结合向量知识建立关于a 、c 的方程即可求出离心率.【详解】如图,设P 为MN 中点,MF t =,由3FN FM =可知3FN t =,MP PN t ==,由双曲线的定义可知22MF t a =+,232NF t a =-,由0OM FN ⋅=可知OM FN ⊥,又O 为2FF 中点,M 为FP 中点,可知2OM PF ,则2PF FN ⊥,从而2PF 为线段MN 的垂直平分线,22MF NF =,即232t a t a +=-,所以2t a =,则2MNF 为正三角形,2PF =,在直角△2FPF 中,22222FP PF FF +=,即222(4))(2)a c +=,所以e =..四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.在ABC 中,角A ,B ,C 所对的边为a ,b ,c sin cos B b A b =+.(1)求A ;(2)若2c =,1cos b C-=sin C .【答案】(1)π3;(2)22.【解析】【分析】(1)根据给定的条件,利用正弦定理边化角,再借助辅助角公式及三角函数性质求解作答.(2)利用正弦定理结合已知变形,再由差角的正弦公式求解作答.【小问1详解】在ABC sin cos B b A b =+及正弦定理得sin sin cos sin A B B A B =+,而sin 0B ≠,cos 1A A =+,即cos 1A A -=,整理得π1sin 62A ⎛⎫-= ⎪⎝⎭,又ππ5π666A -<-<,则ππ66A -=,所以π3A =.【小问2详解】由正弦定理sin sin c b C B =,得sin sin c B b C=,而1cos b C -=2sin 1sin BC C -=,即2sin sin cos B C C C -=,而2π3B C =-,因此2π2sin sin cos 3C C C C ⎛⎫--=⎪⎝⎭,整理得cos C C C =,显然cos 0C ≠,解得sin 2C =,所以sin 2C =.18.已知矩形ABCD ,1AB AD ==,,M 为AD 的中点,现分别沿BM ,CM 将ABM 和DCM △翻折,使点,A D 重合,记为点P .(1)求证:;BC PM ⊥(2)求直线BC 与平面PMC 所成角的正弦值.【答案】(1)证明见解析(2)22【解析】【分析】(1)取BC 的中点Q ,连接,PQ MQ ,先利用线面垂直判定定理证得BC ⊥平面PMQ ,再由线面垂直性质得证;(2)先利用线面垂直判定定理证得PB PMC ⊥平面,可得BCP ∠为直线BC 与平面PMC 所成角的平面角,从而得解.【小问1详解】已知矩形ABCD ,沿BM ,CM 将ABM 和DCM △翻折,使点,A D 重合,记为点P ,可得11BP AB CD CP ====,,取BC 的中点Q ,连接,PQ MQ ,1BP CP ∴==,BM CM =,BC MQ ∴⊥,BC PQ ∴⊥,又MQ PMQ ⊂平面,PQ PMQ ⊂平面,MQ PQ Q ⋂=,BC ∴⊥平面PMQ ,PM PMQ ⊂ 平面,BC PM ∴⊥;【小问2详解】1BP CP == ,BC AD ==,222PB PC BC ∴+=,PB PC ∴⊥,又四边形ABCD 为矩形,PB PM ∴⊥,PM PC P PM PMC PC PMC ⋂=⊂⊂ ,平面,平面,PB PMC ∴⊥平面,BCP ∴∠为直线BC 与平面PMC 所成角的平面角,2sin2BCP ∠==,即直线BC 与平面PMC 所成角的正弦值为22.19.为促进经济发展,某地要求各商场采取多种举措鼓励消费.A 商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取2个球.具体规则如下:摸出3个红球记为一等奖,没有红球记为二等奖,2个红球记为三等奖,1个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为5折、7折、8折和9折.记随机变量ξ为获得各奖次的折扣率,求随机变量ξ的分布列及期望()E ξ;(2)某一时段内有3人参加该促销活动,记随机变量η为获得7折及以下资格的人数,求()2P η=.【答案】(1)分布列见解析,496(2)11279000【解析】【分析】(1)根据古典概型和相互独立事件的概率乘法公式可求得分布列,进而求出离散型随机变量的期望;(2)根据随机变量η服从二项分布,利用二项分布概率公式即可得解.【小问1详解】设事件i A 为“从甲盒中取出i 个红球”,事件j B 为“从乙盒中取出j 个红球”,则()()21324C C ,01C i i i P A i -==,,()()22426C C ,012C j jj P B j -==,,,记x 为取出的4个球中红球的个数,则()()2234002246C C 10C C 5P x P A B ===⋅=,()()()2111233244011022224646C C C C 71C C C C 15C P x P A B P A B ==+=⋅+⋅=,()()()2121133224021122224646C C C C C 32C C C C 10P x P A B P A B ==+=⋅+⋅=,()()1232122246C C 13C C 30P x P A B ===⋅=,由题意得ξ的分布列为则()113749578930510156E ξ=⨯+⨯+⨯+⨯=;【小问2详解】由(1)可知,获得7折及以下资格的概率为11730530+=.由题意得7330B η⎛⎫ ⎪⎝⎭, ,则()2237711272C ()130309000P η⎛⎫==-= ⎪⎝⎭.20.已知数列{}n a 满足112a =-,()1120n n n a na +++=.数列{}n b 满足11b =,1n n n b k b a +=⋅+.(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤-.【答案】(1)*(1)N 2nn n na n =-∈,;(2)证明见解析.【解析】【分析】(1)利用累乘法即可得解;(2)利用不等式的基本性质进行放缩,再由累加法和错位相减求和法即可得证.【小问1详解】根据题意,由()1120n n n a na +++=可知,0n a ≠,则112n n a n a n++=-,当2n ≥且*N n ∈时,由累乘法得()()1111121311212223212n n n a n na n --⎡⎤+++⎛⎫⎛⎫⎛⎫=----=-⎢⎥ ⎪⎪⎪⨯⨯⨯⨯-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ ,又112a =-,则111(1)(1)222n n n n n n n a --⎛⎫=-⨯-=- ⎪⎝⎭,当1n =时,112a =-也符合上式,综上可知,*(1)N 2nn nn a n =-∈;【小问2详解】因为1(1)2nn n n n n nb k b a k b +=⋅+=⋅+-,1k ≤,所以1(1)22nn n n n n n n b k b b +≤⋅+-≤+,即12n n nn b b +-≤,当2n ≥且*N n ∈时,由累加法得121121222n n n b b ---≤+++ ,设21121222n n n S --=+++ ,则2223121222n n n S --=++++ ,所以12211111111111212122222212n n n n n n n n n S --------+=++++-=-=-- ,又11b =,则111112322n n nn n n n b b S b --++-≤=-⇒≤-,当1n =时,11b =上述不等式也成立,因此,当1k ≤时,1132n n n b -+≤-对*N n ∈恒成立.21.如图,过y 轴左侧的一点P 作两条直线分别与抛物线24y x =交于,A C 和,B D 四点,并且满足3PC PA = ,3PD PB =.(1)设CD 的中点为M ,证明PM 垂直于y 轴.(2)若P 是双曲线2214x y -=左支上的一点,求PAB 面积的最小值.【答案】(1)证明见解析(2)1669.【解析】【分析】(1)设出相关点坐标,结合向量关系,证得点P 、M 纵坐标相等,从而得证;(2)根据向量关系得19PAB PCD S S = ,又结合点P 在双曲线上表示出面积表达式,根据函数思想求出最小值.【小问1详解】设(),P P P x y ,(),C C C x y ,(),y D D D x ,(),M M M x y ,则由3PC PA =,3PD PB =,(,)3C P C P x x y y --=(,)A P A P x x y y --,(,)3D P D P x x y y --=(,)B P B P x x y y --,可得2233C P C Px x y y A ++⎛⎫⎪⎝⎭,,2233D P D Px x y y B ++⎛⎫⎪⎝⎭,.由点,A C 都在抛物线上可得224(2)2493C C C PC P y x y y x x ⎧=⎪⎨++=⨯⎪⎩,化简可得2221220C P C P P y y y x y -+-=,同理可得2221220D P D P P y y y x y -+-=,故C y ,D y 可视为二次方程2221220P P P y y y x y -+-=的两根,由韦达定理可得2C D P y y y +=,故2C DM P y y y y +==,由此可得PM 垂直于y 轴.【小问2详解】由(1)可得2C D P y y y +=,2122C D P P y y x y ⋅=-;由3PC PA = ,3PD PB =知19PAB PCDS S = 11922C D P C D x x x y y +⎛⎫=⋅⋅-⋅- ⎪⎝⎭221188CD P y y x ⎛⎫+=⋅-⋅ ⎪⎝⎭2()21188C D C D P y y y y x ⎛⎫+-⋅=⋅- ⎪⎝⎭()21418P P y x =⋅-⋅()2349P P y x =-⋅=,又P 是双曲线2214x y -=左支上的一点,可得224414PPP P x y x x -=--且2P x ≤-,则PABS = ,又当2P x ≤-时,24184PP x x --≥,因此,当2P x =-时PAB S 取最小值为1669.22.已知函数()()1211e2x f x x a x ax -=---+.(1)当1a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在()0,∞+的最小值为12-,求a 的最大值.【答案】(1)单调递增区间为(),∞∞-+(2)e12-.【解析】【分析】(1)求导并判断导数符号,进一步可得单调区间;(2)求导,对a 进行分类讨论,根据函数()f x 在()0+∞,的最小值为12-,求得a 的取值范围,从而得到a 的最大值.【小问1详解】当1a =时,()()1212e 2x f x x x x -=--+,则()()()()111e 11e 1x x f x x x x --'=--+=--,令()()11()1e1,()e 1x x g x x g x x --'=--=-,()g x '在R 上单调递增,当1x <时,()0g x '<,当1x >时,()0g x '>,即()g x 在(,1)-∞上递减,在(1,)+∞上递增,故()(1)0g x g ≥=,所以()()()11e10x f x x -'=--≥恒成立,仅当1x =时取等号,即()f x 的单调递增区间为(),∞∞-+;【小问2详解】()()()()11e e 1x x f x x a x a x a --'=--+=--当0a ≤时,(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>,则()f x 在1x =取得最小值12-,符合题意;当01a <<时,(0,)x a ∈时,()0f x '>,(,1)x a ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>,因为()f x 最小值为()112f -=,所以()()01f f ≥得e 12a ≤-,即e012a <≤-;当1a =时,由(1)可知()f x 单调递增,则当0x >时()f x 无最小值,不合题意;当1a >时,(0,1)x ∈时,()0f x '>,(1,)x a ∈时,()0f x '<,(,)x a∈+∞时,()0f x'>,则有()()112f a f<=-,不合题意;综上可得,a的最大值e12-.【点睛】难点点睛:本题考查了利用导数求函数的单调区间、利用导数根据函数最值求参数的最值,难点在于根据最小值求参数时,要注意讨论a的取值,结合函数的单调性,得到相应的不等式,确定参数范围.。
湖南省长沙市2024届高三下学期高考考前模拟卷数学试题(二)含答案

考前模拟卷二数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.51⎛⎫+ ⎪⎝⎭x x 的展开式中x 的系数为()A.15B.10C.5D.1【答案】B 【解析】【分析】利用二项展开式的通项公式5151C rrrr T xx -+⎛⎫= ⎪⎝⎭即可求解.【详解】由5521551C C rr r r rr T x x x --+⎛⎫== ⎪⎝⎭,令521r -=,则2r =,所以x 系数为25C 10=.故选:B2.已知实数a ,且复数2i2ia z +=+的实部与虚部互为相反数,则复数z 对应的点在复平面内位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】利用复数的加减乘除四则运算化简复数z ,求得实部与虚部,依题求出a 的值,代入即得复数对应的点,判断即可.【详解】()()2i 2i 2i 224i2i 555a a a az +-++-===++,其实部为225+a ,虚部为45a -,依题有224055a a+-+=,解得6a =-,所以22i z =-+,其对应的点为()2,2-,位于第二象限.故选:B.3.在△ABC 中,“sin cos A B =”是“π2C =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由sin cos A B =,则π2A B +=或π2A B -=和π2C =,则π2A B +=,则πsin sin()cos 2A B B =-=,可得出答案.【详解】若sin cos A B =,则π2A B +=或π2A B -=,即π2C =或π2A B -=,所以在△ABC 中,“sin cos A B =”是“π2C =”的不充分条件若π2C =,则π2A B +=,则πsin sin()cos 2A B B =-=,所以在△ABC 中,“sin cos A B =”是“π2C =”的必要条件.故选:B.【点睛】本题考查充分、必要条件的判断,考查三角函数的诱导公式的应用,属于基础题.4.双曲线22221x y a b-=的左、右焦点分别为12,F F ,过2F 作x 轴垂线交双曲线于,A B 两点,1F AB 为正三角形,则双曲线的离心率为()A.3B.C.D.2【答案】C 【解析】【分析】利用点在双曲线上代入可得三角形的边长22b AB a=,再利用双曲线的性质构造离心率的齐次方程,求出即可.【详解】设()1,A c y ,代入双曲线方程可得22224221122221y x c a b y b a b a a --=⇒==,所以22b AB a =即正三角形的边长,所以正三角形的高为2222b a a⨯=,所以)222222322220c ac ac c a ac e a=⇒=⇒=-⇒-=⇒=,故选:C.5.已知四棱锥P ABCD -,平面PAD ⊥平面ABCD ,四边形ABCD 是正方形,E 为PC 中点,则()A.BE 平面PADB.PD ⊥平面ABCDC.平面PAB ⊥平面PADD.DE EB=【答案】C 【解析】【分析】由线面平行的性质判断A 错误;举反例判断B 错误;先证明PH AB ⊥,再由线面垂直得到AB ⊥平面PAD ,进而得到平面PAB ⊥平面PAD ,判断C 正确;由已知条件判断D 错误.【详解】A :易知//BC 平面PAD ,因为BE BC B = ,且两条直线都在平面PBC 内,所以BE 不可能平行平面PAD ,故A 错误;B :举反例,如图PH 垂直平面ABCD 时,由于PD PH P ⋂=,所以PD 不垂直,故B 错误;C :作PH AD ⊥于点H ,因为平面PAD ⊥平面ABCD ,且PH ⊂平面PAD ,所以PH ⊥平面ABCD ,因为AB ⊂平面ABCD ,所以PH AB ⊥,又AB AD ⊥,PH AD H ⋂=,且,PH AD 都在平面PAD 内,所以AB ⊥平面PAD ,因为AB ⊂平面PAB ,所以平面PAB ⊥平面PAD ,故C 正确;D :没有任何条件可以证明DE EB =,故D 错误;故选:C.6.已知圆22:(1)(2)16C x y -++=,过点()0,1D 的动直线l 与圆C 相交于,M N两点||MN =直线l 的方程为()A.4330x y +-=B.3440x y -+=C.0x =或4330x y +-= D.4330x y +-=或3440x y -+=.【答案】C 【解析】【分析】考虑直线l 与x 轴垂直和不垂直两种情况,斜率不存在时,满足要求,斜率存在时,设出直线方程,利用点到直线距离公式得到方程,求出答案.【详解】当直线l 与x 轴垂直时,易知直线l 的方程为0x =,22:(1)(2)16C x y -++=中令0x =得2(2)15y +=,解得2y =,故此时()22MN y ==-=,符合题意;当直线l 与x 轴不垂直时,设直线l 的斜率为k ,则直线l 的方程为1y kx =+,即10kx y -+=,则圆心到直线的距离为d =MN ===,1d ∴==,解得43k =-,则直线l 的方程为413y x =-+,即4330x y +-=,综上可知直线l 的方程为0x =或4330x y +-=.故选:C.7.已知圆内接四边形ABCD 中,π2,,4AD ADB BD ∠==是圆的直径,2AC BD ⋅= ,则ADC ∠=()A.5π12B.π2 C.7π12D.2π3【答案】C 【解析】【分析】根据平面向量数量积的线性运算,结合圆内接四边形ABCD 的几何性质,即可得所求.【详解】因为2AC BD ⋅=,所以()2AD DC BD +⋅= ,易知BD =,结合图形,2·242AD BD =⨯= ,90BCD ∠=︒,则242DC -= ,故DC = .所以在直角三角形BCD 中可得π3BDC ∠=,故7π12ADC ∠=.故选:C .8.若直线e 4eln40x y -+=是指数函数(0x y a a =>且1)a ≠图象的一条切线,则底数=a ()A.2或12 B.eC.D.e 【答案】D 【解析】【分析】设切点坐标为()()00,x f x ,根据导数的几何意义,列式运算求得a 的值.【详解】设切点坐标为()()00,x f x ,对函数x y a =,求导得ln x y a a '=,切线方程e 4eln40x y -+=化成斜截式为4e 44eln y x =+,由题设知000e ln 04e eln44x x a a x a ⎧=>⎪⎪⎨+⎪=⎪⎩,显然ln 0a >,即1a >,由0e 4ln x aa =,得04e eln4e4ln x a +=,即01ln4ln x a=+,即()00ln ln 01ln ln ln4ln ln4ln 4xx aa x a a a a =⋅+=+=⋅,即0ln ln ee 444ln xaa a a=⋅=⋅,化简得ln 44ln a a =,令ln 0a t =>,即44t t =,利用指数函数与一次函数的性质,可知1t =或12,即ln 1a =或12,解得e a =.故选:D.二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知,,a b c 是空间中三条不同的直线,,αβ是空间中两个不同的平面,下列命题不正确的是()A.若,,,a b a c b c αα⊥⊥⊂⊂,则a α⊥B.若,a αβα⊥⊥,则aβC.若a ,b a ,c a α,则b α或c α.D.若,,a b a αβ⊥⊥ b ,则α β,【答案】ABC 【解析】【分析】由题意分别进行判断,错误的选项指明错误点.【详解】对A ,需要补上,b c 不平行才成立,否则a 可能与α相交或平行,故A 错误;对B ,若,a αβα⊥⊥,则a β∥或a β⊂,故B 错误;对C ,有可能b α⊂且c α⊂且b c P ,故C 错误;对D ,若,,a b a b αβ⊥⊥∥,则αβ∥,故D 正确.故选:ABC.10.对于事件A 与事件B ,若A B ⋃发生的概率是0.72,事件B 发生的概率是事件A 发生的概率的2倍,下列说法正确的是()A.若事件A 与事件B 互斥,则事件A 发生的概率为0.36B.()()2P BA P AB =∣∣C.事件A 发生的概率的范围为[]0.24,0.36D.若事件A 发生的概率是0.3,则事件A 与事件B 相互独立【答案】BCD 【解析】【分析】根据互斥事件的性质、条件概率公式、独立事件的性质逐项判断即可得结论.【详解】对于A ,若事件A 与事件B 互斥,则()()()()30.72P A B P A P B P A ⋃=+==,所以()0.24,A P A =,故A 错误;对于B ,()()()()()()()()()1|,||22P AB P AB P AB P B A P A B P B A P A P B P A ====,故B 正确;对于C ,()()()()()()()()30.72,0.243P AB P A B P A P B P AB P A P AB P A ⋃=+-=-==+,若事件A 与事件B 互斥,则()0P AB =,此时()P A 取到最小值为0.24,若()()P A P B ⊆,此时()()(),P AB P A P A =取到最大值为0.36,故C 正确;对于D ,()0.3P A =,则()0.6P B =,由()()()()P A B P A P B P AB ⋃=+-,得()()()0.30.60.720.18P AB P A P B =+-==⋅,则事件A 与事件B 相互独立,故D 正确.故选:BCD.11.已知函数()f x 的定义域和值域均为{}0,x x x ≠∈R ∣,对于任意非零实数,,0x y x y +≠,函数()f x 满足:()()()()()()f x y f x f y f x f y ++=,且()f x 在(),0∞-上单调递减,()11f =,则下列结论错误的是()A.122f ⎛⎫= ⎪⎝⎭B.2023202311222i i f =⎛⎫ ⎪⎝=⎭-∑C.()f x 在定义域内单调递减 D.()f x 为奇函数【答案】BC 【解析】【分析】赋值法可判断A ,根据等比数列求和公式判断B ,利用奇偶函数的定义及赋值法判断C ,由函数的特例可判断D.【详解】对于A ,令12x y ==,则()21121()[()]22f f f =,因1()02f ≠,故得1()2(1)22f f ==,故A 正确;对于B,由()()()()()()f x y f x f y f x f y ++=,令y x =,则2[()]1(2)()2()2f x f x f x f x ==,则111111()(2)()2222i i i f f f ++=⨯=,即111(2()22i i f f +=,故1{(2i f 是以1(22f =为首项,2为公比的等比数列,于是()2023202320241212122212i i f =-⎛⎫==- ⎪-⎝⎭∑,故B 错误;对于D ,由题意,函数()f x 的定义域为()(),00,∞-+∞U ,关于原点对称,令2y x =-,则()()()()()22f x f x f x f x f x --=+-①,把,x y 都取成x -,可得()()()()()222f x f x f x f x f x ----==-②,将②式代入①式,可得()()()()()22f x f x f x f x f x --=-+,化简可得()(),f x f x -=-即()f x 为奇函数,故D 正确;对于C ,()f x 在(),0∞-上单调递减,函数为奇函数,可得()f x 在()0,∞+上单调递减,但是不能判断()f x 在定义域上的单调性,例如()1f x x=,故C 错误.故选:BC.【点睛】关键点点睛:本题解题的关键在于对已知的函数抽象表达式的处理,一般以赋值化简为主,根据选项信息对自变量进行针对性赋值,求出函数值,或者推导出递推式,或者构造出(),()f x f x -的关系式即可判断奇偶性等.三、填空题(本大题共3小题,每小题5分,共15分.)12.已知函数()πsin 23f x x x ϕ⎛⎫=++-⎪⎝⎭的图象关于直线2x =对称,则ϕ可以为__________.(写出一个符合条件的ϕ即可)【答案】π6-.(答案不唯一)【解析】【分析】因为函数2y x =-的图象关于直线2x =对称,只需根据三角函数图象让2x =也为πsin 3y x ϕ⎛⎫=+ ⎪⎝⎭的对称轴即可.【详解】函数2y x =-的图象关于直线2x =对称,则只要πsin 3y x ϕ⎛⎫=+ ⎪⎝⎭的图象关于直线2x =对称即可,所以()2πππ32k k ϕ+=+∈Z ,所以()ππ6k k ϕ=-+∈Z ,如令0k =,可以取π6ϕ=-.故答案为:π6-13.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,下顶点为A ,过,A F 的直线l 与椭圆C 交于另一点B ,若直线l 的斜率为1,且83AB =,则椭圆C 的标准方程为__________.【答案】22142x y +=【解析】【分析】利用弦长公式求解参数,得到椭圆方程即可.【详解】设(),0F c ,由题意知,,b c a ==,直线l 的方程为y x c =-,与椭圆C 的方程联立化简得x cx -=2340,所以40,3A B x x c ==,故833B A AB x x c =-==,解得c =所以2b a ==,椭圆C 的方程为22142x y +=.故答案为:22142x y +=14.龙年参加了一闯关游戏,该游戏共需挑战通过m 个关卡,分别为:12,,,m G G G ,记挑战每一个关卡()1,2,,k G k m = 失败的概率为k a ,其中()110,1,3k a a ∈=.游戏规则如下:从第一个关卡1G 开始闯关,成功挑战通过当前关卡之后,就自动进入到下一关卡,直到某个关卡挑战失败或全部通过时游戏结束,各关卡间的挑战互相独立:若2m =,设龙年在闯关结束时进行到了第X 关,X 的数学期望()E X =__________;在龙年未能全部通关的前提下;若游戏结束时他闯到第1k +关的概率总等于闯到第k 关()1,2,,1k m =-L 的概率的一半,则数列{}n a 的通项公式n a =__________,1,2,,n m = .【答案】①.53②.1122n -+【解析】【分析】若2m =,则X 得可能取值为1,2,分别求解概率,再求解数学期望()E X 即可;根据题意求解游戏结束时进行到第k 关的概率为k P ,由112k k P P +=可得()1112k k k a a a +=-,于是根据递推关系式可得数列{}n a 的通项公式.【详解】若2m =,则X 得可能取值为1,2,又()()1121,21333P X P X ====-=,所以()12512333E X =⨯+⨯=;设未能通关的前提下,游戏结束时进行到第k 关的概率为k P ;那么有()()()()()()121121111111k kk m a a a a P a a a ----=---- ,由112k k P P +=可得()1112k k k a a a +=-;即121k k k a a a +=-,对两边同时取倒数,可得1122k k a a +=-,即111222k k a a +⎛⎫-=- ⎪⎝⎭,又112321a -=-=,故12n a ⎧⎫-⎨⎬⎩⎭是首项为1,公比为2的等比数列,从而111122,,1,2,,22n n n n a n m a ---===+ .故答案为:53;1122n -+.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.若抛物线Γ的方程为24y x =,焦点为F ,设,P Q 是抛物线Γ上两个不同的动点.(1)若3PF =,求直线PF 的斜率;(2)设PQ 中点为R ,若直线PQ斜率为2,证明R 在一条定直线上.【答案】(1)±(2)证明见解析【解析】【分析】(1)根据焦半径公式得到2P x =,求出(2,P ±,从而求出斜率;(2)法一::2PQ y x t =+,联立抛物线方程,设()()1122,,,P x y Q x y ,得到两根之和,两根之积,得到122R y y y +==,求出答案;法二:设()()1122,,,P x y Q x y ,得到21211242y y x x y y -==-+,从而确定12y y +=,得到122R y y y +==,得到答案.【小问1详解】()1,0,13P F PF x =+=,2P x \=,将2x =代入24y x =得,y =±(2,P ∴±所以21PF k ±==±-;【小问2详解】法一:设()()1122,,,P x y Q x y,:2PQ y x t =+,即x =,代入24y x =,得20y -+=,由韦达定理,有12y y +=故122R y y y +==,R在定直线y =上.法二:设()()1122,,,P x y Q x y ,由题意,21212221211242244y y y y y y x x y y --===-+-,故12y y +=,故122R y y y +==,R在定直线y =上.16.如图,四棱锥P ABCD -中,四边形ABCD 为直角梯形,AB //CD,,2,4,AB AD AB AD PB CD PD ⊥=====,点E 为PB 中点,DE PC ⊥.(1)求证:PD ⊥平面ABCD ;(2)已知点F 为线段AB 的中点,求直线EF 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)连接BD ,可证PD BD =,从而得到DE PB ⊥,即有DE ⊥平面PBC ,可得DE BC ⊥,由222BC BD CD +=,可得BC BD ⊥,即可证明BC ⊥平面PBD ,即BC PD ⊥,再由222PB PD BD =+,得PD BD ⊥,从而证明PD ⊥平面ABCD ;(2)以D 为坐标原点,分别以,,DA DC DP 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,求出平面PBC 的法向量为(m = ,表示出(1,0,EF = ,代入向量夹角公式,可得直线EF 与平面PBC 所成角的正弦值.【小问1详解】连接BD .因为AB AD =,且AB AD ⊥,所以BD D =,因为PD =,所以PD BD =.因为E 是棱PB 的中点,所以DE PB ⊥.因为,,DE PC PC PB ⊥⊂平面PBC ,且PC PB P = ,所以DE ⊥平面PBC .因为BC ⊂平面PBC ,所以DE BC ⊥.由题意可得BC BD ==,则222BC BD CD +=,所以BC BD ⊥.因为,BD DE ⊂平面PBD ,且BD DE D ⋂=,所以BC ⊥平面PBD .因为PD ⊂平面PBD ,所以BC PD ⊥.因为,2PD BD PB AB ===,所以222PB PD BD =+,所以PD BD ⊥.因为,BD BC ⊂平面ABCD ,且BD BC B ⋂=,所以PD⊥平面ABCD .【小问2详解】以D 为坐标原点,分别以,,DA DC DP 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系.则()2,0,0A ,()2,2,0B ,()0,4,0C,(0,0,P,(E ,()2,1,0F从而(2,2,PB =- ,()2,2,0BC =-,(1,0,EF = 设平面PBC 的法向量为(),,m x y z =,则00m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x y ⎧+-=⎪⎨-+=⎪⎩,令1x =,得(m = ,设直线EF 与平面PBC 所成角为α,则sin cos ,6m EF m EF m EF α⋅====,所以直线EF 与平面PBC 所成角的正弦值为6.17.已知ABC 的内角,,A B C 的对边分别为,,,a b c 2π13,,,3a A b c ABC ==> 的内切圆圆I 的面积为3π.(1)求b c 、的值及cos ABC ∠;(2)若点D 在AC 上,且,,B I D 三点共线,试讨论在BC 边上是否存在点M ,使得BI BM CI CM ⋅=⋅ 若存在,求出点M 的位置,并求出DBM △的面积;若不存在,请说明理由.【答案】(1)8,7b c ==,11cos 13ABC ∠=;(2)存在,位置见解析,10.【解析】【分析】(1)先求出内切圆的半径,由三角形面积公式得出bc 与b c +的关系,再由余弦定理得到它们的另一个关系式,联立解出,b c ,最后由余弦定理解出cos ABC ∠即可;(2)由题意BI BM CI CM ⋅=⋅ ,配合切线长定理可解出BM ,再设角θ结合正弦定理解出BD ,最后由面积公式求得即可.【小问1详解】因为ABC 内切圆圆I 的面积为3π,可得圆I的半径为r =,则)()112π13sin ,262223ABC S b c bc bc b c =++=∴=++ ,所以1132b c bc +=-,由余弦定理得222π2cos 1693b c bc +-=,得2()169b c bc +-=,将1132b c bc +=-代入整理得:2()560bc bc -=,解得56,15,,8,7bc b c b c b c =∴+=>∴== .∴由余弦定理得:222137811cos 213713ABC ∠+-==⨯⨯.【小问2详解】记圆I 与BC 边切于点E ,根据切线长定理可求得6,7BE CE ==,若BI BM CI CM ⋅=⋅ ,则BE BM CE CM ⋅=⋅,即()6713BM BM =-,解得7BM =,所以在BC 边上存在点M ,使得BI BM CI CM ⋅=⋅ .依题意可知I 为内心,则BD 平分ABC ∠,记ABD DBC θ∠=∠=,则11cos cos213ABC ∠θ==,故23913cos ,sin 1313θθ====,在ABD △中,2πππ33ADB ∠θθ=--=-,由正弦定理得2ππsin sin sin 33BD AB c ADB θ==∠⎛⎫- ⎪⎝⎭,又π31513sin cos sin 732226c θθθ⎛⎫-=-== ⎪⎝⎭,7395BD ∴=,11sin 72251310DBM S BM BD θ=⨯⨯⨯=⨯⨯⨯= .18.已知函数()e x x f x =,其中e 2.71828= 为自然对数的底数.(1)求函数()f x 的单调区间;(2)证明:()e 1xf x ≤-;(3)设()()()22e 2e 41x xg x f x a a a =-+-+∈R ,若存在实数0x 使得()00g x ≥,求a 的最大值.【答案】(1)增区间为(),1-∞,减区间为()1,+∞;(2)证明见解析;(3)12.【解析】【分析】(1)求出()f x ',判断导数正负得到函数()f x 的单调区间;(2)利用分析法转化要证结论,要证()e 1x f x ≤-,即证e 1ex x x ≤-,令()e 1e x x x h x =-+,即证()0h x ≤,利用导数判断()h x 单调性,求出最大值即可得证;(3)()()22e2e 41x x g x f x a a =-+-+,分别讨论当102a ≤≤时和12a >时是否存在0x 使得()00g x ≥,即可求解.【小问1详解】()f x 的定义域为()1,ex x f x -='R ,所以当1x <时,()0f x '>;当1x >时,()0f x '<.所以()f x 的增区间为(),1∞-,减区间为()1,∞+.【小问2详解】要证()e 1x f x ≤-,即证e 1ex x x ≤-,令()e 1e x x x h x =-+,即证()0h x ≤,()21e e x xx h x -'-=,令()21e x m x x =--,则()212e 0x m x =--<',所以()m x 在R 上单调递减,又()00m =,∴当0x <时,()()0,0m x h x '>>;当0x >时,()()0,0m x h x '<<.()h x ∴在(),0∞-上单调递增,在()0,∞+上单调递减,()()00h x h ∴≤=,所以e 1e x x x ≤-,即()e 1xf x ≤-得证.【小问3详解】当102a ≤≤时,()()20242120g a a a a =-=-≥,即存在00x =满足题意;当12a >时,由(2)知,()()()2222e 2e 41e 1e 2e 41x x x x x g x f x a a a a =-+-+≤--+-+()()()()()2226112611221e 21e 4e 0244x x x a a a a a a a +-+-+⎛⎫=-++-=--+≤< ⎪⎝⎭,∴此时()0g x <恒成立,不满足题意;综上,所以a 的最大值为12.19.设数集S 满足:①任意x S ∈,有0x ≥;②任意x ,y S ∈,有x y S +∈或x y S -∈,则称数集S 具有性质P .(1)判断数集{}0,1,2,4A =和{}0,2,4B =是否具有性质P ,并说明理由;(2)若数集{}12,,,n C a a a =⋅⋅⋅且()11,2,,1i i a a i n +<=⋅⋅⋅-具有性质P .(i )当5n =时,求证:1a ,2a ,…,n a 是等差数列;(ii )当1a ,2a ,…,n a 不是等差数列时,求n 的最大值.【答案】(1)数集A 不具有性质P ,数集B 具有性质P ,证明见解析(2)(i )证明见解析;(ii )4【解析】【分析】(1)根据性质P 的定义判断可得出结论(2)(i )推导出10a =,再根据性质P 的定义推导出32532432a a a a a a a a -=--=-=从而证明(ii )根据性质P 的定义得出12,,,n a a a ⋅⋅⋅在5n ≥均为等差数列,再令4n =进行验证,可以不是等差数列,所以得出n 的最大值.【小问1详解】证明:对于数集A ,41A +∉,41A -∉,所以数集A 不具有性质P ,对于数集B ,任意,x y B ∈,x y B -∈,所以数集B 具有性质P .【小问2详解】(i )当5n =时,数集{}125,,,C a a a =⋅⋅⋅具有性质P ,55552a a a a +=>,所以55a a C +∉,即550a a C -=∈,因为123450a a a a a ≤<<<<,则10a =,又因为5453525a a a a a a a +>+>+>,所以5(2,3,4)i a a C i +∉=,则5(2,3,4)i a a C i -∈=,因为154535250a a a a a a a a =<-<-<-<,所以得542a a a -=,533a a a -=,524a a a -=,因为43425a a a a a +>+=,所以43a a C +∉,则43a a C -∈,又因为14340a a a a =<-<,所以432a a a -=或433a a a -=,因为533a a a -=,所以433a a a -=(舍去),即432a a a -=,32532432a a a a a a a a -=--=-=,所以213243542a a a a a a a a a -=-=-=-=,即当5n =时,1a ,2a ,…,n a 是等差数列.(ii )若数集{}12,,,n C a a a =⋅⋅⋅且()11,2,,1i i a a i n +<=⋅⋅⋅-具有性质P ,按照(1)推导的方式得出5n ≥一般结论,具体如下:因为122n n n n n n a a a a a a a --+>+>>+> ,所以(2,3,,1)n i a a C i n +∉=- ,即(2,3,,1)n i a a C i n -∈=- ,因为11220n n n n n n a a a a a a a a --=<-<-<<-< ,所以1(2,3,,1)n i n i a a a i n +--==- ①,所以12n n a a a -=+,23n n a a a -=+,因为12131312n n n n n n n a a a a a a a a a ------+>+>>+>+= ,所以1(3,4,5,,2)n i a a C i n -+∉=- ,即1(3,4,5,,2)n i a a C i n --∈=- ,因为112131310n n n n n n a a a a a a a a ------=<-<-<<-< ,根据120n a a a ≤<<< ,分两种情况:第一种情况为122n n a a a ---=,133n n a a a ---=,…,133n n a a a ---=,第二种情况为12(3)n n k a a a k ---=≥,13(2)n i a a a i n --=≥-,先考虑第二种情况1223n n k n n a a a a a a ---=+≥+=,与题意矛盾,1332n i n n a a a a a a --=+≥+=,与题意矛盾,所以只能为第一种情况,可得1(3,4,,2)n i n i a a a i n ---==- ②,由①-②,得11(3,4,,2)n n n i n i a a a a i n -+---=-=- ,即12332221n n n n a a a a a a a a a ----=-==-==- ,即当5n ≥时,1a ,2a ,…,n a 是等差数列,当4n =时,434a a a +>,所以43a a C +∉,即43a a C -∈,由前面得出1434240a a a a a a =<-<-<,所以432a a a -=,423a a a -=,当322a a a -≠成立时,1a ,2a ,3a ,4a 不是等差数列,所以n 的最大值为4.【点睛】方法点睛:等差数列的三种判定方法:定义法:1(N )n n a a d n *+-=∈(d 为常数)等差中项法:122(N )n n n a a a n *++=+∈通项公式法:(N )n a an b n *=+∈(a ,b 为常数),但如果要证明一个数列是等差数列,则必须用定义法或等差中项法进行证明.。
高三数学第二次模拟试卷

考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1. 函数$f(x) = x^3 - 3x$的图像在区间()上单调递增。
A. $(-\infty, -1)$B. $(-1, 1)$C. $(1, +\infty)$D. $(-\infty, +\infty)$2. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1 + a_3 = 10$,$a_4 + a_6 = 24$,则$S_{10} = $()A. 150B. 180C. 210D. 2403. 设$a, b, c$是等比数列的连续三项,且$a + b + c = 0$,$ab + bc + ca = 0$,则公比$q = $()A. -1B. 1C. $\frac{1}{2}$D. 24. 若复数$z$满足$|z - 1| = |z + 1|$,则复数$z$的实部为()A. 0B. 1C. -1D. 不存在5. 下列命题中正确的是()A. 对于任意的实数$x$,都有$x^2 \geq 0$B. 对于任意的实数$x$,都有$\sqrt{x^2} = |x|$C. 对于任意的实数$x$,都有$x^3 \geq 0$D. 对于任意的实数$x$,都有$x^4 \geq 0$6. 已知函数$f(x) = x^2 - 4x + 3$,则函数$f(x)$的图像的对称轴为()A. $x = -1$B. $x = 1$C. $x = 2$D. $x = 3$7. 若等差数列$\{a_n\}$的公差$d > 0$,且$a_1 + a_3 = 10$,$a_4 + a_6 =24$,则数列$\{a_n\}$的通项公式为()A. $a_n = 3n - 2$B. $a_n = 2n + 1$C. $a_n = 3n + 1$D. $a_n = 2n - 1$8. 设函数$f(x) = x^3 - 3x$,则$f'(1) = $()A. 0B. 1C. -1D. 39. 若复数$z$满足$|z - 1| = |z + 1|$,则复数$z$在复平面上的对应点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 下列函数中,是偶函数的是()A. $f(x) = x^2 - 1$B. $f(x) = x^3$C. $f(x) = \frac{1}{x}$D. $f(x) = x^4$11. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1 + a_3 = 10$,$a_4 + a_6 = 24$,则$S_{10} = $()A. 150B. 180C. 210D. 24012. 设函数$f(x) = x^3 - 3x$,则$f'(1) = $()A. 0B. 1C. -1D. 3二、填空题(本大题共6小题,每小题5分,共30分)13. 函数$f(x) = 2x^3 - 3x^2 + 4$的极值点为__________。
山东省昌乐二中2022-2023学年高三下学期二轮复习模拟(二)数学试题

一、单选题二、多选题1. 已知抛物线的焦点在圆上,则该抛物线的焦点到准线的距离为( )A .1B .2C .4D .82. 抛物线过点,则焦点坐标为( )A.B.C.D.3.已知是圆上一个动点,且直线与直线相交于点P ,则的取值范围是( )A.B.C.D.4. 对一个物理量做n次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差.为使误差在的概率不小于0.9545,至少要测量的次数为( )(参考数据:若,则.)A .100B .200C .400D .8005. 设,,,则( )A .b >c >aB .b >a >cC .c >b >aD .a >b >c6. 有2个同样的箱子,甲箱中有大小相同的2只红球,6只白球,乙箱中有大小相同的2只红球,1只白球,从甲、乙中随机取一箱,再从该箱中随机取两球,则这两球都为红球的概率是( )A.B.C.D.7. 文化广场原名地质宫广场,是长春市著名的城市广场,历史上地质宫广场曾被规划为伪满洲国的国都广场.文化广场以新民主大街道路中心线至地质宫广场主楼中央为南北主轴,广场的中央是太阳鸟雕塑塔,在地质宫(现为吉林大学地质博物馆)主楼辉映下显得十分壮观.现某兴趣小组准备在文化广场上对中央太阳鸟雕塑塔的高度进行测量,并绘制出测量方案示意图,A 为太阳鸟雕塑最顶端,B 为太阳鸟雕塑塔的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C 、D 两点.测得CD 的长为m .兴趣小组成员利用测角仪可测得的角有、、、、,则根据下列各组中的测量数据,不能计算出太阳鸟雕塑塔高度AB 的是()A .m 、、、B .m 、、、C .m 、、、D .m 、、、8. 在的展开式中,的系数是( )A.B .8C.D .49.已知数列满足,且,则下列说法正确的是( )A .数列为递减数列B.C.D.10.设,则函数的部分图象可能为( )山东省昌乐二中2022-2023学年高三下学期二轮复习模拟(二)数学试题山东省昌乐二中2022-2023学年高三下学期二轮复习模拟(二)数学试题三、填空题四、解答题A.B.C.D.11. 如图,在棱长为的正方体中,分别为棱,的中点,为面对角线上的一个动点,则()A .三棱锥的体积为定值B .线段上存在点,使平面C .线段上存在点,使平面平面D .设直线与平面所成角为,则的最大值为12.已知函数,则( )A .曲线在处的切线方程为B.在上单调递增C.对任意的,,有D.对任意的,,,,则13. 已知实数、满足,,则的取值范围为______.14. 若点关于轴对称点为,写出的一个取值为___.15.已知复数,对于数列,定义为的“优值”.若某数列的“优值”,则数列的通项公式______;若不等式对于恒成立,则k 的取值范围是______.16. 直线l:+3y +1=0与圆C :相交于A 、B 两点.(1)求圆C 的圆心坐标和半径长;(2)求弦AB 的长.17. 数字人民币是由中国人民银行发行的数字形式的法定货币,由指定运营机构参与运营并向公众兑换,与纸钞和硬币等价.为了进一步了解普通大众对数字人民币的认知情况,某机构进行了一次问卷调查,统计结果如下:小学及以下初中高中大学专科大学本科硕士研究生及以上不了解数字人民币35358055646了解数字人民币406015011014025(1)如果将高中及以下学历称为“低学历”,大学专科及以上学历称为“高学历”,根据所给数据,完成下面的列联表;低学历高学历合计不了解数字人民币了解数字人民币合计800(2)根据(1)中所得列联表,判断是否有的把握认为“是否了解数字人民币”与“学历高低”有关?附:,其中.0.0500.0100.001K 3.841 6.63510.82818. 已知函数,其中是自然对数的底数.(1)求函数的图象在点处的切线方程;(2)若,求证:.19. 已知椭圆:过点,离心率为,直线:与椭圆交于两点.(1)求椭圆的标准方程;(2)是否存在实数,使得(其中为坐标原点)成立?若存在,求出实数的值;若不存在,请说明理由.20. 如图,在直三棱柱中,,,分别为,,的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.21. 已知函数.(1)当时,求函数的单调区间:(2)若()有3个零点,,,其中.求证:.。
山东省实验中学2023届高三第二次模拟考试数学试题

一、单选题二、多选题1. 以双曲线的焦点为顶点,离心率为的双曲线标准方程为A.B.C.D.2.复数在复平面上对应的点位于第一象限,则实数的取值范围是( )A.B.C.D.3. 已知、均为实数,记,.若表示虚数单位,且,则( )A.B.C.D.4.已知曲线,把上各点横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,关于有下述四个结论:(1)函数在上是减函数;(2)方程在内有2个根;(3)函数(其中)的最小值为;(4)当,且时,,则.其中正确结论的个数为( )A .1B .2C .3D .45. 设,,,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b6. 设函数的定义域,函数的定义域为,则( )A.B.C.D.7. 记号[x ]表示不超过实数x 的最大整数,若,则的值为( )A .899B .900C .901D .9028. 已知直线l 和平面,满足,.在,,这三个关系中,以其中两个作为条件,余下一个作为结论所构成的命题中,真命题的个数是( )A .0B .1C .2D .39. 某地区经过2022年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A .新农村建设后,种植收入增加B .新农村建设后,其他收入是原来的1.25倍C .新农村建设后,养殖收入增加了一倍山东省实验中学2023届高三第二次模拟考试数学试题山东省实验中学2023届高三第二次模拟考试数学试题三、填空题四、解答题D.新农村建设后,其他收入与第三产业收入的总和超过了经济收入的10.已知函数的部分图像如图所示.对于,且,若,都有成立,则()A.B.C .直线是图像的一条对称轴D .在上单调递增11. 已知异面直线与所成角为,平面与平面的夹角为,直线与平面所成的角为,点为平面、外一定点,则下列结论正确的是( )A.过点且与直线、所成角都是的直线有条B .过点且与平面、所成角都是的直线有条C.过点且与平面、所成角都是的直线有条D.过点与平面成角,且与直线成的直线有条12.已知为等差数列的前项和,且,,则( )A.B.C.D .满足的的最小值为1713. 已知,若,且,则______;______.14. 如图,将圆沿直径折成直二面角,是所在半圆弧的中点,是所在半圆弧的任意一点,则直线与平面所成角的大小为__________.15.化简:_____.16. 据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:送货单数30405060天数甲10102010乙515255已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;(2)若将频率视为概率,回答下列问题:①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.17. 某社区对是否愿意参与2023年元旦文艺与体育活动进行调查,随机抽查男性居民,女性居民各35人,参与调查的结果如下表:愿意参与不愿参与男性居民15人20人女性居民25人10人(1)从已知数据判断能否有95%的把握认为是否愿意参与文艺和体育活动与性别有关;(2)用分层抽样方法,在愿意参与的居民中抽取8人,再从这8人中随机抽取3人,记抽到的男性居民人数为X,求随机变量X的分布列和数学期望.附:,其中.0.0500.0100.0013.841 6.63510.82818. 如图,三棱柱在圆柱中,等腰直角三角形,分别为上、下底面的内接三角形,点,分别在棱和上,,,平面.(1)求的值;(2)求平面与平面所成锐二面角的余弦值.19. 已知函数.(1)若存在极值,求实数的取值范围;(2)当时,判断函数的零点个数,并证明你的结论.20. 已知四棱锥,平面,底面是等腰梯形,,,,.(1)证明:平面;(2)若与平面所成角的正切值为,求二面角的正弦值.21. 已知数列中,,.(1)证明:数列为等比数列;(2)设,求数列的前n项和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题意图:空间几何体积表面积的考察
15.若实数a,b,c,d满足|b+a2-3lna|+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为______.8
令10-5r=0得r=2.所以常数项为T3=C(-2)2=40.
命题意图:二项式通项的考察
13.登山族为了了解某山高y(km)与气温x(℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:
气温(℃)
18
13
10
-1
山高(km)
24
34
38
64
由表中数据,得到线性回归方程=-2x+(∈R).由此估计山高为72(km)处气温的度数为________.-6
由 消去y得: ,
则 5分
从而
7分
,从而
综上所述: 的取值范围为 .8分(III)由题意知:过右顶点C 的直线 斜率不为0,设其方程为:
A.3B.4
C.-1D.2
解析∵f′(x)=ex,∴f′(0)=1,∴曲线f(x)=ex在点(0,1)处的切线方程为y=x+1,其与直线y=-x+3及x轴围成的平面区域如图阴影部分所示,当直线z=x-3y过点A(3,0)时,目标函数z=x-3y取得最大值3.
命题意图:考察线性规划
7.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为
命题意图:双曲线概念及离心率考察
10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图,下列关于函数f(x)的四个命题:
x
-1
0
4
5
f(x)
1
2
2
1
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
(B).
A.2B.4
C.D.16
解析取AC的中点D,连接BD,SD,由正视图及侧视图得,BD⊥平面SAC,SC⊥平面ABC,则∠SDB=90°,且BD=2,SD=2,
∴SB=4.
命题意图:由三视图恢复实物图
8.在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinA=acosC,则sinA+sinB的最大值是(D).
(2)由题意可知 的所有可能取值为0,1,2,3,…………………5分
相应的概率分别是
, ,
, ,………………9分
所以 的分布列为:
0
1
2
3
P
.
命题意图:统计与离散型随机变量的考察
18.(本小题满分12分)
如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
9.已知F1,F2是双曲线-=1(a>0,b>0)的两个焦点,以线段F1F2为边作正三角形MF1F2.若线段MF1的中点在此双曲线上,则双曲线的离心率为
(D).
A.4+2B.-1
C.D.+1
解析∵正三角形MF1F2的边长为2c,设MF1的中点为N,∴F2N⊥NF1,在Rt△NF1F2中,容易求得,|NF2|=c,|NF1|=c,又N在双曲线上,∴|NF2|-|NF1|=2a,∴2a=c-c,∴e===+1.
解(1)如图以D为坐标原点,建立空间直角坐标系D-xyz.
依题意得D(0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),
B(1,1,0),N(1,1,1),E(,1,0),…………………………………….1分
所以=(-,0,-1),
=(-1,0,1).…………………………………….2分
解析∵|b+a2-3lna|+(c-d+2)2=0,∴(a-c)2+(b-d)2表示两点(a,b),(c,d)间距离的平方,将直线d=c+2平移到与曲线b=3lna-a2相切,切点到直线d=c+2的距离即两点(a,b),(c,d)间距离的最小值,由b′=-2a=1,得a=1(a=-舍去),∴切点为(1,-1),到直线d=c+2的距离为2,∴(a-c)2+(b-d)2的最小值为8.
学生易错点:①运算环节;②直线特殊位置遗漏导致 范围缺端点.
解:(I)由题意知: 则直线 的方程为: ,从而 到直线 的距离为 1分
解得: ,则 从而椭圆的方程为: ;3分
(II) 当过 直线MN xMN不与x轴垂直时,
设其方程为: ,设M,N坐标分别为 ,
2.若命题p:φ=+kπ,k∈Z,命题q:f(x)=sin(ωx+φ)(ω≠0)是偶函数,则p是q的(A).
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
解析当φ=+kπ,k∈Z时,f(x)=±cosωx是偶函数,所以p是q的充分条件;若函数f(x)=sin (ωx+φ)(ω≠0)是偶函数,则sinφ=±1,即φ=+kπ,k∈Z,所以p是q的必要条件,故p是q的充要条件.
命题意图:函数性质综合考察
二、填空题(本小题满分25分)
11.已知a=(1,2),b=(x,6),且a∥b,则|a-b|=________.2
解析∵a∥b,∴1×6-2x=0,∴x=3.
故|a-b|==2.
命题意图:平面向量的共线及运算考察
12.5展开式中的常数项为________.40
解析Tr+1=C(x2)5-rr=C(-2)rx10-5r,
…………2分
∴ …………4分
(Ⅱ)∵
又∵ ∴ ……6分
∴ ,…………8分
将 图象上所有点的横坐标变为原来的 ,得到 ,…………9分
所以 的单调增区间为 …………10分
即 …………11分
的单调区间为 …………12分
17.(本小题满分12分)
为了进一步激发同学们的学习热情,某班级建立了理科.文科两个学习兴趣小组,两组的人数如下表所示.现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取 名同学进行测试.
(I)求椭圆的方程;
(II)过 的直线交椭圆于M,N两点,求 的取值范围;
(III)过椭圆的右顶点C的直线 与椭圆交于点D(点D异于点C),与y轴交于点P(点P异于坐标原点O),直线AD与BC交于点Q.
证明: 为定值.
命题意图:
(本题主要考查直线与椭圆的位置关系及向量在解析几何中的应用,同时考查基本运算能力和逻辑推理能力)
④当1<a<2时,函数y=f(x)-a有4个零点.其中真命题的个数(D).
A.4B.3
C.2D.1
解析首先排除①,不能确定周期性,f(x)在[0,2]上时f′(x)<0,故②正确,当x∈[-1,t]时,f(x)的最大值是2,结合原函数的单调性知0≤t≤5,所以排除③;不能确定在x=2时函数值和a的大小,故不能确定几个零点,故④错误.
命题意图:初等函数单调性
4.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为(C).
A.24B.39
C.52D.104
解析∵3(a3+a5)+2(a7+a10+a13)=48,由等差数列的性质得6a4+6a10=48,∴a7=4,∴数列{an}的前13项和为13a7=52.
命题意图:充分必要条件的理解与三角函数融合
3.已知a=21.2,b=-0.8,c=2log52,则a,b,c的大小关系为(A).
A.c<b<aB.c<a<b
C.b<a<cD.b<c<a
解析先把不同底指数化成同底指数,再利用指数函数的单调性比较大小,最后利用中间值与对数函数值进行比较大小.a=21.2>2,而b=-0.8=20.8,所以1<b<2,c=2log52=log54<1,所以c<b<a.
命题意图:绝对值转化为直线与圆的位置关系的考察
三、解答题
16.(本小题满分12分)
在 中,边a,b,c的对角分别为A,B,C;且 ,面积 .
(I)求a的值;
(II)设 ,将 图象上所有点的横坐标变为原来的 (纵坐标不变)得到 的图象,求 的单调增区间.
命题意图:1.考察正弦定理应用2.图像变换
解析:(Ⅰ)在 中
(I)求数列 的通项公式;
(Ⅱ)数列 满足: 。求数列 的前n项和 。
命题意图:本题主要考查考查等差数列的概念、通项公式及错位相减法求和问题,同时考查分析问题、解决问题的能力,及运算能力。
学生易错点:运算结果错误
20.(本小题满分13分)
已知 分别是椭圆 的左、右焦点,A,B分别为椭圆的上、下顶点, 到直线 的距离为 .
高三数学综合模拟试卷
一、选择题(本小题满分50分)
1.已知i为虚数单位,a∈R,若(a-1)(a+1+i)是纯虚数,则a的值(C).
A.-1或1B.1
C.-1D.3
解析∵(a-1)(a+1+i)=(a2-1)+(a-1)i是纯虚数,∴a2-1=0,且a-1≠0,∴a=-1.
命题意图:复数的概念及运算
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
命题意图:异面直线所成角;利用空间向量解决探索性问题
易错点:(1)异面直线所成角容易找错(2)异面直线所成角的范围搞不清
(3)利用空间向量解决探索性问题,找不到突破口
求从理科组抽取的同学中至少有 名女同学的概率;
记 为抽取的 名同学中男同学的人数,求随机变量 的分布列和数学期望.