第20课时一次函数的性质

合集下载

一次函数及其应用

一次函数及其应用

一次函数的图形、性质、应用【学习目标】1. 掌握一次函数的性质图像;2.理解待定系数法;3. 能用待定系数法求一次函数,用一次函数表达式解决有关现实问题4.体会用"数形结合"思想解决数学问题.【知识梳理】知识点一.函数图象:画函数图像的一般步骤:列表,描点,连线;知识点二.正比例函数与一次函数的图像与性质1. 一次函数与坐标轴交点:一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0),正比例函数的图像都是过原点。

2.k>0k<0|k|的决定直线的倾斜程度:|k|越大直线越陡,越接近y轴;|k|越小直线越缓,越接近x 轴;b代表与y轴交点的纵坐标。

3. 一次函数 y=kx+b与正比例函数 y=kx的图像间的关系:一次函数y=kx+b的图像可由正比例函数y=kx的图像平移得到,b>0,向上平移|b|个单位;b<0,向下平移|b|个单位。

知识点三.确定一次函数的表达式1.(1)图像过原点函数为正比例函数,可设表达式为y=kx,再找图像上一点的坐标带入表达式,即可求出K;(2)图像不过原点函数为一般的一次函数,可设表达式为y=kx+b,再找图像上两点的坐标带入表达式,即可求出K,b;知识点四.一次函数与一元一次方程的关系1、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 【经典习题】题型一:函数图像例1、若正比例函数的图象经过点(2,-3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,-2)D.(-2,3)例2、直线y=2x+1经过点(0,a),则a= .例3、若直线y=kx+b经过A(1,0),B(0,1),则()A. k=-1, b=-1B. k=1, b=1C. k=1, b=-1D. k=-1, b=1练习:1、函数y=kx的图象经过点P(3,-1),则k的值为()A.3B.-3C. 13D.132、当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A. 1, 11B. -1, 9C. 5, 11D. 3, 3题型二:函数图像及其性质例4、在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限例5、设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2 B.k-1 C.k D.k+1例6、已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A.B.C.D.例7、对于函数1223y x=-, y的值随x值的________而增大。

《一次函数的图象和性质》PPT课件

《一次函数的图象和性质》PPT课件
与y 轴交点的坐标为(_0_,___-_3_)_;图象经过 一_、___三__、四象限, y 随x 的增大而_增___大____.
(2)指出以下四个一次函数的共同之处.
①y=1 2 Nhomakorabeax+1;
②y =x+1;
③y =2x+1; ④y =-x+1.
tips:由组长指定除自己外的三名成员回答,每小
下列函数中:题2分
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
说出下列函数的增减性及经过的象限
(1) y =-3X+7 (2) y = πx
(3) y =3-X
(5) y = x 8
(4) y =5x+6 (6)y = -0.5x-1
tips:由老师指定该组某个组员回答,答错可由组员补 答,但得分减半,第一题6分,第二题3分。
(1)直线y =2x-3 与x 轴交点的坐标为(_1_._5_,__0_)_;
不同点.(4分钟)
③y=x-2 的图象。
相同点:函数的图象形状都是 直线 ,并
且倾斜程度_相__同___
y 4 3 2 1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5
不同点:
y=x+2 y=yx=x-2函点与数,y轴y函=交数x于的y=点图x_(+象_20_经的,__过图2_),原象
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《一次函数的图象和性质》教学设计优秀5篇一次函数,也作线性函数,在X,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

沪科版数学八年级上册《一次函数的图象与性质》教学设计5

沪科版数学八年级上册《一次函数的图象与性质》教学设计5

沪科版数学八年级上册《一次函数的图象与性质》教学设计5一. 教材分析《一次函数的图象与性质》是沪科版数学八年级上册的一章内容。

本章主要让学生掌握一次函数的图象与性质,包括一次函数的图象、斜率、截距等概念,以及一次函数的单调性、奇偶性等性质。

本节课的教学设计共分为5个部分,分别是教材分析、学情分析、教学目标、教学重难点和教学方法。

二. 学情分析在八年级上册的学生已经学习了函数的基本概念和一次函数的定义,对函数有一定的认识。

但学生在函数图象和性质方面的理解还不够深入,需要通过本节课的教学来进一步巩固和拓展。

三. 教学目标1.让学生掌握一次函数的图象与性质,能够识别和分析一次函数的图象特征。

2.培养学生运用一次函数的性质解决实际问题的能力。

3.提高学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.一次函数的图象特征和性质的理解。

2.如何运用一次函数的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和主动性。

2.利用多媒体教学辅助工具,展示一次函数的图象和性质,帮助学生直观地理解和掌握。

3.结合具体例子,让学生通过实际操作和练习,巩固一次函数的图象与性质。

六. 教学准备1.多媒体教学辅助工具,如PPT、教学课件等。

2.相关的练习题和案例,用于巩固和拓展学生的知识。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引入一次函数的图象与性质的概念,激发学生的兴趣和好奇心。

例如,可以提出一个问题:如何在平面直角坐标系中表示两个人从不同地点出发,相向而行的运动情况?2. 呈现(15分钟)教师通过多媒体教学辅助工具,呈现一次函数的图象和性质,包括斜率、截距等概念,以及一次函数的单调性、奇偶性等性质。

同时,教师可以通过具体的例子,让学生观察和分析一次函数的图象特征。

3. 操练(10分钟)教师给出一些练习题,让学生运用一次函数的性质解决问题。

教师可以引导学生分组讨论和合作,共同解决问题。

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。

本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。

但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。

三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。

2.理解一次函数的性质,能够解释一次函数图象的变换。

3.能够运用一次函数解决实际问题,提高学生的数学应用能力。

四. 教学重难点1.一次函数的图象特征和性质的理解。

2.一次函数图象的实际应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。

六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。

2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。

七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。

3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。

4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。

5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。

一次函数

一次函数

一次函数知识点聚焦一、函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 二、一次函数概念:1.一次函数的概念:一般地,如果y =kx +b(k 、b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数.由定义知:y 是x 的一次函数⇔它的解析式是y =kx +b ,其中k 、b 是常数,且k ≠0.2.一次函数解析式y =kx +b(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)常数项b 可为任意实数.3.正比例函数解析式y =kx(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)没有常数项或者说常数项为0.4. 正比例函数是一次函数,但一次函数y =kx +b(k ≠0)不一定是正比例函数,只有当b=0时才是正比例函数。

三、一次函数的图像1.一次函数y =kx +b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线.2.正比例函数y =kx(k ≠0)的图象是经过点(0,0)和(1,k)的一条直线.注意:画一次函数的图像,只需要过图像上两点作直线即可,一般取(0,b )、(-b k,0)两点。

四、一次函数图像的性质1. 一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.b>0时,直线交y 轴正半轴,b<0时,直线交y 轴负半轴。

2.一次函数y=kx+b(k ≠0)的图象是经过点(0,b)且平行于直线y=kx (k ≠0)的一条直线3. 平移规律在原有函数的基础上“k 值正右移,负左移;b 值正上移,负下移”。

一次函数的性质

一次函数的性质

一次函数的性质一次函数y=kx+b (k≠0) k>0,b>0,则图象过1,2,3象限k>0,b<0,则图象过1,3,4象限k<0,b>0,则图象过1,2,4象限k<0,b<0,则图象过2,3,4象限当k>0时,y随x的增大而增大;图像经过一、三象限当k<0时,y随x的增大而减小;图像经过二、四象限二次函数y=ax^2+bx+ca>0开口向上a<0开口向下a,b同号,对称轴在y轴左侧,反之,再y轴右侧|x1-x2|=根号下b^2-4ac除以|a|与y轴交点为(0,c)b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根b^2-4ac<0,ax^2+bx+c=0无实根b^2-4ac=0,ax^2+bx+c=0有两个相等的实根对称轴x=-b/2a顶点(-b/2a,(4ac-b^2)/4a)顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减正比例函数与反比例函数形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.图象做法:1.带定系数2.描点3.连线图象是一条直线,一定经过坐标轴的原点性质:当k>0时,图象经过一,三象限,y随x的增大而增大当k<0时,图象经过二,四象限,y随x的增大而减小形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数的图像为双曲线。

它可以无限地接近坐标轴,但永不相交.性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小,当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大.一次函数是有规律的:一、定义:如果y=kx+b(k、b是常数且k不等于0),那么y叫做x 的一次函数。

一次函数的图象和性质(提高)知识讲解

一次函数的图象和性质(提高)知识讲解

一次函数的图象与性质(提高)责编:杜少波【学习目标】1. 理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;2. 能正确画出一次函数y kx b =+的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题. 【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 【高清课堂:391659 一次函数的图象和性质,待定系数法求函数的解析式】 要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围. 【典型例题】类型一、待定系数法求函数的解析式1、(1)已知直线(0)y kx b k =+≠,与直线2y x =平行,且与y 轴的交点是(0,2-),则直线解析式为___________________.(2)若直线(0)y kx b k =+≠与31y x =+平行,且同一横坐标在两条直线上对应的点的纵坐标相差1个单位长度,则直线解析式为__________________. 【思路点拨】(1)一次函数的图象与正比例函数的图象平行,则比例系数k 相同,再找一个条件求b 即可,而题中给了图象过(0,2-)点,可用待定系数法求b .(2)题同样比例系数k 相同,注意同一横坐标在两条直线上对应的点的纵坐标相差一个单位长度有两种情况,都要考虑到. 【答案】(1)22y x =-;(2)32y x =+或3y x =.【解析】(1)因为所求直线与2y x =平行,所以2y x b =+,将(0,-2)代入,解得b =-2,所以22y x =-.(2)由题意得k =3,假设点(1,4)在31y x =+上面,那么点(1,5)或(1,3)在直线3y x b =+上,解得b =2或b =0.所求直线为32y x =+或3y x =.【总结升华】互相平行的直线k 值相同. 举一反三:【高清课堂:391659 一次函数的图象和性质,例2】 【变式1】一次函数交y 轴于点A (0,3),与两轴围成的三角形面积等于6,求一次函数解析式. 【答案】 解:()0,3, 3.A OA =∴()()1,2163244,04,0.AOB S OA OB OB OB B B =⋅=⨯⋅=-△∴∴∴或设一次函数的解析式为3y kx =+.当过()4,0B 时,34304k k +==-∴; 当过()4,0B -时,34304k k -+==∴;所以,一次函数的解析式为334y x =-+或334y x =+. 【高清课堂:391659 一次函数的图象和性质,例3】【变式2】在平面直角坐标系xOy 中,已知两点(1,0)A -,(2,3)B -,在y 轴上求作一点P ,使AP +BP 最短,并求出点P 的坐标.【答案】解:作点A 关于y 轴的对称点为()1,0A ',连接A B ',与y 轴交于点P ,点P 即为所求.设直线A B '的解析式为y kx b =+, 直线A B '过()()1,0,2,3A B '-,01231k b k k b b +==-⎧⎧⎨⎨-+==⎩⎩∴∴ A B '∴的解析式为:1y x =-+,它与y 轴交于P (0,1).类型二、一次函数图象的应用2、(2016•四川南充)小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m ,如图是小明和爸爸所走的路程s (m )与步行时间t (min )的函数图象.(1)直接写出小明所走路程s 与时间t 的函数关系式; (2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20min 到达公园,则小明在步行过程中停留的时间需作怎样的调整?【思路点拨】(1)根据函数图形得到0≤t≤20、20<t≤30、30<t≤60时,小明所走路程s 与时间t 的函数关系式;(2)利用待定系数法求出小明的爸爸所走的路程s 与步行时间t 的函数关系式,列出二元一次方程组解答即可;(3)分别计算出小明的爸爸到达公园需要的时间、小明到达公园需要的时间,计算即可.【答案与解析】解:(1)s=50(020)1000(2030)50-500(3060)t t t t t ⎧⎪⎨⎪⎩≤≤<≤<≤;(2)设小明的爸爸所走的路程s 与步行时间t 的函数关系式为:s=kt+b ,则251000250k b b +=⎧⎨=⎩,解得,30250k b =⎧⎨=⎩,则小明和爸爸所走的路程与步行时间的关系式为:s=30t+250,当50t ﹣500=30t+250,即t=37.5min 时,小明与爸爸第三次相遇;(3)30t+250=2500,解得,t=75,则小明的爸爸到达公园需要75min ,∵小明到达公园需要的时间是60min ,∴小明希望比爸爸早20min 到达公园,则小明在步行过程中停留的时间需减少5min . 【总结升华】本题考查的是一次函数的应用,掌握待定系数法求一次函数解析式、读懂函数图象是解题的关键.类型三、一次函数的性质【高清课堂:391659 一次函数的图象和性质,例4】3、已知自变量为x 的一次函数()y a x b =-的图象经过第二、三、四象限,则( • ) A .a >0,b <0 B .a <0,b >0 C .a <0,b <0 D .a >0,b >0 【答案】C ;【解析】原函数为y ax ab =-,因为图象经过二、三、四象限,则a <0,ab -<0,解得a <0,b <0.【总结升华】一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y kx b =+的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y kx b =+的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y kx b =+的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y kx b =+的图象经过第二、三、四象限,y 的值随x 的值增大而减小.举一反三:【高清课堂:391659 一次函数的图象和性质,例5】【变式1】直线1l :=+y kx b 与直线2l :=+y bx k 在同一坐标系中的大致位置是( ).A .B .C .D .【答案】C ;提示:对于A ,从1l 看 k <0,b <0,从2l 看b <0,k >0,所以k ,b 的取值自相矛盾,排除掉A.对于B ,从1l 看k >0,b <0,从2l 看b >0,k >0,所以k ,b 的取值自相矛盾,排除掉B. D 答案同样是矛盾的,只有C 答案才符合要求.【变式2】(2015•宿迁)在平面直角坐标系中,若直线y=kx+b 经过第一、三、四象限,则直线y=bx+k 不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C .解:由一次函数y=kx+b 的图象经过第一、三、四象限,∴k >0,b <0,∴直线y=bx+k 经过第一、二、四象限, ∴直线y=bx+k 不经过第三象限,故选C .类型四、一次函数综合4、(2015春•东莞期末)在平面直角坐标系xOy 中,将直线y=2x 向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A .(1)将直线y=2x 向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.【思路点拨】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【答案与解析】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【总结升华】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的性质
学习目地
1、会画一次函数的图像
2、经历对一次函数图像及解析表达式y=kx+b进行探索的过程,从而理解一次函数的性质。
重点难点:
.经历对一次函数图像及解析表达式y=kx+b进行探索的过程,从而理解一次函数的性质。
一、教学过程:
学生活动
点拨精讲
一、学习指导
1、在同一直角坐标系中画出下列两组一次函数的图像
(1)y=2x+4 y=3x-6
(2)y=-3x-3 y=-2x+2
2、观察图像回答下列问题:
(1)观察(1)组图像回答:当一个点在直线上从左到右移动时,点的位置逐步,
即函数y随x的增大而
(2)观察(2)组图像回答:当一个点在直线上从左到右移动时,点的位置逐步,
即函数y随x的增大而
(3)当b>0时,图像交于y轴的,当b&数值随x的增大而减小,则函数的图像经过第
象限
2、若一次函数y=kx+b的函数值y随x的增大而增大,且图像与y轴的负半轴相交,那么对k和b的符号判断,k 0,b 0
.
3、已知k>0,b<0,一次函数y=kx-b的图像大致经过象限。
4、已知直线y=kx+b过点(x1,y1)和(x2,y2),若k<0,则当x1<x2时,y1和y2大小关系是
(4)当k>o时,图像必过第象限,当k<0时,图像必过第象限
二、尝试练习
1、已知一次函数y=(6+3m)x+(m-4)
(1)m为何值时,y随x的增大而减小?
(2)m为何值时,函数图像交与y轴的负半轴?
(3)m为何值时,函数图像不经过第二象限?
2、已知一次函数y=kx+2的图像与x轴交与点A,与y轴交与点B,AOB的面积等于5,且y随x的增大而减小,求k的值
5、已知一次函数y=(k-2)x+k的图像不经过第三象限,则k的取值范围是
6、直线y=kx+b经过第一三四象限,那么直线y=-bx+k经过第象限
四、教学反思:
相关文档
最新文档