巩固练习2一次函数与二元一次方程的关系-优质公开课-冀教8下精品
2019-2020年初中数学冀教版八年级下册21.5一次函数与二元一次方程的关系课件.ppt

一次函数?
试一试:把下列二元一次方程转化为一次函数 (1)y-2x=1; (2)2y+x=4
1.方程x+y=5的解有多少个? 无数个
是这个方程的解吗? 都是 2.在直角坐标系内分别描出以上面这些解为坐 标的点,它们在一次函数y=-x+5的图象上吗?
都在
y
6
(-1,6) 5
4 3 2 1
(1,4) (1.5,3.5)
值相等,以及这个函数值是何值.
例
利用图象法解方程组
x y 1 2x y 1
①; ②.
y
解:方程 ① 可化为
有
7
x 0 -1
6 交点(0,1)
y 10
5
方程①的图象是通过(0,1)和(-1,
4 3
0)两点的直线 .
l1:x y 1 2
l2:2x y 1
方程 ② 可转化为
利用图象法 解二元一次 方程组的一 般步骤
①两个方程分别转化为一次函数 ②在同一坐标系中画出两个函数图象 ③找出图象交点坐标
④写出方程组的解
练一练
1.方程组
x-y=4 的解是
3x-y=16
x=6 y=2 ,由此可知一
次函数 y=x+4 与 y=-3x+16 的图像必有一个交点,
且交点坐标是 (6,2) .
2.利用图象法解方程组
y
3x+2y=-2,
8
6x+4y=4.
7
方程组的两个方程的图
6 5
象有怎样的位置关系? 3x+2y = -2 4
3
方程组的情况怎样?
2
解:作出两个方程的图象, 如图,两条直线平行,所
冀教版数学八年级下册21.5《一次函数与二元一次方程的关系》教学设计

冀教版数学八年级下册21.5《一次函数与二元一次方程的关系》教学设计一. 教材分析冀教版数学八年级下册21.5《一次函数与二元一次方程的关系》是本册教材中的一个重要内容,它让学生了解到一次函数和二元一次方程之间的联系。
通过学习本节内容,学生能够掌握一次函数的图像特征,以及如何将二元一次方程转化为两个一次函数的图像,从而更好地解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了函数、方程的基本概念,并了解了二元一次方程的解法。
但他们对一次函数与二元一次方程之间的关系可能还比较模糊,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.让学生理解一次函数与二元一次方程之间的关系。
2.培养学生运用一次函数解决实际问题的能力。
3.提高学生对数学知识的综合运用能力。
四. 教学重难点1.教学重点:一次函数与二元一次方程之间的关系。
2.教学难点:如何将二元一次方程转化为两个一次函数的图像,并运用一次函数解决实际问题。
五. 教学方法采用讲授法、引导法、实践法、讨论法等,以学生为主体,教师为主导,通过实例和练习,引导学生探索一次函数与二元一次方程之间的关系。
六. 教学准备1.教学课件:一次函数与二元一次方程的图像、实例等。
2.练习题:涵盖一次函数与二元一次方程关系的不同类型题目。
3.教学道具:用于展示实例的实物或图片。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入一次函数与二元一次方程的关系,激发学生的学习兴趣。
示例:某商店进行打折活动,商品原价为200元,打折后价格为商品原价的80%,求打折后商品的价格。
2.呈现(10分钟)呈现一次函数和二元一次方程的图像,让学生直观地感受它们之间的关系。
一次函数:y = kx + b(k、b为常数)二元一次方程:ax + by = c(a、b、c为常数,a、b不同时为0)3.操练(10分钟)让学生分组讨论,如何将二元一次方程转化为两个一次函数的图像,并运用一次函数解决实际问题。
冀教版八年级下册数学《一次函数与二元一次方程的关系》说课教学课件

当 x = 400分时,y1 =y2 , 方式一方式二一样 当 x >400 分时,y1>y2 ,方式二省钱 当 0≤x<400分时,y1<y2 ,方式一省钱
解:设上网时间为 x 分,若按方式 1 则收 y1=0.1x 元;
若按方式 2 则收 y2=0.05x+20 元。
解析: (1)该函数的图像经过原点,即其常数项为0,所以4k2=0,解得,k=0.5. (2)该函数y的值随x的值的增大而减小,即其自变量系 数小于0,所以k<0.
3. 画出函数y=-3x+3的图像,结合图像回答下列问题:
(1) y的值随x的值增大而 减小 (填“增大”或“减 小”),图像从左到右 下降 (填“上升”或“下
当k>0时,y的值随x的值的增大而增大;
当k<0时,y的值随x的值的增大而减小.
哪些函数的图像与y轴的交点在x轴的上方,哪些函数 与y轴的交点在x轴的下方?
函数的图像与y轴的交点在x轴的上方和函数的图像与 y轴的交点在x轴的下方,这两种函数,它们的区别与 常数项有怎样的关系?
正比例函数的图像一定经过哪个点? y=-
150
O 100 0200
x
0
0
2800≤y≤4600.
真题链接:
(2013 遵义) y=-0.5x图象上的两点,下列判断中,正确的是( D )
(1)求y与x的函数关系式,并写出自变量的取值范围.
(2)画出该函数的图像.
(3)观察图像,写出购买其他物品的款额y的取值范围.
解析: (1)由题意可知,购买面粉的资金为3.6x,总资金 为10000元,即3.6x+y=10000,所以该函数式为:
二元一次方程和一次函数的关系练习

y=2/3 - 4 y
y=-2x+4
例. 求如图的两条直线的交点:
8y
解:由图可知: 两条直
线的交点坐标为(3,3)
6
检验:
4
3பைடு நூலகம்
2
代(3,3)分别入函数
-10
-5
o
y=2/3x+1和
y 2 x 1
-2
3
y=3/5-2中,都适合.
5 y x -4 2
3
3
5
x
-6
P208.
• 随练. 1.
• 试一试.1.
问题1:二元一次方程x+y=5有多少解? 请举例说明。
(如:x=2,y=3; x=1,y=4; x=-1,y=6; x=0,y=5; …
因此,方程x+y=5有无数解 ) 问题2:作出函数y=-x+5的图象,并标出 上述这些解为坐标的点,它们在一次函数
y=-x+5的图象上吗?
问题3:再在图象上任取一点,它的坐标 适合方程x+y=5吗?
• 当几个一次函数中的k相同时,函数的图象互 相平行,两条直线没有交点. 因此,没有一组 数同时适合方程x+y=2和x+y=5.
x-2y=-2 2x-y=2
的解为
x=2 y=2
,
则函数y=0.5x+1与y=2x-2的图象的交点坐标
为 (2,2) .
例题:用图象法解方程组:
2x+y=4 ① 2x-3y=12 ② x
解:由①得: y2x4
由②得: y 2 x 4
3
o
作出图象:
观察图象得:交点(3,-2)
∴方程组的解为 x=3 y=-2
最新冀教版初中数学八年级下册《21.5一次函数与二元一次方程的关系》精品教案

5、6二元一次方程与一次函数教材分析本节课通过二元一次方程、二元一次方程组与一次函数关系的讨论,建立方程与函数的联系,引导学生从“形”的角度看待二元一次方程和二元一次方程组。
教科书首先通过对二元一次方程与一次函数的对比分析,让学生认识到:从“数”的角度看,方程与函数描述的是同样的关系;从“形”的角度看,它们对应解“点”组成的图像相同,得到二元一次方程组图像的特征。
然后以此为基础,探讨二元一次方程组的解与确定相应两条直线交点坐标之间的关系。
教学目标知识与技能1、初步理解二元一次方程和一次函数的关系;2、掌握二元一次方程组和对应的两条直线之间的关系;3、掌握二元一次方程组的图像解法.过程与方法(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.情感与态度(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.教学难点数形结合和数学转化的思想意识.教学准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.教学过程第一环节: 问题情境,启发引导(2分钟,学生回答问题回顾知识)第二环节:活动探究、获取新知(5分钟,学生回答问题,回顾知识)活动一:二人小组合作交流,探索二元一次方程的解与相应的直线之间的关系归纳总结:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是同一条直线。
八年级数学下册课件(冀教版)一次函数与二元一次方程的关系

则下列结论:①k<0;②a>0;③x<3时,y1<y2;
④方程组
y1=kx+b, y2=x+a,
的解是
x y
3, 1.
其中正确的个数是( B )
A.1
B.2
C.3
D.4
3 在同一平面直角坐标系内画出二元一次方程2x-y- 2=0和x-y+3=0所对应的一次函数的图像.利用
图像求:
(1)方程2x-2=x+3的解;
y乙=k2t+b2,则
6k2+b2=0, 9k2+b2=300.
所以y乙=100t-600.
解得
k2=100,
b2=
600.
当y甲=y乙,即60t-300=100t-600时,t=7.5. 所以7.5-6=1.5(h). 所以乙车出发后1.5 h 追上甲车.
(3)甲车出发后
1 3
h或2 h或3 h或
42 3
h后,
两车相距20 km.
6 为更新果树品种,某果园计划购进A,B 两个品种的果树苗 栽植培育.若计划购进这两种果树苗共45棵,其中A 种树苗 的价格为7元/棵,购买B 种树苗所需费用y (元)与购买数量x
(棵)之间存在如图所示的函数关系.
(1)求y 与x 的函数关系式; (2)若在购买计划中,B 种树苗的数量不超过35棵,但 不少于A 种树苗的数量.请设计购买方案,使总费用最
x=2, 解:解方程组得
y=2. 由此得两函数图像交点的坐标为(2,2).
3 已知一次函数y1=2x-1和y2=-x-1的图像如图所示,
根据图像填空.当x__=__0___时,y1=y2;当
x_x_=<_0_0,____时,y1<y2;方程组
y=2x 1, 的解是 y= x 1
八年级数学下册 21.5《一次函数与二元一次方程的关系》课件2 (新版)冀教版

(guān xì)
第一页,共17页。
问题1:二元一次方程(yī cì fānɡ chénɡ)yx=1有多少解?请举例说明。
(如:x=-2,y=-1; x=-1,y=0; x=0,y=1; x=1,y=2; …
因此,方程y-x=1有无数解 )
问题(wèntí)2:作出函数y=x+1的图象,并标出 上述这些解为坐标的点,它们在一次函数 y=x+1的图象上吗?
2x+y=5
y 6
yx
观察(guānchá)图象得:交点
(1∴.7方,1程.7)组的解为 x=1.7
代数法:精确 y=1.7
-10
-5
∴方程组(的j解īn为gqux=5/3 y=5/3
è)! 用作图象的方法可以直观地获得问题的结果,
但有时却难以准确.为了获得准确的结果,我们
一般用代数方法.
第十页,共17页。
的解
的图像上的点
二元一次方程的图像(tú xiànɡ)就是相应的一次 函数的图像(tú xiànɡ),它也是一条直线。
第五页,共17页。
练习
(方li程àn(fāxníg)chéng)x-y=1有一x=个2 解为
,
则一次
y=1
(2,1)
函数y=x-1的图象上有一点为
.
一次函数y=2x-4上有一点坐标为(3,2),
4 2
o
-2
x 5
-4
y 2x 5
作出图象(tú
xià-6nɡ):
练习 函(l数iàyn=-xx+í)4和y=2x+1图象的交点为(1,3),
x=1
则方程组 y+x=4 的解为 y=3 .
精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km2、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤4、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、如图,李爷爷要围一个长方形菜园ABCD ,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m ,设边BC 的长为xm ,边AB 的长为ym (x >y ).则y 与x 之间的函数表达式为( )A .y =﹣2x +24(0<x <12)B .y =﹣12x +12(8<x <24)C .y =2x ﹣24(0<x <12)D .y =12x ﹣12(8<x <24) 8、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m10、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y 1=-x +m 和y 2=2x +n 的交点如图,则不等式-x +m <2x +n 的解集是_____.2、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.3、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.4、正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过______的直线,我们称它为直线y =kx .5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w 元,其中钢笔的支数为a .①当6a >时,求w 与a 之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?2、已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min ;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km )与所用时间 x (min )的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、如图,直线l 1的函数解析式为y =﹣x +1,且l 1与x 轴交于点A ,直线l 2经过点B ,D ,直线l 1,l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ABC 的面积.4、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.5、已知一次函数y kx b =+的图象经过点()1,1A --和()1,3B .(1)求此一次函数的表达式;(2)点()3,5C --是否在直线AB 上,请说明理由.-参考答案-一、单选题1、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km,∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;∵甲5小时达到B地,此时乙所走路程为5×6=30(km),∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入, ∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.5、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可得出结论.【详解】∵正比例函数y =3x 中,k =3>0,∴y 随x 的增大而增大,∵x 1>x 2,∴y 1>y 2.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、B【解析】【分析】根据菜园的三边的和为24m ,进而得出一个x 与y 的关系式,然后根据题意可得关于x 的不等式,求解即可确定x 的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m ,即224y x +=, 所以1122y x -+=,由y >0得,11202x -+>,解得24x <,当x y >时,即1122x x >-+,解得8x >,∴824x <<,故选:B .【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.8、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.10、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A 正确;王明跑步的速度为24÷3=8(km/h ),故选项B 正确;陈启浩的速度为:24÷1-8=16(km/h ),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h ),故陈启浩到达目的地时两人相距8×1.5=12(km ),故选项C 错误;陈启浩比王提前3-1.5=1.5h 到目的地,故选项D 正确;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、x <1【解析】略2、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、原点【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、 (1)钢笔的单价为20元,笔记本的单价为15元.(2)①3180612w a a ;②6支或10支【解析】【分析】(1)设钢笔的单价为x 元,笔记本的单价为y 元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当6a >时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当6a ≤或6,a 再解方程可得答案.(1)解:设钢笔的单价为x 元,笔记本的单价为y 元,则102230,84220x y x y解得:20,15x y答:钢笔的单价为20元,笔记本的单价为15元.(2)解:①当6a >时,w 与a 之间的函数关系式为:0.9201512w a a3180,a所以w 与a 之间的函数关系式为3180612.w a a②当6a ≤时,则201512210,a a解得:6,a =当6a >时,3180210,a解得:10,a =所以李老师购买纪念品一共花了210元钱,他可能购买了6支或10支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.2、 (1)0.5(2)见解析(3)(187,97),它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km 【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发18 7min后,乙离B的距离和甲离A地的距离都是97km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】 本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)y =12x ﹣3 (2)256 【解析】【分析】(1)设直线l 2的解析式为()0y kx b k =+≠,将点B 、点D 两个点代入求解即可确定函数解析式;(2)当y =0时,代入直线1l 解析式确定点A 的坐标,即可得出ABC 的底边长,然后联立两个函数解析式得出交点坐标,点C 的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l 2的解析式为()0y kx b k =+≠,由直线l 2经过点()6,0B ,()4,1D -可得:6041k b k b +=⎧⎨+=-⎩, 解得:123k b ⎧=⎪⎨⎪=-⎩, ∴直线l 2的解析式为132y x =-; (2) 当y =0时,代入直线1l 解析式可得:10x -+=,解得1x =,∴()1,0A ,∴615AB =-=, 联立1321y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8353x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴85,33C⎛⎫-⎪⎝⎭,∴15255236 ABCS=⨯⨯=.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.4、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.5、 (1)一次函数的表达式为21y x =+;(2)点()3,5C --在直线AB 上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 与b 的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将()1,1A --和()1,3B 代入y kx b =+,得31k b k b +=⎧⎨-+=-⎩, 解得2k =,1b =,∴一次函数的表达式为21y x =+(2)解:点C 在直线AB 上,理由:当3x =-时,()212315y x =+=⨯-+=-,∴点()3,5C --在直线AB 上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ,将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.。